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Abstract Developing system for regression tasks like predicting prices,
temperature is not a trivial task. There are many of issues which must be
addressed such as: selecting appropriate model, eliminating irrelevant inputs,
removing noise, etc. Most of them can be solved by application of machine
learning methods. Although most of them were developed for classification
tasks, they can be successfully applied for regression too. Therefore, in this
paper we present Adaptive Splitting and Selection for Regression algorithm,
whose predecessor was successfully applied in many classification tasks. The
algorithm uses ensemble techniques whose strength comes from exploring lo-
cal competences of several predictors. This is achieved by decomposing input
space into disjointed competence areas and establishing local ensembles for
each area respectively. Learning procedure is implemented as a compound
optimisation process solved by means of evolutionary algorithm. The perfor-
mance of the system is evaluated in series of experiments carried on several
benchmark datasets. Obtained results show that proposed algorithm is valu-
able option for those who look for regression method.

Keywords: Machine Learning Regression Based Algorithms, Ensemble of
Predictors, Ensemble Training with Evolutionary Algorithm.

§1 Introduction
Developing systems for regression tasks is an area of research which has

been attracted attention of researchers of different specialisations. The main
objective, while designing this kind of system, is creating the best possible
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mapping between inputs of the system and desired target.2) There are many
classical regression algorithms. Among the others, one can list Linear or Poly-
nomial Regression, Nonparametric Regression - Smoothing Algorithms,21) and
many others. Apart from them there is a class of algorithms which uses ma-
chine learning methods.26) Their effectiveness has been proved by a plethora of
publications which report their successful applications in real regression prob-
lems. One can list: Neural Networks, Recurrent Neural Networks, Random
Neural Networks,4,8,9) Classification and Regression Trees,10) Support Vector
Machines,30) to mention just a few. Many of those methods have their ori-
gin in classification domain. We decided to approach regression problem with
ensemble methods,26) which are widely appreciated among researchers dealing
with classification.

Those algorithms are especially useful when it is not possible to obtain
acceptable accuracy using one single predictor. Although there is no guarantee
that fusing responses of several predictors elevate an overall performance of the
ensemble, merging knowledge of complementary predictors can help.12) Ensem-
ble techniques can be described as “overproduce-and-choose”.10) It means that
process of creating an ensemble is divided into two stages. In the first one, set
of predictors is created in advance. Next, in the second one (named pruning),
the best subset is selected.

There are two main approaches in creating predictors for ensemble. If one
and the same predicting model is used for induction, ensemble is called homo-
geneous. Otherwise we call it heterogeneous. The first one is more often used.
Their authors usually propose incorporating data manipulation techniques in or-
der to create more comprehensive set of predictors. The most popular ones are
Bagging, and Boosting.5,16) Especially AdaboostRT28) is one of boosting versions
dedicated for regression tasks. Boosting predictor was successfully used in many
practical applications such as web search ranking.33) In a case of heterogeneous
ensemble18) it is expected that fusion of different models naturally elevates its
generalisation ability.

The pruning aims at minimising ensemble size without diminishing the
quality of regression.36) One possible approach is selecting predictors with the
highest quality.20) In partitioning base methods, set is divided into subsets of
similar models using partitioning criterion. Next, only one model from each
group is selected as its representatives.13) Extensive empirical analysis of avail-
able techniques is presented by Hernandez.19)

The main novelty of our approach consists on exploring and exploiting lo-
cal competences of several elementary predictors. In presented Adaptive Splitting
and Selection for Regression algorithm (AdaSSReg), input space is decomposed
into disjointed constituents. Let us name them competence areas. For each area,
one local ensemble predictor is created by weighted aggregation of elementary
predictors collected in advance. Their contribution in determining output of
the system varies depending on their competence in given area. Weights, which
control the contribution of predictors, and areas’ positions are adjusted in learn-
ing procedure. This process is a compound optimisation problem which aims at
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minimising mean square error of the system. We use Evolutionary Algorithms7)

for that purpose. AdaSSReg’s predecessors (Adaptive Splitting and Selection -
AdaSS) were originally developed for classification tasks24) and used for solving
practical problems.22) Now it is adapted for regression problems by implementing
the following amendments:

• extending range of weights which now can get negative values,
• using vector representation of the system parameters in sake of simplifying

software implementation,
• modification of objective function of training procedure which calculates

mean square error of regression.

The rest of the paper is organised as follows. In the next Section 2, details
on the proposed ensemble model and its training procedure are presented along
with discussion on factors which can affect the system performance. Section
3 consists of information on experimental evaluation of AdaSSReg. The last
Section 4 concludes the paper and highlights some prospective directions for
further researches.

§2 Ensemble of Predictors
In this section details of Adaptive Splitting and Selection for Regression al-

gorithm are presented. To understand AdaSSReg model some basic information
on a problem description must be presented.

2.1 Problem Statement
The main objective of regression is to create the most accurate model of

relation between inputs and an output. In real situation, the inputs can consists
of parameters with different formats and types (ex. numerical, nominal, etc.).
Nonetheless, without losing ability to generalisation, it can be assumed that the
input set consists of numerical variable only. As a result, it can be described by
a d -dimensional vector of real numbers x ∈ Rd. In regression tasks, an output
is a real variable, therefore, it can be assumed that a given regression algorithm
F is a function which maps input vector x into a numerical scalar value.

F : x → y ∈ R (1)

Selecting regression function F, which is appropriate for the given tasks, is es-
sential for resulting accuracy. Usually there is no assumptions regarding the
model of input-output relationships and it is discovered and refined in a course
of a training procedure. It aims at finding best approximation of Eq. (1) using
samples collected in learning set LS. This set consists of N pairs which represent
input (x ) and output (y).

LS = {(x1, y1), · · · , (xN , yN )} (2)

Training procedure is an optimisation task which aims at minimising regression
error, i.e. difference between desired target y and response of the system F (x).
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We use for that purpose standard Mean Square Error measure in Eq. (3).

MSE(LS) =
1
N

N∑
n=1

(F(xn)− yn)2 (3)

Equation (3) is also used as a fitness function of AdaSSReg training procedure
presented in Sec. 2.5.

2.2 Model of Ensemble Regression
In a case of ensemble, it is assumed that there exists set Π of K elementary

regression algorithms (predictors).

Π = {F1, · · · ,FK} (4)

An ensemble is a system which aggregates responses of its constituents. In
the simplest form, aggregation can be done as a simple averaging according to
Eq. (5),

F̂(x) =
1
K

K∑

k=1

Fk(x) (5)

Also, this model is simple to implement and does not have any parameters which
need to be set. On the other hand, it ignores qualities of elementary predictors.
In other words, weak predictors contribute in final mapping in the same degree
as the strong ones. As a consequence, overall accuracy of ensemble is close
to average accuracy of the pool Π and is strongly affected (spoiled) by weak
predictors.

To counteract this negative fact, the contribution of predictors can be
weighted, as it is presented in Eq. (6).

F̂(x) =
∑K

k=1 wk Fk(x)∑K
k=1 wk

(6)

Choosing weighted aggregation cause a new question, i.e. how to set weights.
Most intuitive answer is that they should reflect the qualities of the predic-
tors. The higher the accuracy of the predictor is, the higher the weight should
be. This approach is also easy to implement because weights can be calculated
quickly based on MSE in Eq. (3) calculated over LS. Therefore, a computational
complexity of this procedure is linearly dependent on the size of LS only.

Despite all these advantages, this approach does not guarantee obtaining
acceptable results. Alternatively, weights can be set in training procedure.

2.3 AdaSSReg Model
Usually predictors quality varies in different regions of the input space.

In other words, predictors show local specialisation. Therefore, to take full
advantage from their aggregation, ensemble must vary contribution of predictors
depending on the value of input vector x.
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AdaSSReg decomposes input space into h constituents X̂h. We will name
them competence areas. Two assumptions must be done while performing de-
composition:

1. a sum of all competence areas covers entire input space, and
2. the competence areas do not overlap each other.

Each competence area X̂h is represented by its centroid ch ∈ Rd, i.e. a
representative point in input space.

All centroids, arranged into columns, create a set of centroids as Eq. (7).

C = {c1, · · · , cH} (7)

The distances between a given object and the centroids are the basis for deter-
mining the competence area, i.e. the object belongs to the area indicated by the
closest centroid ch. Let us define function which returns index of the competence
area for a given object,

AreaIdx(x,C) =
H

arg min
h=1

d(x, ch), (8)

where d(x, ch) is a distance measure. We decided to use for our purposes classical
Euclidean distance metric, which can be used for numeric attributes. In a case
of discreet or nominal values appropriate metrics must be defined.14)

Now we create sets of local ensembles which are assigned to respective
areas X̂h. Although all local ensembles share the same elementary predictors,
their contributions vary because each local ensemble has its own set of weights
as Eq. (9),

Wh = {wh,1, · · · , wh,K}, (9)

where wh,k is a weight assigned to kth predictor in hth local ensemble.
Now, response of the local ensemble F̂h can be defined as following Eq. (10).

F̂h(x) =
K∑

k=1

wh,k Fk(x) (10)

Finally, a model of AdaSSReg response is given by Eq. (11)

F̂
AdaSSReg

(x) =
H∑

h=1

δ(AreaIdx(x,C), h)
∑K

k=1 wh,k Fk(x)∑K
k=1 wh,k

, (11)

where δ is a Kronecker delta, and
K∑

k=1

wh,k is a normalisation factor.

2.4 Discussion on AdaSSReg Model
There are several important factors which essentially affect an ability to

explore a local competences of the predictors. Among the others one can list:

1. number of competence areas,
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2. overfitting,
3. weight ranges in aggregation model,
4. competence area representation.

[ 1 ] Number of competence areas
A number of competence areas (H) is the first factor which essentially

determines ability of AdaSSReg to explore and exploit local specialisation of el-
ementary predictors. The higher the number the smaller the size of areas and the
higher flexibility of mapping. Number of areas should be related with problem
characteristics, i.e. with distribution of samples in input space. Therefore, in
practise, H should be found in a series of preliminary tests on a given regression
problem.

[ 2 ] Problem of overfitting
There is one weakness of predictors which feature high flexibility. They

have a tendency to overfitting. i.e. they adjust their model to samples gathered
in a learning set very precisely. The problem is that at the same time they
lose a generalisation ability. The created model does not reflect any particular
regression problem, but the relationship is valid only in the LS. In this case,
predictors tested on new data show a much weaker performance. To counteract
this phenomenon in AdaSSReg, an over-fitting detector is implemented. More
information is presented in Sec. 2.5.9.

[ 3 ] Weight ranges
Usually it is assumed (implicitly or explicitly) that weights are real num-

ber which are limited in a range between 0 and 1. Especially in regression tasks
they should be normalised to ensure creating proper mapping Eq. (1) of target
values y. Our experiences showed that the range can be extended, which some-
time (we underline the word, “sometime”) gives positive results.23) Therefore
we decided to implement two versions of AdaSSReg model. In the first one we
assume classical < 0, 1 > range, in a second one the extended < −1, 1 > one.

[ 4 ] Representation of competence area
The next factor is representation of the competence areas. Centroid rep-

resentation is simple to implement and especially suitable for manipulation in
training procedure based on evolutionary algorithms. Therefore, we decided on
it merely from practical point of view. Although it must be underlined that any
other representation might be also practical and can lead to elevating system
quality. Nonetheless, exploring optional representations exceeds the scope of
this paper and is on our list of further researches.



ngc33405 : 2015/10/9(9:23)

Adaptive Splitting and Selection Algorithm for Regression 431

2.5 AdaSSReg Training Procedure
AdaSSReg objective function for training procedure is defined in Eq. (12).

MSE(LS) =
1
N

N∑
n=1

(( H∑

h=1

δ(AreaIdx(xn, C), h)
∑K

k=1 wh,k Fk(xn)∑K
k=1 wh,k

)
− yn

)2

(12)
Glancing at Eq. (12) allows us to note that this is not a trivial problem as its
minimising is a compound optimisation problem with two sets of variables.

1. Set of weights wh,k, and
2. Set of centroids C.

All of them are responsible for designing map of competence areas and finding
best local ensembles. Therefore optimisation procedure must affect the param-
eters at the same time. This approach allows to establish mutual relationship
between the areas and the weights.

We decided to implement evolutionary based training algorithm7) which
processes population of possible solutions encoded in a form of chromosomes
(13). In a case of AdaSSReg, chromosome Chr was implemented as a vector
which consisted of two parts: set of weights (9) and set of centroids (7).

Chr = [W1, · · · ,WH , C1, · · · , CH ] (13)

This model of a chromosome has some drawbacks. Firstly, there is no clear
difference between its both parts. Therefore, special attention must be put
while implementing genetic operators. One can easily forget that the parts have
different domains. The other problem is that chromosome must be decomposed
to both constituents while calculating response of the system (11).

On the other hand, there is some essential advantage from programming
point of view. Vector representation allows to easily adjust classical genetic
operators. All in all, we decided to choose vector representation for a next
modification of original AdaSS. In original AdaSS, structure representation24)

was used.

[ 1 ] AdaSSReg main function - training procedure
Algorithm 1 presents main functions of the AdaSSReg training procedure.

It processes population of individuals and perform several genetic operators de-
scribed in subsequent subsections.

[ 2 ] Initialize population
AdaSSReg starts with generating population of individuals (Alg. 1 line

1). A size of the population is a parameter of the algorithm and must be set
arbitrarily by a user. According to classical rules, all chromosomes should be
randomise at the begining. Therefore, a knowledge on chromosome constituents
domain must be used to choose appropriate pseudo-random number generator.
For our purposes we decided to use uniform distribution. According to discussion
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Algorithm 1 AdaSSReg main function
Require: LS - learning set

V S - validation set
H - number of competence areas
Π - pool of elementary predictors
MaxIt - maximal number of iteration
PopSize - number of individuals in population

1: Initialize Population
2: Evaluate population over LS
3: repeat
4: Select elite
5: Select parent
6: Mutation
7: Crossover
8: Create offspring population
9: Evaluate population over LS

10: Evaluate population over V S
11: if Detect Overfitting is true then
12: return Best Individual
13: end if
14: until Iteration ≤ MaxIt
15: return Best Individual

presented in Sec. 2.4, we implemented two optional ranges for the first part of
the chromosome:

1. Option A - range < 0, 1 >
2. Option B - range < −1, 1 >

Ranges for a second part of chromosome, i.e. centroid part, are determined
dynamically from learning set LS in a way which ensures covering entire input
space.

[ 3 ] Evaluate population
All genetic operators affect the individuals which are selected from popu-

lation. The selection procedure is controlled by individual fitness. Therefore, in
AdaSSReg evaluation function (Alg. 1 lines 2 and 9), Eq. (12) is used to evaluate
fitness.

[ 4 ] Select elite
Two best individuals join offspring population without any additional

conditions (Alg. 1 line 4). That ensures that best solutions obtained at a given
iteration are transferred to the next population.

[ 5 ] Select parent
Fitness of individuals has essential impact on the selection procedure. The

probability of selection is directly proportional to the individual fitness, although
it might happen that worse individuals can be selected too. In AdaSSReg we
implemented standard ranking selection procedure7) (Alg. 1 line 5).
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[ 6 ] Mutation
Mutation (Alg. 1 line 6) is a procedure which shall inject some randomness

to the population in order to maintain its diversity. We add random noise to
chromosome constituents preserving the same condition which was imposed in
the initialisation procedure (Sec. 2.5.2).

[ 7 ] Crossover
Vector implementation of chromosome allows to use classical standard

two-point crossover operator.7) It exchanges parts of two parent chromosomes
and creates two offsprings (Alg. 1 line 7).

[ 8 ] Create offspring population
ELite, individuals affected by mutation, and those which were created

by crossover operator are joined together and form offspring population. It is
processed in next iteration of the algorithm (Alg. 1 line 8).

[ 9 ] Detect overtraining
This procedure protects learning routine against overtraining.2) A valida-

tion set V S is required which does not overlap with LS. The procedure evaluates
the population over the V S and with results obtained in the previous generation.
If current results are better than the previous ones, overtraining is not detected.
In other cases, training procedures are cancelled after a few further iterations
without improvement. The best individuals from population not affected by
overtraining are returned (Alg. 1 line 10-13).

§3 Evaluation of AdaSSReg
In this section details of experimental evaluation are presented.

3.1 Objectives of the Experiments
The following objectives for experiments were set:

1. to compare AdaSSReg with alternative ensemble methods and to check
whether AdaSSReg can outperform all predictors gathered in the pool.
This is the main tests which shall proof that the proposed model and the
training procedure effectively exploit local competences of predictors;

2. to examine what is a better strategy for creating diversified ensemble:
collecting heterogeneous or homogeneous pool of predictors;

3. to examine impact of number of competence areas onto AdaSSReg per-
formance quality.

3.2 Benchmark Datasets
The choice of benchmark datasets was dictated by the need to test the

algorithms in a diverse conditions. Therefore, we selected some high dimensional
sets, some large sets with a small number of features, and some typical/balanced
ones. They cover a wide range of real-life possibilities. The datasets come from
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Table 1 Benchmark Datasets Used in Experimental Evaluations

Dataset Description #instances #attributes
Abalone abalone 4027 8
Airfoil Airfoil self-noise 1503 6
Anacalt Decissions of supreme court 4052 7
Auto MPG6 Fuel consumption 392 5
California Block in California 20640 8
Casp Protein tertiary structure 45730 9
Compactiv Computer activity 8192 21

Concrete35) Concrete strength 1030 9
Elevators Action on elevators 16599 18
Energy DS.1 Energy efficiency (heating) 768 8
Energy DS.2 Energy efficiency (cooling) 768 8
House Price of houses 22784 16
Laser Far-Infrared-Laser 993 4
Mortgage Economic data 1049 16

Parkinson31) DS.1 Parkinsons Telemonitoring 5875 26

Parkinson31) DS.2 Parkinsons Telemonitoring 5875 26
Pole Telecommunication problems 14998 25

PowerPlant32) Power plant 9568 4
Stock Daily stock prices 950 9
Wankara Wheather of Ankara 1609 10

the UCI Machine Learning Repository,6) and from KEEL-dataset repository.1)

Details for selected datasets are given in Table 1. More information can be found
on UCI website,∗1 and Keel website.∗2

3.3 Experimental Framework
Several regression algorithms were implemented to perform tests. Firstly,

five simple regression algorithms were chosen which use diametrically different
approaches, therefore, they become good reference points for comparative anal-
ysis.

1. Linear regression (LinearReg) - the simplest predictive model which
performs linear weighted combination of input variables to obtain out-
put.

2. Multilayer Perceptron (MLPReg) - classical neural network with one
hidden layer trained with back-propagation algorithm. The number of
neurons in hidden layer was equal to the number of attributes. There was
only one output neuron which returned output of the predictor. Learning
rate and momentum parameters were set to 0.3 and 0.2 respectively.

3. Pace Regression (PaceReg) - pace regression linear model proposed by
Wang.34) It evaluates the effects of variables for their weighting using
clustering analysis.

4. Sequential Minimal Optimization Regression (SMOReg) - algorithm for
training support vector machines30) with SMO modification for regres-
sion tasks.25)

∗1 http://archive.ics.uci.edu/ml/datasets.html
∗2 http://sci2s.ugr.es/keel/datasets.php
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5. Least Median Squared Linear Regression (LeastMedReg). It uses ran-
domly generated sub-samples of the data to create linear models and the
lowest median squared error is used to determine final model.27)

Additionally, aforementioned predictors were used to form pool for ensembles.
Two approaches were applied.

• Creating heterogeneous pool of predictors, i.e. such that fuses different
regression algorithm.

• Creating homogeneous pool of predictors, i.e. such that consists of differ-
ent instances of the same predicting algorithm. MLPReg was chosen ar-
bitrarily for that purpose. The only reason for selecting MLPReg is their
ability to randomize starting weights which is considered as a method for
creating diversified instances of the same predictor.

For comparison purposes following ensemble predictors were also implemented.

1. Mean Ensemble - algorithm which calculates simple average of its mem-
bers’ responses. Two predictors were created, one for heterogeneous
Mean (heterogeneous) and one for homogeneous Mean (homoge-
neous) pool respectively.

2. Quality Weighted Ensemble - extension of previous one with weighting
the responses. The weights are set straight proportionally to predictor
accuracy. Two ensembles were created: QWE (heterogeneous) and
QWE (homogeneous), one for each pool respectively.

3. Bagging Ensemble - standard implementation of Breimans11) ensemble
consisting of set of elementary predictors of the same type trained with
bootstrap sampling. Five bagging ensembles were created based on five
elementary models described above: Bagging (LinearReg), Bagging
(MLPReg), Bagging (PaceReg), Bagging (SMOReg), Bagging
(LeastMedReg).

4. Adaptive Splitting and Selection for Regression algorithm for regression.
Implementation of our method with two versions: AdaSSReg (hetero-
geneous) and AdaSSReg (homogeneous).

All experiments were carried out in the Matlab environment using its
Optimisation Toolbox used for AdaSSReg implementation. KNIME∗3 (an open
source data mining framework29)), and WEKA∗4 frameworks were used for mod-
elling elementary predictors.

All tests were done by a 5 x 2 Cross-validation method. Additionally, 5 x
2 combined F-test3) for pairwise statistical analysis was conducted in final exper-
iment to validate statistical difference between proposed AdaSSReg algorithm
and competing methods.

For assessing the ranks of classifiers over all datasets, a Friedman ranking
test15) was applied.
∗3 https://www.knime.org/
∗4 http://www.cs.waikato.ac.nz/ml/weka/
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Finally, Shaffer post-hoc test17) was used to find out which of the tested
methods are distinctive among an n x n comparison.

All datasets undergo normalisation. Their input attributes and target
values were scaled to fall into range from 0 to 1.

[ 1 ] Test 1. Preliminary evaluation of predictors
In this section we present results of preliminary evaluation of predictors

collected in heterogeneous, and homogeneous pools, and in the set of bagging-
based ensembles. There were two objectives of tests:

1. to evaluate quality of classical algorithms and select the best one for
comparison with ensemble methods;

2. to assess how bagging technique performs on classical methods and select
the one which would ensure the highest improvement.

Average MSEs of the predictors are presented in Table 3, Table 4, and Table 5 for
heterogeneous, homogeneous, and bagging sets respectively. To select a winner
over all datasets, Friedman rankings were calculated for each set separately.
They are presented in Table 2. Predictors in the table were ordered according
to rankings obtained in each group separately.

Table 2 Average Friedman Ranking of Predictors Gathered in Three Sets

a. Heteregenouse pool b. Homogenous pool c. Bagging predictors
Algorithm Rank Algorithm Rank Algorithm Rank

LinearReg 2.00 MLP1 2.70
Bagging
(MLPReg)

1.05

MLPReg 2.00 MLP5 2.75
Bagging
(LinearReg)

2.90

PaceReg 2.40 MLP2 3.00
Bagging
(SMO)

2.90

SMOReg 3.85 MLP3 3.20
Bagging
(PaceReg)

3.25

LeastMedReg 4.75 MLP4 3.35
Bagging
(LeastMed)

4.90

Observations

1. In the heterogeneous pool the highest ranks were gained by two predic-
tors: MLPReg and LinearReg. Nonetheless, it is difficult to firmly state
that they are the winners. It must be noted that the difference between
the best and the worst predictor is not so big. Therefore, it should rather
be concluded that predictors’ qualities in heterogeneous pool were quite
similar, although differences in their accuracy suggest that there is a
potential for creating diversified ensemble.

2. Almost the same observation can be made for homogeneous pool con-
sisting of five MLPs. No one predictor gained superior position. Similar
performance can be caused by the fact that all predictors are neural net-
works of similar architecture. The diversity were enforced only by initial
randomisation of their weights.
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3. Much higher diversity of the result can be observed in bagging group.
Here, superior position was easily gained by bagging performed on ML-
PReg.

For the final comparison carried out in the last test, we selected those predictors
which had gained the highest ranks in their groups: LinearReg from the first set
will be denoted as HeteroPool(LinearReg), MLP1 from the second set will be
denoted HomoPool(MLP), and Bagging(MLPReg) from the last set.

[ 2 ] Test 2. Impact of number of areas onto AdaSSReg performance
As it was discussed in Sec. 2.4, the number of competence areas essentially

determines flexibility of AdaSSReg. In this experiments we generated several
AdaSSReg predictors with different numbers of the areas. MSEs for six datasets

a. Airfoil b. Casp

c. Concrete d. Energy DS. 1

e. Power plant f. Parkinson DS. 1

Fig. 1 MSE of AdaSSReg for heterogeneous and homogeneous pool
evaluated for different number of competence areas. Figures
a.-f. show results for different datasets.
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a. Heterogeneous pool

b. Homogenous pool

Fig. 2 Processing time (seconds) of AdaSSReg for heterogeneous and homo-
geneous pool evaluated for different number of competence areas.
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are presented in Fig. 1 (a–f). Processing time for those tests are shown in Fig. 2
(a, b).

Observations

1. The most striking fact is the superiority of AdaSSReg (homogeneous)
over AdaSSReg (heterogeneous). It can be seen that, in all databases
and for all area counts, the first one obtained smaller MSE than the
second one. That fact suggests that higher diversity can be ensured
by randomising parameters of one strong predictor instead of gather-
ing algorithm based on different regression models. Nonetheless, this
conclusion can be misleading.

2. In almost all cases there is a clear tendency. MSE falls along with in-
creasing number of areas. That is especially obvious for Airfoil, Casp,
Energy, Parkinson, Power plant datasets. In a case of Concrete some
disturbances can be noticed, but, they do not contradict the general
rule.

3. Previous observations may suggest a choice of largest number of areas.
Nonetheless, processing time must be also considered. Figures presented
in Fig. 2 clearly show that the time is straight proportional to the num-
ber of areas. That is not surprising, because that number determines
chromosome length. Therefore, the compromise must be made between
regression accuracy and processing time.

4. There is no strict rule how to reach a compromise, but our tests show
that the highest improvement obtained (in term of MSE) is for 3 up to
10 areas. Therefore, we decided to recommend selecting a number of
areas from this range. In the last experiment we will choose 10 areas.

[ 3 ] Test 3. Comparative analysis of AdaSSReg performance
The last experiment is prepared for comparison AdaSSReg with other

methods: classical ones, static ensembles, and more sophisticated bagging en-
semble. Results are presented in Table 6. Small numbers in parentheses under
the MSE of AdaSSReg show indexes of those predictors whose inferiority in re-
lation to AdaSSReg were confirmed by statistical 5 x 2 combined F-test. The
indexes of predictors are given in the first column. Average Friedman rankings
are presented in Table 7. The predictors were ordered according to their rank-
ing. Finally, results of Shaffer post-hoc test for α = 0.05 over MSE are given in
Table 8. It consists of family of hypothesis which compare two predictors. Null
hypothesis states that two algorithms have the same quality. Its rejecting means
that difference between the algorithms is significant. The hypothesis is rejected
when respective p-value is lower or equal to adjusted αShaffer.

Observations

1. In 17 out of 20 tests AdaSSReg(homogeneous) gained the best results



ngc33405 : 2015/10/9(9:23)

Adaptive Splitting and Selection Algorithm for Regression 443
Ta

bl
e

6
M

S
E

fo
r

A
d
a
S
S
R

eg
a
n
d

re
fe

re
n
ce

p
re

d
ic

to
rs

.
T

h
e

b
es

t
p
o
si

ti
o
n
s

a
re

h
ig

h
li
g
h
te

d
w

it
h

b
o
ld

fo
n
ts

.
S
m

a
ll

n
u
m

b
er

s
in

p
a
re

n
th

es
es

u
n
d
er

th
e

A
d
a
S
S
R

eg
re

su
lt
s

in
d
ic

a
te

in
d
ex

es
p
re

d
ic

to
rs

,
fo

r
w

h
ic

h
su

p
er

io
ri

ty
o
f

A
d
a
S
S
R

eg
w

er
e

co
n
fi
rm

ed
b
y

st
a
ti
st

ic
a
l
5

x
2

co
m

b
in

ed
F
-t

es
t.

Id
A

lg
o
r
it

h
m

A
b
a
lo

n
e

A
ir

fo
il

A
n
a
c
a
lt

A
u
t
o

M
P

G
6

C
a
li
fo

r
n
ia

C
a
s
p

C
o
m

p
a
c
t
iv

C
o
n
c
r
e
t
e

E
le

v
a
t
o
r
s

E
n
e
r
g
y

D
S
.1

1
A

d
a
S
S
R

eg
0
.0

0
5
9
9

0
.0

1
2
5
4

0
.0

0
2
3
6

0
.0

0
7
1
3

0
.0

1
8
3
3

0
.0

5
7
7
0

0
.0

0
0
9
3

0
.0

0
8
9
3

0
.0

0
1
2
9

0
.0

0
1
7
3

(H
et

er
o
P
o
o
l)

(9
)

(4
,6

,8
)

(4
,6

,8
)

(4
,6

,8
)

(4
,6

,8
)

(3
,4

,6
,8

,9
)

(4
,6

,8
)

(4
,6

,8
)

(4
,6

,8
)

(4
,6

,8
)

2
A

d
a
S
S
R

eg
0
.0

0
5
8
4

0
.0

1
1
3
5

0
.0

0
1
5
7

0
.0

0
6
4
4

0
.0

1
6
5
2

0
.0

5
4
5
2

0
.0

0
0
7
2

0
.0

0
8
0
9

0
.0

0
1
1
0

0
.0

0
0
8
5

(H
o
m

o
P
o
o
l)

(1
,8

,9
)

(1
,5

,7
,8

,9
)

(1
,4

,6
,8

)
(1

,4
,5

,6
,7

,8
)

(1
,4

,6
,8

)
(1

,3
,4

,5
,6

,7
,8

,9
)

(1
,4

,5
,6

,7
,8

)
(1

,4
,5

,6
,7

,8
)

(1
,4

,6
,8

)
(1

,4
,5

,6
,7

,8
)

3
B

a
g
g
in

g
(M

L
P

R
eg

)
0
.0

0
6
0
4

0
.0

1
0
9
9

0
.0

0
1
4
3

0
.0

0
7
1
6

0
.0

1
7
5
6

0
.0

6
0
2
3

0
.0

0
0
7
6

0
.0

0
9
1
4

0
.0

0
1
3
7

0
.0

0
1
5
0

4
M

ea
n

(H
et

er
o
P
o
o
l)

0
.0

0
6
1
8

0
.0

1
4
9
1

0
.0

2
5
2
0

0
.0

0
7
8
4

0
.0

2
0
2
3

0
.0

6
0
9
1

0
.0

0
9
4
7

0
.0

1
4
9
5

0
.0

0
1
9
3

0
.0

0
4
8
4

5
M

ea
n

(H
o
m

o
P
o
o
l)

0
.0

0
6
5
8

0
.0

1
2
7
3

0
.0

0
1
9
0

0
.0

0
6
8
1

0
.0

1
8
1
7

0
.0

5
8
7
8

0
.0

0
0
7
8

0
.0

0
9
3
3

0
.0

0
1
1
5

0
.0

0
1
1
0

6
Q

W
E

(H
et

er
o
P
o
o
l)

0
.0

0
6
1
7

0
.0

1
4
8
7

0
.0

2
1
6
3

0
.0

0
7
8
4

0
.0

2
0
1
6

0
.0

6
0
6
7

0
.0

0
6
2
5

0
.0

1
3
9
2

0
.0

0
1
7
2

0
.0

0
4
5
6

7
Q

W
E

(H
o
m

o
P
o
o
l)

0
.0

0
6
4
8

0
.0

1
2
6
1

0
.0

0
1
5
4

0
.0

0
6
7
9

0
.0

1
7
9
9

0
.0

5
8
4
0

0
.0

0
0
7
6

0
.0

0
9
2
3

0
.0

0
1
1
4

0
.0

0
1
0
8

8
H

et
er

o
P
o
o
l

(L
in

ea
rR

eg
)

0
.0

0
6
3
1

0
.0

1
6
5
7

0
.0

3
2
1
3

0
.0

0
8
4
6

0
.0

2
1
1
6

0
.0

6
1
1
1

0
.0

0
9
6
6

0
.0

1
7
2
0

0
.0

0
1
9
3

0
.0

0
6
3
8

9
H

o
m

o
P
o
o
l

(M
L
P

1
)

0
.0

0
7
9
9

0
.0

1
3
9
3

0
.0

0
2
2
7

0
.0

0
8
5
3

0
.0

2
7
3
1

0
.0

6
6
7
1

0
.0

0
1
2
0

0
.0

1
2
4
3

0
.0

0
1
6
4

0
.0

0
1
4
2

E
n
e
r
g
y

D
S
.2

H
o
u
s
e

L
a
s
e
r

M
o
r
t
g
a
g
e

P
a
r
k
in

s
o
n

D
S
.1

P
a
r
k
in

s
o
n

D
S
.2

P
o
le

P
o
w

e
r

P
la

n
t

S
t
o
c
k

W
a
n
k
a
r
a

1
A

d
a
S
S
R

eg
0
.0

0
4
2
6

0
.0

0
7
4
4

0
.0

0
1
2
2

0
.0

0
0
0
6

0
.0

2
9
8
2

0
.0

2
5
6
1

0
.0

2
5
9
1

0
.0

0
3
2
8

0
.0

0
1
7
7

0
.0

0
0
3
4

(H
et

er
o
P
o
o
l)

(4
,6

,8
)

(4
,6

,8
)

(4
,6

,8
)

(4
,6

,8
)

(4
,5

,6
,7

,8
)

(3
,4

,5
,6

,7
,8

)
(4

,6
,8

)
(4

,6
,8

)
(4

,6
,8

)
(4

,5
,6

,7
,8

)

2
A

d
a
S
S
R

eg
0
.0

0
3
5
2

0
.0

0
6
6
7

0
.0

0
0
8
4

0
.0

0
0
0
6

0
.0

2
3
6
8

0
.0

2
0
5
4

0
.0

1
6
3
1

0
.0

0
3
1
7

0
.0

0
1
6
3

0
.0

0
0
3
2

(H
o
m

o
P
o
o
l)

(1
,4

,6
,8

)
(1

,4
,6

,8
,9

)
(1

,4
,5

,6
,7

,8
)

(1
,4

,6
,8

)
(1

,3
,4

,5
,6

,7
,8

,9
)

(1
,3

,4
,6

,8
)

(1
,3

,4
,6

,8
,9

)
(1

,4
,6

,8
)

(1
,4

,5
,6

,7
,8

,9
)

(1
,4

,6
,8

)

3
B

a
g
g
in

g
(M

L
P

R
eg

)
0
.0

0
4
6
0

0
.0

0
7
1
5

0
.0

0
0
7
6

0
.0

0
0
0
7

0
.0

3
1
6
8

0
.0

2
8
7
6

0
.0

2
2
1
5

0
.0

0
3
1
8

0
.0

0
1
8
9

0
.0

0
0
3
3

4
M

ea
n

(H
et

er
o
P
o
o
l)

0
.0

0
6
3
7

0
.0

0
8
1
6

0
.0

0
5
9
3

0
.0

0
0
0
8

0
.0

3
9
6
2

0
.0

3
5
2
9

0
.0

7
2
4
6

0
.0

0
3
4
8

0
.0

0
5
3
8

0
.0

0
0
4
0

5
M

ea
n

(H
o
m

o
P
o
o
l)

0
.0

0
4
4
8

0
.0

0
7
6
2

0
.0

0
1
0
0

0
.0

0
0
0
6

0
.0

2
6
3
2

0
.0

2
2
1
6

0
.0

1
7
0
8

0
.0

0
3
4
9

0
.0

0
1
8
0

0
.0

0
0
3
4

6
Q

W
E

(H
et

er
o
P
o
o
l)

0
.0

0
6
2
2

0
.0

0
8
0
8

0
.0

0
5
3
9

0
.0

0
0
0
7

0
.0

3
9
1
9

0
.0

3
4
8
5

0
.0

6
4
9
8

0
.0

0
3
4
8

0
.0

0
4
9
4

0
.0

0
0
3
9

7
Q

W
E

(H
o
m

o
P
o
o
l)

0
.0

0
4
3
8

0
.0

0
7
1
0

0
.0

0
0
9
6

0
.0

0
0
0
6

0
.0

2
6
1
2

0
.0

2
2
0
1

0
.0

1
6
9
4

0
.0

0
3
4
6

0
.0

0
1
8
0

0
.0

0
0
3
3

8
H

et
er

o
P
o
o
l

(L
in

ea
rR

eg
)

0
.0

0
7
6
5

0
.0

0
8
5
6

0
.0

0
8
6
4

0
.0

0
0
0
8

0
.0

4
7
5
2

0
.0

4
1
4
9

0
.0

9
3
6
0

0
.0

0
3
6
2

0
.0

0
6
9
9

0
.0

0
0
4
5

9
H

o
m

o
P
o
o
l

(M
L
P

1
)

0
.0

0
5
3
1

0
.0

0
8
8
3

0
.0

0
1
9
3

0
.0

0
0
0
8

0
.0

3
4
0
3

0
.0

2
8
3
1

0
.0

2
8
7
4

0
.0

0
4
3
1

0
.0

0
2
1
9

0
.0

0
0
4
0



ngc33405 : 2015/10/9(9:23)

444 K. Jackowski

Table 7 Average Friedman Rankings of AdaSSReg and Reference Predictors

Algorithm Ranking
AdaSS(HomoPool) 1.20
QWE(HomoPool) 2.90
Bagging(MLP) 3.55
AdaSS(HeteroPool) 3.75
Mean(HomoPool) 4.20
QWE(HeteroPool) 6.50
HomoPool(MLP1) 6.95
Mean(HeteroPool) 7.45
HeteroPool(Linear) 8.50

Table 8 Family of hypotheses for predictors comparison ordered by p-
value and adjusting of α by Shaffer procedure. Initial α = 0.05.
Italic fonts for P-value indicate rejected hypothesis which con-
firms that difference between predictors is significant.

i algorithms p αShaffer

36 AdaSSReg(HomoPool) vs. HeteroPool(LinearReg) 3.477E-17 0.00139
35 AdaSSReg(HomoPool) vs. Mean(HeteroPool) 5.319E-13 0.00179
34 AdaSSReg(HomoPool) vs. HomoPool(MLP1) 3.147E-11 0.00179
33 QWE(HomoPool) vs. HeteroPool(LinearReg) 1.004E-10 0.00179
32 AdaSSReg(HomoPool) vs. QWE(HeteroPool) 9.363E-10 0.00179
31 Bagging(MLPReg) vs. HeteroPool(LinearReg) 1.092E-08 0.00179
30 AdaSSReg(HeteroPool) vs. HeteroPool(LinearReg) 4.139E-08 0.00179
29 Mean(HeteroPool) vs. QWE(HomoPool) 1.489E-07 0.00179
28 Mean(HomoPool) vs. HeteroPool(LinearReg) 6.863E-07 0.00179
27 QWE(HomoPool) vs. HomoPool(MLP1) 2.918E-06 0.00227
26 Bagging(MLPReg) vs. Mean(HeteroPool) 6.690E-06 0.00227
25 AdaSSReg(HeteroPool) vs. Mean(HeteroPool) 1.934E-05 0.00227
24 QWE(HeteroPool) vs. QWE(HomoPool) 3.226E-05 0.00227
23 Bagging(MLPReg) vs. HomoPool(MLP1) 8.638E-05 0.00227
22 Mean(HeteroPool) vs. Mean(HomoPool) 1.749E-04 0.00227
21 AdaSSReg(HeteroPool) vs. HomoPool(MLP1) 2.199E-04 0.00238
20 AdaSSReg(HomoPool) vs. Mean(HomoPool) 5.320E-04 0.00278
19 Bagging(MLPReg) vs. QWE(HeteroPool) 6.583E-04 0.00278
18 AdaSSReg(HeteroPool) vs. QWE(HeteroPool) 0.00150 0.00278
17 Mean(HomoPool) vs. HomoPool(MLP1) 0.00150 0.00313
16 AdaSSReg(HeteroPool) vs. AdaSSReg(HomoPool) 0.00323 0.00313
15 AdaSSReg(HomoPool) vs. Bagging(MLPReg) 0.00666 0.00333
14 Mean(HomoPool) vs. QWE(HeteroPool) 0.00791 0.00357
13 QWE(HeteroPool) vs. HeteroPool(LinearReg) 0.02092 0.00385
12 AdaSSReg(HomoPool) vs. QWE(HomoPool) 0.04965 0.00417
11 HeteroPool(LinearReg) vs. HomoPool(MLP1) 0.07349 0.00455
10 Mean(HomoPool) vs. QWE(HomoPool) 0.13333 0.00500
9 Mean(HeteroPool) vs. HeteroPool(LinearReg) 0.22535 0.00556
8 Mean(HeteroPool) vs. QWE(HeteroPool) 0.27266 0.00625
7 AdaSSReg(HeteroPool) vs. QWE(HomoPool) 0.32635 0.00714
6 Bagging(MLPReg) vs. Mean(HomoPool) 0.45292 0.00833
5 Bagging(MLPReg) vs. QWE(HomoPool) 0.45292 0.01000
4 Mean(HeteroPool) vs. HomoPool(MLP1) 0.56370 0.01250
3 AdaSSReg(HeteroPool) vs. Mean(HomoPool) 0.60333 0.01667
2 QWE(HeteroPool) vs. HomoPool(MLP1) 0.60333 0.02500
1 AdaSSReg(HeteroPool) vs. Bagging(MLPReg) 0.81736 0.05000
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among all tested predictors. The algorithm gained also the highest Fried-
man ranking (1.20) while the next one QWE(HomoPool) got 2.90. It
means that the difference between the two is quite huge.

2. Shaffer post-hoc tests also confirm statistical difference between AdaSS-
Reg(homogeneous) and competing algorithms in 5 out of 8 pairwise com-
parisons.

3. Those facts give AdaSSReg (homogeneous) the position of a winner and
prove that proposed model and training algorithm are very effective.
A decomposition of input space implemented in AdaSSReg allows for
efficient exploitation local specialisation of predictors.

4. Next analysis can be done based on average Friedman ranking. AdaSS-
Reg (heterogeneous) got the forth position with average ranking 3.75,
which places this method in the middle position. This is much worse than
AdaSSReg(homogeneous). To draw any conclusion, we must notice that
other ensembles created on heterogeneous pool (i.e. Mean(HeteroPool),
and QWE(HeteroPool)) got even worse results. Those facts suggest that
heterogeneous sets of predictors have relatively smaller potential for cre-
ating diversified ensembles. On the other hand, neural networks show
surprisingly high capability for injecting diversity in the ensembles.

5. Most of ensembles, such as Bagging(MLP), QWE(HomoPool), QWE
(HeteroPool), and even Mean(HomoPool), also outperformed elemen-
tary predictors. It should be noted that last three of them are quite
simple in implementation. Very good results obtained by all ensemble
methods legitimate statement that ensembles can be successfully used
for elevating regression accuracy.

§4 Conclusion
This paper presented novel Adaptive Splitting Algorithm for Regression

algorithm. Its evaluation over several benchmark databases shows that it can
become a valuable option for solving regression problems. AdaSSReg can suc-
cessfully compete with classical regression algorithms and other ensemble meth-
ods. Discussion of certain factors which determine effectiveness of AdaSSreg
allows to define some directions of further researches.

• Implementation of different models of centroid representations.
• Using other optimisation algorithms which make training procedure more

effective.
• Implementing AdaSSReg in parallel computing frameworks.
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and Herrera, F., “KEEL data-mining software tool: Data set repository, inte-
gration of algorithms and experimental analysis framework,” Multiple-Valued
Logic and Soft Computing, 17, 2-3, pp. 255–287, 2011.

2) Alpaydin, E., Introduction to Machine Learning (Second Edition), The MIT
Press, 2010.

3) Alpaydin, E., “Combined 5 x 2 cv f test for comparing supervised classification
learning algorithms,” Neural Computation, 11, pp. 1885–1892, 1998.
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