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Abstract Web caching is one of the fundamental techniques for re-
ducing bandwidth usage and download time while browsing the World Wide
Web. In this research, we provide an improvement in web caching by combin-
ing the result of web usage mining with traditional web caching techniques.
Web cache replacement policy is used to select which object should be re-
moved from the cache when the cache is full and which new object should be
put into the cache. There are several attributes used for selecting the object
to be removed, such as the size of the object, the number of times the object
was used, and the time when the object was added into the cache. However,
the flaw in these previous approaches is that each object is treated separately
without considering the relation among those objects. We have developed a
system that can record users’ browsing behavior at the resources level. By
using information gathered from this system, we can improve web cache re-
placement policy so that the number of cache hits will increase, resulting in a
faster web browsing experience and less data bandwidth, especially at lower
cache storage environments such as on smart phones.

Keywords: Web Caching Replacement Algorithm, Web Usage Mining, Web
Browsing, Least Recently Used Algorithm.

61 Introduction
In recent years, the internet has become the most important tool for
communication and interaction among people, resulting in the increasing of data



312 S. Jarukasemratana, T. Murata

bandwidth. Web caching is a well-known strategy for improving the performance
of web-based systems. Web caching can improve the performance of the WWW
by creating duplicates of popular objects and temporarily storing them in cache
storage near the users. If those objects are requested again by the users, users
will receive those objects from the cache instead of the original servers. This
is called hit or cache hit. Web caching gives benefits to both web users and
websites’ owners because 1) caching reduces total bandwidth usage, 2) caching
reduces web page load time and 3) caching reduces loads on website servers."
Web caching can be applied at the original server, proxy server, or client-side
machine. In this research, we focus on client-side caching (or browser caching)
because client-side caching is more economical and effective than server or proxy
caching.?

Since cache storage has limited space, as users continuously browse the
internet, cache storage will eventually become full. When a new object needs
to be stored in the cache while the cache is full, cache replacement policy will
determine which object will be removed to make enough space for the new object.
To use the limited cache space in the most efficient way, objects that will not be
used again should be removed from the cache first.

There are many cache replacement policies, each with their own algo-
rithms for selecting the objects to be removed. The general goal of cache re-
placement policies is to increase cache hit rate. The most well-known algorithms
are LRU (least recently used) and LFU (least frequently used). LRU chooses
objects to be removed based on the last time the objects were used, while LFU
chooses objects based on how many times the objects were used. Other prop-
erties are used in other algorithms such as the size of the object, the total time
used for downloading the object, or the last modification time of the object.
There are also many algorithms that use more than one attribute to choose
which object to remove such as Hyper-G,* which uses a combination of fre-
quency, recency and object size. Each algorithm has its own advantages over
others. For example, in the case of a system with sufficient processing power and
memory resources, a complex algorithms which require more computation are
more suitable. On the other hand, on a system with limited processing power
and memory resources, randomized strategy is preferred because it requires less
memory and computation.*

Research involving web cache replacement policy has been active for a
very long time, and many algorithms have been theorized and invented. Kin-
Yeung Wong® claims that there is a sufficient number of good policies and
further proposals would only produce little improvement. However, the internet
is changing all the time. Users’ behaviors are changing rapidly, especially with
the recent proliferation of social media such as Facebook and Twitter. Web
browsers are also changing from standard desktop personal computers to laptops
and mobile devices. Therefore, a new cache replacement policy that is suitable
with current browsing behaviors is required. To understand more about users’
behaviors, web usage mining is normally employed.

Web usage mining has been an interesting topic among many researchers
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since the WWW has become a part of our daily life. Web usage mining is
the process of extracting useful information from a user’s browsing history.""
The benefit of web usage mining is that it lets researchers understand the be-
havior of internet users and use that knowledge to improve their web brows-
ing experiences.'® This technology enables websites to be personalized for each
individual user. Some successful examples of web usage mining are real-time
recommendation systems, such as youtube.com VDO recommendations or ama-
zon.com book recommendations.

In this research, we incorporate web usage mining data into the cache
replacement policy to create a new algorithm that can perform better than
existing algorithms. Our proposed algorithm is a hybrid algorithm based on
recency, frequency and users’ web usage history. The idea for this algorithm
comes from the fact that nowadays, users tend to visit the same set of websites
every day. Objects from those websites should be prioritized and should stay in
the cache longer than objects from other websites. Our algorithm can create a
higher cache hit rate than the baseline LRU algorithm in a low cache storage
space environment. This makes our algorithm perfectly fit for web caching on
smart phones. The downside is that our algorithm is more complex than LRU.

The remainder of this paper is organized as follows: Section 2 reviews
related research and discusses web caching, web usage mining, LRU algorithm,
and current browsing behavior; Section 3 explains about our algorithm; Sec-
tion 4 explains about our experiment; Section 5 evaluates and discusses of our
experiment; Section 6, the last section, concludes the paper.

62  Related Work

2.1 Web Caching Strategies

Web caching has become a hot topic among researchers since Luotonen
and Altis® introduced proxy server to the research field in 1994. Web caching
can be deployed at three locations: the server, the proxy server, and the browser.
Caching at the server mainly serves two purposes: reduce workload on a single
server, or store generated dynamic pages. Proxy caching involves shared cache
between sets of clients, such as a proxy server for a university or company. Their
cache policies are designed to exploit the overlap of HT'TP requests among users
in the group. Browser caching occurs on users’ machine and can provide the
biggest boost in browsing speed for users.”

There are at least three survey papers on web cache replacement algo-
rithms. One survey of web cache replacement strategies was presented by Podlip-
ngi and Bszrmenyi" in 2003. They classified replacement strategies into five
classes: recency-based strategies, frequency-based strategies, recency /frequency-
based strategies, function-based strategies, and randomized strategies. Recency-
based strategies use a temporal factor to manage the cache. Basically, the least
recently referenced object will be removed from the cache first. Recency-based
strategies are adaptive to popularity change and mostly require low overhead.
However, these strategies usually place too much emphasis on the recency factor
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alone, which is a major disadvantage. Frequency-based strategies use frequency
as their main factor. Frequently-called objects or popular objects tend to be
kept in the cache longer than unpopular objects. These strategies perform very
well at caching objects in an environment where popular objects do not change
frequently. However, in a quickly changing environment, frequency-based strate-
gies will perform poorly. Recency/frequency-based strategies use both recency
and frequency properties to identify objects to be removed. Many strategies in
this class also use other factors in their algorithms. These combinations usually
give better results but at the cost of overhead and complexity. Function-based
strategies use a general function to calculate scores for all objects in the cache,
and then the object with the lowest score will be removed. Many parameters
such as size, recency, and frequency are used in the function. The strongest ad-
vantage of these strategies is that no particular attribute is dominant. However,
these strategies create the largest overhead and complexity among all the classes.
The last class constitutes randomized strategies. The goal of these strategies is
to reduce complexity and overhead. Therefore, these strategies are very simple
to implement. The problem with these strategies is in the evaluation. Different
simulations on the same test data set can give different results.

Wong" stated that there were more than 50 cache policies by the year
2006, when he published his cache replacement policies review. Instead of argu-
ing about which cache replacement algorithms were better in general, he stated
that each algorithm will perform better than others in its favored environment.
For example, frequency-based strategies perform well when popular objects are
not changing rapidly. Romano and ElAarag® did a further quantitative study of
web cache replacement strategies by comparing 19 different strategies running
the same data sets. There are also several tools created for measurement the
goodness of caching techniques. One of them is created by Cao*® which included
LRU, SIZE, and HYBRID algorithm. This tool is used as the base code of our
simulator.

Cache replacement policies have been heavily researched in the past.
Therefore, newer researches on this topic are mostly conducted by using knowl-
edge from other research fields. Tirdad et al.” used a genetic algorithm and
genetic computation to create a model for cache replacement policy. Ali and
Shamsuddin® used neuro-fuzzy system to create an intelligent web caching
scheme. Torkzaban and Rahmani®” used a multi-expert technique to create a
cache system that can select the best cache policy depending on the environ-
ment. Geetha et al."” created SEMALRU, a LRU-based algorithm that uses
semantic data from the web pages.

2.2 Web Usage Mining

Web usage mining is the process of extracting useful information from a
user’s browsing history. Srivastava et al.'” offered a taxonomy for web usage
mining in 2000; since then, web usage mining has been given more interest in
the computing field. There are three stages in web usage mining: data collection
and pre-processing, pattern discovery, and pattern analysis.'® In the first stage,
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raw data is cleaned and arranged so that it can be easily processed. In the
second stage, many operations such as machine learning are performed in order
to find meaningful patterns in the data set. In the last stage, the discovered
patterns are analyzed and processed into useful models or applications such as
visualization models or recommendation engine.

Similar to web caching, web usage mining can be done at three levels:
server, proxy server, or client-side machine. In the early stages, web usage mining
was usually done by analyzing server logs obtained from servers or proxy servers,
such as the work of Myra Spiliopoulou' that utilized web usage mining data
for evaluating websites. Client-side log mining is getting more popular because
of technological advances such as web browser plug-ins that allow researchers
to collect data directly from users. Studies of client-side logs can give many
insights about users’ behaviors. Zhou et al.'® proposed a temporal-based web
access behavior which focuses on the time of day that users access the web.
Khoury et al.*® created a graph based on users activities over some period of
time. The result was that they could analyzed users’ behaviors such as finding
the frequent traverse paths of users as they utilize hubs like Wikipedia or e-mail
to traverse to other websites.

According to Cooley et al.,'” data can be categorized into four main
groups: usage data, content data, structure data, and user data. Usage data
is normally the primary target for web usage mining. It represents which web
pages the user visits while browsing the internet. This type of data typically
comes in the form of server logs. Content data refers to web objects that the
user receives when visiting websites. This data can be in various file formats like,
image files, text files, or HT'TP files. Content data also includes other embedded
information within the sites such as page descriptions or tags. Structure data
reflects to the content organization of the web pages, such as how web pages
store data on their servers, or how web pages are divided into separate frames.
User data comprises data about the users themselves. This data may include a
user’s region (from IP address), purchase records, web browser version, or more.
In this research, structure data and usage data are used.

2.3 LRU Algorithm

LRU (Least Recently Used) is probably the simplest and most widely
used cache algorithm. The idea behind the LRU cache eviction process is very
simple: remove the oldest object in the cache. LRU can be implemented by
using a linked list. Each object in the cache refers to one object in the list. A
new object is always added at the head of the list. If the list is full, the last
object in the list will be evicted. The most important rule of LRU is that when a
cache hit occurs, whereby the object requested by a user is already in the cache,
that object is moved to the front of the list, similar to a new object. Despite its
simplicity, LRU is very efficient.”

The disadvantage of this algorithm is that it cannot keep popular objects
(objects that have a high possibility of being used again) if the cache storage is
small. Take for example a user who visits a social media website everyday on
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a mobile device (where cache storage size is small due to memory limitation).
The social media website’s web objects, such as logos or menus, are stored in the
cache. However, if the user visits many other websites afterward, this will cause
social media website’s web objects to be evicted from the cache even though
they would be very likely used again. To combat this flaw, we have designed
our algorithm to incorporate users’ browsing history so that popular objects are
stored in the cache even when the cache is full and eviction process occurs.

2.4 Current Users’ Browsing Behavior

The main idea behind this algorithm is based on the results of Khoury et
al.,"® Goel et al.'” and our own usage mining. These studies show that users tend
to visit the same set of websites every day. Moreover, users mostly utilize those
websites as hubs, which denote websites that link to other websites. Khoury et
al. reported that Wikipedia websites, e-mail websites, and news websites are the
main hubs of users’ browsing sessions. Two examples from Khoury et al. are
Reddit.com - a social news website where users can post interesting things found
on other websites and Google Reader - an online RSS feed website. As seen from
Fig. 1(a), this user went through Reddit.com and Google Reader to visit many
other websites. The node sizes of these two hubs are very big, which indicates
that they are visited very often. Therefore, web objects from these two hubs
should be kept in the cache storage. Our own data and Goel et al. also found
out that news websites and social media websites such as Facebook are the main
hubs of users’ browsing activity. Figure 1(b) presents the research results from
Goel et al. It can be seen that web usage nowadays is very skewed, especially
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Fig.1 (a) A frequent browsing websites of one participant, Khoury
et al.'® (b) Social Media is visited 90% daily, Goel et al.'®
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toward social media. Social media websites received 38% of pageviews in 90%
of daily activity. Web objects from frequently visited websites like these should
be cached and should be preserved in cache longer than other objects.

63 Our Algorithm

In our previous experiment, “Visualizing Web Structure based on Brows-
ing Sessions,”*" we transformed users’ browsing sessions into graphs. Nodes of
the graph consist of web page files, such as HTML or PHP files, web objects,
such as image files or text files, and hosts of those objects. Edges are generated
based on the relations between web pages, web objects, and hosts. The example
of this system is in Fig. 2.

While a user continued browsing amazon.com, we found some web objects
that appeared in every pages or appeared very often (Fig.3). These objects are
mostly logos, texture for menus, loading icons, and so on. We believed that
these type of objects should be prioritized and kept in cache. Since what these

Html page

Web objects

Host server

Fig.2 (a) Main page of amazon.com in web browser (b) A graph
created from (a). There are two main HTML pages, A lots of
web objects, and three main hosts.?")

Browsing sequence .
Browsing sequence

Men’s watch Product A
page page

7 image resources
which appear in
product pages that
user traversed.

Product B
page

Amazon.com
main page

Product C
page

Amazon.com
main page

Product B Product C
page page
=

0

10 image resources
which appear in
every pages that

user traversed.

Fig.3 Some objects are used very frequently. (host nodes are omitted
in these pictures to make graph easier to read.)
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objects had in common are host URL, we decided to use host URLs as the tool
in our algorithm.

Our algorithm is based on LRU strategy but with extra properties, which
are a host URL and a hit-point value (algorithm generated value). However,
unlike LRU, our algorithm falls into Recency/frequency-based strategies class
based on Podlipngi and Bsz Bszrmenyi classification" because we also incorpo-
rate frequency-based properties into our algorithm. Our algorithm is divided into
three parts: cache storage structure, cache insertion policy, and cache eviction
policy.

3.1 Cache Storage Structure

Similar to other LRU based strategies, our cache objects (such as pictures,
Java script files, HTML files) are kept in a list. There are six properties for
each object: object id, next object id, previous object id, size of the object,
object’s host, and object’s HP (an integer value generated by our algorithm).
Our algorithm structure is illustrated in Fig.4. Object’s host is the URL of the
server that provides users this object. This is the extra information gained from
web usage mining. In normal web browsing situation, this information is omitted
from the users. However, with a packet analyzer (a computer program that can
intercept and log traffic passing over a digital network or part of a network), it
is possible to record this information while users are browsing the internet.

Object name

Object size
Next object name
Previous object hame

Object’s host name
HP value

Fig.4 Our cache structure, object’s host name and HP value are
added properties from LRU structure.

Object’s HP stands for object’s hit-point. This integer value is generated
and managed by our algorithm. Objects with less HP are considered as an unim-
portant object and will be removed first when eviction occurs. The maximum
HP value needs to be defined to prevent objects from being too high HP and will
never be evicted from the cache. In this experiment, maximum HP is set at 5.
The minimum HP value is 0. If the HP of the object reaches 0, it is guaranteed
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that in the next eviction phase, this object is going to be evicted.

Apart from the objects link list, this algorithm needs to keep at least two
lists of unique host URL: today’s host list and yesterday’s host list. The size of
the list is very small compared to objects list because many objects share the
same host URL. These lists take part in determining the HP of the objects. The
lists are maintained on daily basis.

Compared with LRU algorithm, our algorithm requires more space since
ours has to store lists of unique hosts. Moreover, more space is required for each
object, because our algorithm has more properties per object.

3.2 Cache Insertion Policy

Our insertion policy is quite different from LRU since we have more prop-
erties (HP and host URL) and host lists to maintain. LRU based algorithm
inserts new object at the front of the list while remove the last object in the
list (oldest object), while our algorithm puts new object at the back of the list
instead. The reason is because our algorithm eviction process is different from
the eviction process of LRU. When an object wants to be entered in the cache,
the following algorithm (Algorithm 1) is applied.

Data: Cache insertion algorithm
object enters the cache;
if object is the new object then
if cache is full then
‘ performs cache eviction;
end
adds new object to the end of the cache list;
object’s hp = 1;
adds object’s host url to today’s list;
else
if object’s host url is new then
object’s hp += 1;
add object’s host url to today’s list;
else
‘ object’s hp += 2;

end

moves object to the end of the cache list;

end
Algorithm 1: Cache Insertion Algorithm
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The most important point of this algorithm is that the hit objects are given
more hit-point if they are related to previous browsing history. This results in
objects that come from previously visited host to be kept in cache longer than
objects that do not. Our algorithm also includes the part that remembers today’s
host url to be used in the later day. If an object entering the cache is a new
object, that object will be placed at the end of the list and its HP is 1. At
24 hours interval, today’s host list will be copied to yesterday’s host list. Then
today’s host list will be emptied.

To explain it more clearly, suppose a user browsed website A yesterday,
then he/she browses website A and B today. When objects from website B is
hit, their HP will go up by 1. On the other hand, when objects from website
A is hit, their HP will go up by 2. This is because website A was browsed
yesterday and was stored in history list. Since higher HP objects got removed
slower than low HP objects, objects from A are kept longer than objects from
B. However, both websites A and B are now stored in the system. Tomorrow,
if the user creates a cache hit from website A or B, their objects’ HP will go up
by 2 (because website A and B are already in the system).

3.3 Cache Eviction Policy
Once the cache is full and new objects are needed to be put in, eviction
process will be called. The eviction process is explained in Algorithm 2.

Data: Cache eviction algorithm

Sort_cache_list;

int total_removed_size = 0;

node_pointer current_node = last_node;

while total_removed_size < X*cache_size do
total_removed_size += current_node.size;
current_node = current_node.previous;
delete(current_node.next);

end
Algorithm 2: Cache Eviction Algorithm. X is the Percentage of Eviction.

The sorting process is explained with an example shown in Fig. 5.
In LRU, once the cache is full, insertion and eviction occurs almost always
together because LRU only evicts as less objects as possible to maintain the
cache to be near full all the time. This can increase the hit chance because
there are many objects in the cache. However, in our algorithm, we already
determined that unpopular objects is at the end of the list. Therefore, it is safe
to remove many of them at once. Moreover, with this HP system, new objects
need to stay in the cache for sometimes in order to gain more HP value. If
eviction process occurs too often, all new objects are likely to be removed.

The final step of reducing all objects HP by 1 is crucial in this algorithm.
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In case of a popular object which already reach maximum HP (assume that
maximum HP is 5) that suddenly never got any cache hit again. This object
will be reduced to 0 HP in 5 eviction processes. Objects that have 0 HP are
guaranteed to be removed from the cache on next eviction process because new
objects are starting with 1 HP.

3.4 Configurable Parameters

Our algorithm has some configurable parameters which can be adjusted.
- Maximum HP: the higher maximum HP results in a longer stay of the object
in cache (if it can manage to reach that HP). In a data set where popularity of
the objects is changing regularly, maximum HP should be set to a low value.
- X% of eviction: the higher X value means more objects are deleted from the
cache and the longer time before cache need to perform eviction process again.
However, the higher X creates a higher risk of losing popular objects. We have
perform another experiment on our data set, using X value range from 10% to
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Fig. 6 Cache hit-rate on various cache storage sizes with different X
percentage. The higher the hit-rate, the better.

90% at various cache storage size. The result is as shown in Fig. 6.

As seen from the graph, the highest performance point is in the middle.
This is because the value around 50% is the most balanced point between the
risk of losing old popular objects and the risk of keeping too many unpopular
objects.
- Number of previous host list: in this experiment, we used only one list which
is yesterday’s list. However, it is also possible to keep record of several lists
such as last week list or last month list and award objects that share host URLs
accordingly.

3.5 Algorithm Complexity Comparison

Algorithm complexity is compared between our algorithm and LRU. LRU
algorithm complexity is O(n) on cache insertion because the algorithm needs to
check if the newly inserted object is already in the list. Linked list finding
function complexity is O(n). Our algorithm performs the same function as LRU
in this stage, therefore the complexity is the same. LRU algorithm cache eviction
complexity is O(1), since its only pop the last item in the list. On the other
hand, our algorithm cache eviction requires a sort process. However, with sorting
algorithm used in Fig. 5, our sorting can be done in one pass through, results in
O(n) complexity. In conclusion, both algorithms have the same complexity as

O(n).

¢4  Experiment

To evaluate our algorithm, we collected raw web usage data from 10 vol-
unteers from different occupations which are entrepreneur engineer programmer
and student. All of the volunteers use internet regularly both for work and per-
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sonal life. Data collection lasted from 3-9 days, depending on the usage of each
volunteer. There are two main reasons we decided to collect data by our own,
instead of using existing trace data (raw web usage data) that are available in
the internet. The first reason is that our algorithm requires host data. Most
trace data that are available for download does not provide this property. The
second reason is that most trace data are very old and possibly outdated. For
example, the latest client-sided trace data from The Internet Traffic Archive,'*
is collected in 1996 or the latest client-sided trace data from web-caching.com'®
is dated back in 1998. The WWW is changing all the time, especially the trend
of social networking websites, such as Facebook. In our trace data, Facebook
appears very often as both page hit and web hubs.

Data collection was performed by installing Mozilla Firefox and Mozilla
Firefox plug-in on client machines called Tamper Data.*® Special configura-
tions of Mozilla Firefox are needed to be adjusted. Most cache functions of web
browser were disabled in order for plug-in to collect accurate browsing data. Vol-
unteers can use Firefox as normal web browser while add-on collects the browsing
data in the background (Fig. 7). There are some disadvantages for volunteers in
this method. 1) Browsing data are highly confidential data. To ensure maximum
privacy, we had transformed all raw data into numerical number with irreversible
method. Testers were also made anonymous. 2) Volunteers were asked to use a
Mozilla Firefox on personal computer as their main internet browser. Since some
volunteers were using a Google Chrome or an Internet Explorer as their main
web browser, the Mozilla Firefox was new to them. The reason we choose this
browser in our research is from Firefox’s rich add-on functionality. 3) Since all
cache functions were disabled during the data collecting period, browsing speed
was reduced. 4) Unlike other data gathering methods, such as performing a task
or answering questionnaires, data collection lasted for several days. The task
was a burden for volunteers.
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Fig.7 Mozilla Firefox with add-on for collecting HTTP requests.
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HTTP data was collected in XML format. One HTTP request contains
many information about data and transaction. One request is for one object,
which means if web page contains 20 pictures and 1 html file, there will be 21
requests for that page.

There were total of 1180 megabytes of raw log data with more than 400,000
HTTP requests. We compressed the data into numerical number so that it was
irreversible and easier to compute in the simulation. The example of compressed
data for one transaction is 1 3510 47551 0 0 0 221 3502 375 316894181.

We tested our algorithm and other five algorithms which are LRU, SIZE,
HYBRID, GSDF** and LFUDA. LRU is the baseline of recency-based algo-
rithm. SIZE algorithm emphasizes on size of the object. HYBRID is a mixed
strategy between recency, frequency, and size. GDSF or greedy dual size fre-
quency is a function based algorithm based on size and frequency. LFUDA or
Least frequency used with dynamic aging is the improved version of LFU where
dynamic aging is used to remove the old objects that get stuck in cache. The
reason that we choose LRU as our baseline algorithm is because LRU is still
probably the most popular cache replacement algorithm. Squid,*® the popular
caching proxy software based on GNU license, uses LRU as their default web
cache replacement algorithm (version 3.3.1, 9 February 2013). Other algorithms
that are available in Squid are GSDF and LFUDA, which is the reason why we
included these two algorithms in our experiment as well. The parameters of our
algorithm were X=>50, maximum HP was 5 and we used one host list which was
yesterday’s list.

We run all algorithms on different cache storage sizes, range from 4KB to
4MB. The results are shown in Figs.8 and 9.

In Fig.8, Y axis refers to hit-rate. X axis refers to cache storage size.
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Fig.8 Our algorithm results compared with LRU, SIZE, HYBRID,
GDSF, and LFUDA algorithm. The higher the hit-rate, the
better.
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Fig. 9 Byte hit ratio comparison between our algorithm, LRU, Size,
Hybrid, GDSF, and LFUDA. The higher byte hit ratio the
better.

Hit-rate translates directly to the performance of the cache algorithms, which
means the higher, the better.

Another common measurement of web caching is byte hit ratio.*” Byte
hit ratio is calculated by the number of bytes that got cached hit divided by
total byte. This number is the actual representation of how many bytes that
saved from re-downloading. The byte hit ratio of all algorithms are shown in
Fig.9. The higher the byte hit ratio, the better.

85  Evaluation and Discussion

On hit-rate, our cache replacement algorithm performs better than base-
line algorithm LRU at all cache sizes, the advantage can be clearly seen at low
cache storage size. From 512 kilobytes, our algorithm and LFUDA’s perfor-
mances start to converge and at 1 megabyte, performances are converged into
about the same value. GDSF and SIZE perform similar to our algorithm at all
cache size. Our algorithm also outperformed Hybrid at all cache storage size.
The reason that our algorithm performs better at lower cache size is because
popular objects did not get called fast enough before it got evicted from others’
cache. On the other hand, our strategy gives more priority to popular objects
by learning from the past (via yesterday’s host list). However, when the cache
size is big enough, the performances of both algorithms are the same. This is
because the cache size is big enough for all cache algorithms to store all popular
objects.

On byte hit ratio, our algorithm performs roughly similar to LRU and
LFUDA, while outperforms SIZE, HYBRID, and GDSF. Unlike hit-rate, byte
hit rate does not solely depend on popularity of the objects. Unpopular large
object, when got cache hit, will create more impact on byte hit ratio than impact
on hit-rate. At higher cache storage size, LRU/LFUDA stores a lot of unpop-
ular objects, while our algorithm will evict them. This create more chances for
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LRU/LFUDA to create a hit on large unpopular objects, which result in a little
better byte hit ratio than our algorithm at the end. In conclusion, our algo-
rithm has better hit-rate than LRU, LFUDA, and HYBRID especially at lower
level storage, while maintain same hit-rate as GDSF and SIZE. However, Our
algorithm significantly outperforms HYBRID, GDSF and SIZE in byte hit-rate
while maintaining similar byte hit-rate as LRU and LFUDA. Comparison of our
algorithm against other algorithms is as follows.

Advantages

e Our algorithm hit-rate is better at low storage space especially sub 1
megabytes region.

e Once cache is full, other strategies will perform cache eviction process all
the time while our strategy performs once in a while. If counting overhead
for files I/O, even total file transfer is the same, our algorithm will create
less overhead.

Disadvantages
e Our algorithm is more complex in both structure and calculation than
LRU, SIZE, and HYBRID. Space overhead of our algorithm is for storing
host property and HP property for every object in cache list, plus space
for storing unique host list. CPU overhead is for calculation of HP value
and sorting list when eviction occurs. The complexity and overhead of
our algorithm is on a par with GDSF and LFUDA.

Our algorithm can fit perfectly for web browsers on smart phones, because
our algorithm is working well in low memory situation. Since EDGE and 3G
were introduced, browsing internet via mobile devices, where memory is limited,
is very common. Moreover, memory on smart phones is shared by its operating
system, web browser, and other always-on application such as 3G or GPS, mak-
ing memory a very precious resource. Normally, memory cache size of mobile
web browsers is hidden. However, Ryan Grove from Yahoo Interface Blog”
had performed a test on several popular smart phones to measure their internal
memory cache size. The result is shown in Fig. 10.

As seen from example, popular smart phones such as Nexus ONE (An-
droid 2.1), iPhone 3GS, and iPhone 4, all have internal memory cache size equal
or less than 2 megabytes; the same number as our converge point in the experi-
ment. Noted that those phones have 512, 256, 512 megabytes of total memory.

Nexus One (android2.1) 2MB 512MB
iPhone 3GS 1MB 256MB
iPhone 4 1.eMB 512MB

Fig. 10 Total memory and browsers cache of Nexus One (Android 2.1),
iPhone 3GS, and iPhone 4, Ryan Grove.??)
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In many low-end Android based smart phones such as Samsung Galaxy Ace or
HTC Wildfire, they contains only 158 and 384 megabytes of memory, respec-
tively. In this case, by giving away only small portion of memory for web caching,
up to 24% of objects can receive cache hit, thus save times for users. Moreover,
smart phones’ market now is very competitive about CPU speed while memory
is mostly neglected. With previous mentioned reasons, our algorithm is very
suitable for low-end smart phones.

86  Conclusion

In this research, we have proposed a web cache replacement policy based
on recency-based algorithm and users web usage data. Our algorithm can per-
form significantly better than baseline LRU algorithm in low cache storage en-
vironment and perform the same as LRU at higher cache storage environment.
Our algorithm also generates less file I/O overhead at the cost of higher com-
plexity and structure overhead.

We believe that this technique is suitable for web caching on mobile de-
vices especially on low-end smart phones where memory is severely limited but
computing power is sufficient.
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