
New Generation Computing, 28(2010)5-20
Ohmsha, Ltd. and Springer

Using the Structure of Prelarge Trees to Incrementally
Mine Frequent Itemsets

Chun-Wei LIN1, Tzung-Pei HONG2,3, and Wen-Hsiang LU1

1Department of Computer Science and Information Engineering
National Cheng Kung University, Tainan, 701, TAIWAN, R.O.C.
2Department of Computer Science and Information Engineering
National University of Kaohsiung, Kaohsiung, 811, TAIWAN, R.O.C.
3Department of Computer Science and Engineering
National Sun Yat-sen University, Kaohsiung, 804, TAIWAN, R.O.C.
{p7895122;whlu}@mail.ncku.edu.tw,tphong@nuk.edu.tw

Received 1 December 2008
Revised manuscript received 5 May 2009

Abstract The frequent pattern tree (FP-tree) is an efficient data struc-
ture for association-rule mining without generation of candidate itemsets. It
was used to compress a database into a tree structure which stored only large
items. It, however, needed to process all transactions in a batch way. In
the past, we proposed a Fast Updated FP-tree (FUFP-tree) structure to effi-
ciently handle new transactions and to make the tree update process become
easier. In this paper, we propose the structure of prelarge trees to incremen-
tally mine association rules based on the concept of pre-large itemsets. Due
to the properties of pre-large concepts, the proposed approach does not need
to rescan the original database until a number of new transactions have been
inserted. The proposed approach can thus achieve a good execution time for
tree construction especially when a small number of transactions are inserted
each time. Experimental results also show that the proposed approach has a
good performance for incrementally handling new transactions.

Keywords: Data Mining, FP-tree, Prelarge-tree Algorithm, Incremental Min-
ing, Maintenance.

§1 Introduction
Years of effort in data mining have produced a variety of efficient tech-

niques. Among them, finding association rules in transaction databases is most



6 C.-W. Lin, T.-P. Hong and W.-H. Lu

commonly seen in data mining.1–5,7,9, 10,15–17,19–21,23) In the past, many algorithms
for mining association rules from transactions were proposed, most of which were
based on the Apriori algorithm,1) which generated and tested candidate itemsets
level-by-level. This may cause iterative database scans and high computational
costs. Han et al. thus proposed the Frequent-Pattern-tree (FP-tree) structure for
efficiently mining association rules without generation of candidate itemsets.11)

They showed the approach could have a better performance than the Apriori
approach.

Both the Apriori and the FP-tree mining approaches belong to batch
mining. One noticeable incremental mining algorithm was the Fast-Updated
Algorithm (called FUP), which was proposed by Cheung et al.6)for avoiding the
shortcomings mentioned above. The FUP algorithm modified the Apriori mining
algorithm3)and adopted the pruning techniques used in the DHP (Direct Hashing
and Pruning) algorithm.17) Although the FUP algorithm could indeed improve
mining performance for incrementally growing databases, original databases still
needed to be scanned when necessary. Hong et al. thus proposed the pre-
large concept to further reduce the need for rescanning original database.12)

The algorithm did not need to rescan the original database until a number of
new transactions had been inserted. Since rescanning the database spent much
computation time, the maintenance cost could thus be reduced in the pre-large-
itemset algorithm.

Hong et al. modified the FP-tree structure and designed the fast up-
dated frequent pattern trees (FUFP-trees) to efficiently handle newly inserted
transactions based on the FUP concept.13) The FUFP-tree structure was similar
to the FP-tree structure except that the links between parent nodes and their
child nodes were bi-directional. In this paper, we attempt to further modify the
FUFP-tree algorithm for incremental mining based on the concept of pre-large
itemsets.12) A structure of prelarge tree is proposed and a mining algorithm based
on the tree is provided to get the association rules. The proposed algorithm does
not require rescanning the original databases to construct the prelarge tree until
a number of new transactions have been processed. Experimental results also
show that the proposed algorithm has a good performance for incrementally
handling new transactions.

The remainder of this paper is organized as follows. Related works are
reviewed in Section 2. The proposed Prelarge-tree maintenance algorithm is
described in Section 3. An example to illustrate the proposed algorithm is given
in Section 4. Experimental results for showing the performance of the proposed
algorithm are provided in Section 5. Conclusions are finally given in Section 6.

§2 Review of Related Works

2.1 The FUFP-tree Algorithm
The FUFP-tree construction algorithm is based on the FP-tree algo-

rithm.11) The links between parent nodes and their child nodes are, however,
bi-directional. Bi-directional linking will help fasten the process of item deletion



Using the Structure of Prelarge Trees to Incrementally Mine Frequent Itemsets 7

in the maintenance process. Besides, the counts of the sorted frequent items are
also kept in the Header Table.

An FUFP-tree must be built in advance from the original database be-
fore new transactions come. When new transactions are added, the FUFP-tree
maintenance algorithm will process them to maintain the FUFP-tree. It first
partitions items into four parts according to whether they are large or small in
the original database and in the new transactions. Each part is then processed in
its own way. The Header Table and the FUFP-tree are correspondingly updated
whenever necessary.

In the process for updating the FUFP-tree, item deletion is done be-
fore item insertion. When an originally large item becomes small, it is directly
removed from the FUFP-tree and its parent and child nodes are then linked
together. On the contrary, when an originally small item becomes large, it is
added to the end of the Header Table and then inserted into the leaf nodes of the
FUFP-tree. It is reasonable to insert the item at the end of the Headrer Table
since when an originally small item becomes large due to the new transactions,
its updated support is usually only a little larger than the minimum support.
The FUFP-tree can thus be least updated in this way, and the performance
of the FUFP-tree maintenance algorithm can be greatly improved. The entire
FUFP-tree can then be re-constructed in a batch way when a sufficiently large
number of transactions have been inserted.

Several other algorithms based on the FP-tree structure have been pro-
posed. For example, Qiu et al. proposed the QFP-growth mining approach to
mine association rules.18) Mohammad proposed the COFI-tree structure to re-
place the conditional FP-tree.22) Ezeife constructed a generalized FP-tree, which
stored all the large and non-large items, for incremental mining without res-
canning databases.8) Koh et al. adjusted FP trees also based on two support
thresholds,14) but with a more complex adjusting procedure and spending more
computation time than the one proposed in this paper. Some related researches
are still in progress.

2.2 The Prelarge-itemset Algorithm
Hong et al. proposed the pre-large concept to reduce the need of rescan-

ning original database12)for maintaining association rules. A pre-large itemset
is not truly large, but may be large with a high probability in the future. A
pre-large itemset was defined based on two support thresholds, a lower support
threshold and an upper support threshold. The upper support threshold is the
same as that used in the conventional mining algorithms. The support ratio
of an itemset must be larger than the upper support threshold in order to be
considered large. On the other hand, the lower support threshold defines the
lowest support ratio for an itemset to be treated as pre-large. An itemset with
its support ratio below the lower threshold is thought of as a small itemset. Pre-
large itemsets act like buffers in the incremental mining process and are used to
reduce the movements of itemsets directly from large to small and vice-versa.

Considering an original database and transactions which are newly in-



8 C.-W. Lin, T.-P. Hong and W.-H. Lu

Fig. 1 Nine Cases Arising from Adding New Transactions to Existing
Databases

serted by the two support thresholds, itemsets may fall into one of the following
nine cases illustrated in Fig. 1.

Cases 1, 5, 6, 8 and 9 will not affect the final association rules according
to the weighted average of the counts. Cases 2 and 3 may remove existing
association rules, and cases 4 and 7 may add new association rules. If we retain
all large and pre-large itemsets with their counts after each pass, then cases 2,
3 and case 4 can be handled easily. Also, in the maintenance phase, the ratio of
new transactions to old transactions is usually very small. This is more apparent
when the database is growing larger. It has been formally shown that an itemset
in Case 7 cannot possibly be large for the entire updated database as long as
the number of transactions is smaller than the number f shown below:12)

f =
⌊

(Su − Sl)d
1− Su

⌋
,

where f is the safety number of the new transactions, Su is the upper threshold,
Sl is the lower threshold, and d is the number of original transactions.

§3 The Proposed Prelarge-tree Structure and Maintenance
Approach
Before the proposed structure and algorithm are stated, the notation used

in the approach is first described below.

3.1 Notation
D : the original database;
T : the set of new transactions;
U : the entire updated database, i.e., D ∪ T ;
d : the number of transactions in D ;
t : the number of transactions in T ;
Sl: the lower support threshold for pre-large itemsets;
Su: the upper support threshold for large itemsets, Su > Sl;



Using the Structure of Prelarge Trees to Incrementally Mine Frequent Itemsets 9

I : an itemset ;
SD(I ): the number of occurrences of I in D ;
ST (I ): the number of occurrences of I in T ;
SU (I ): the number of occurrences of I in U ;
P ItemsD : the set of pre-large items from D ;
P ItemsT : the set of pre-large items from T ;
L ItemsT : the set of large items from T ;
Insert Items: the set of items for which the new transactions have to be re-

processed for updating the prelarge trees;
Branch Items: the set of items for which the original database has to be re-

processed for updating the prelarge trees;
Rescan Items: the set of items for which the original database has to be res-

canned to determine whether the items are large.

3.2 The Proposed Structure of Prelarge Trees
A prelarge tree must be built in advance from the initially original database

before new transactions come. Its initial construction is stated as follows. The
database is first scanned to find the large items which have their supports larger
than the upper support threshold and the pre-large items which have their min-
imum supports lie between the upper and lower support thresholds. Next, the
large and the pre-large items are sorted in descending frequencies. The database
is then scanned again to construct the prelarge tree according to the sorted order
of large and pre-large items. The construction process is executed tuple by tuple,
from the first transaction to the last one. After all transactions are processed,
the prelarge tree is completely constructed. The frequency values of large items
and pre-large items are kept in the Header Table and Pre Header Table, respec-
tively. Besides, a variable c is used to record the number of new transactions
since the last re-scan of the original database with d transactions.

3.3 The Proposed Pre-Large Tree Maintenance Algorithm
Based on the proposed structure of prelarge trees, the details of the corre-

sponding algorithm to maintain the structure for incremental mining is described
below.

The prelarge-tree maintenance algorithm:
INPUT: An old database consisting of (d+c) transactions, its correspond-

ing Header Table and Pre Header Table, its corresponding prelarge tree, a lower
support threshold Sl, an upper support threshold Su, and a set of t new trans-
actions.

OUTPUT: A new prelarge tree for the updated database.
STEP 1: Calculate the safety number f of new transactions according to

the following formula:12)



10 C.-W. Lin, T.-P. Hong and W.-H. Lu

f =
⌊

(Su − Sl)d
1− Su

⌋
.

STEP 2: Scan the new transactions to get all the items and their counts.
STEP 3: Divide the items in the new transactions into three parts accord-

ing to whether they are large (appearing in the Header Table), pre-large (ap-
pearing in the Pre Header Table) or small (not in the Header Table or in the
Pre Header Table) in the original database.

STEP 4: For each item I which is large in the original database, do the
following substeps (Cases 1, 2 and 3 ):

Substep 4-1 : Set the new count SU (I ) of I in the entire updated
database as:

SU (I ) = SD(I ) + ST (I ),
where SD(I ) is the count of I in the Header Table (original database)
and ST (I ) is the count of I in the new transactions.

Substep 4-2 : If SU (I )/(d+c+t) ≥ Su, update the count of I in the
Header Table as SU (I ), and put I in the set of Insert Items, which will
be further processed in STEP 8; Otherwise, if Su > SU (I )/(d+c+t) ≥
Sl, remove I from the Header Table, put I in the head of Pre Header Table
with its updated frequency SD(I ), and keep I in the set of Insert Items;
Otherwise, item I is still small after the database is updated; remove
I from the Header Table and connect each parent node of I directly to
its child node in the prelarge tree.
STEP 5: For each item I which is pre-large in the original database, do the

following substeps (Cases 4 , 5 and 6 ):
Substep 5-1 : Set the new count SU (I ) of I in the entire updated

database as:
SU (I ) = SD(I ) + ST (I ).

Substep 5-2 : If SU (I )/(d+c+t) ≥ Su, item I will be large after the
database is updated; remove I from the Hedaer Table, put I with its
new frequency SD(I ) in the end of Header Table, and put I in the set
of Insert Items; Otherwise, if Su > SU (I )/(d+c+t) ≥ Sl, item I is still
pre-large after the database is updated; update I with its new frequency
SD(I ) in the Pre Header Table and put I in the set of Insert Items;
Otherwise, remove item I from the Pre Header Table.
STEP 6: For each item I which is neither large nor pre-large in the original

database but large or pre-large in the new transactions (Cases 7 and 8 ), put I
in the set of Rescan Items, which is used when rescanning the database in STEP
7 is necessary.

STEP 7: If t+c ≤ f or the set of Rescan Items is null, then do nothing;
Otherwise, do the following substeps for each item I in the set of Rescan Items:

Substep 7-1 : Rescan the original database to decide the original
count SD(I ) of I.



Using the Structure of Prelarge Trees to Incrementally Mine Frequent Itemsets 11

Substep 7-2 : Set the new count SU (I ) of I in the entire updated
database as:

SU (I ) = SD(I ) + ST (I ).

Substep 7-3 : If SU (I )/(d+c+t) ≥ Su, item I will become large after
the database is updated; put I in both the sets of Insert Items and
Branch Items and insert the items in the Branch Items to the end of the
Header Table according to the descending order of their updated counts;
Otherwise, if Su > SU (I )/(d+c+t) ≥ Sl, item I will become pre-large
after the database is update; put I in both the sets of Insert Items
and Branch Items, and insert the items in the Branch Items to the
end of the Pre Header Table according to the descending order of their
updated counts. Otherwise, do nothing.

Substep 7-4 : For each original transaction with an item I existing
in the Branch Items, if I has not been at the corresponding branch of
the prelarge tree for the transaction, insert I at the end of the branch
and set its count as 1; Otherwise, add 1 to the count of the node I.

Substep 7-5 : Otherwise, neglect I.
STEP 8: For each new transaction with an item I existing in the Insert Items,

if I has not been at the corresponding branch of the prelarge tree for the new
transaction, insert I at the end of the branch and set its count as 1; otherwise,
add 1 to the count of the node I.

STEP 9: If t+c > f, then set d=d+t+c and set c=0; otherwise, set c=t+c.

In STEP 9, a corresponding branch is the branch generated from the
large and pre-large items in a transaction and corresponding to the order of
items appearing in the Header Table and the Pre Header Table. After STEP 9,
the final updated prelarge tree is maintained by the proposed algorithm. The
new transactions can then be integrated into the original database. Based on the
prelarge tree, the desired association rules can then be found by the FP-growth
mining approach as proposed in11)on only the large items.

§4 An Example
In this session, an example is given to illustrate the proposed algorithm

for maintaining a prelarge tree when new transactions are inserted. Table 1
shows a database to be used in the example. It contains 10 transactions and 9
items, denoted a to i.

Assume the lower support threshold Sl is set at 30% and the upper one Su

at 50%. Here, not only the frequent items are kept in the prelarge tree but also
the pre-large items. For the given database, the large items are b, c, f and d,
and the pre-large items are a, e, h and g, from which the Header Table and the
Pre Header Table can be constructed. The prelarge tree is then formed from the
database, the Header Table and the Pre Header Table. The results are shown
in Fig. 2.



12 C.-W. Lin, T.-P. Hong and W.-H. Lu

Table 1 The Original Database in the Example

TID Items
1 a, b, c, f, g
2 a, b, c, f, g
3 a, d, e, f, h
4 e, h, i
5 e, d, h, f
6 b, c, d
7 b, d, i
8 b, c, d
9 b, c, e, f, h
10 a, b, c, f, g

Fig. 2 The Header Table, Pre Header Table and the Prelarge Tree
Constructed

Assume the three new transactions shown in Table 2 appear. The pro-
posed prelarge-tree maintenance algorithm proceeds as follows. The variable c
is initially set at 0.

Table 2 The Three New Transactions

TID Items
11 a, b, c, e, f
12 e, h, i
13 d, e, f, h

STEP 1: The safety number f for new transactions is calculated as:

f =
⌊

(Su − Sl)d
1− Su

⌋
=

⌊
(0.5− 0.3)10

1− 0.5

⌋
.

STEP 2: The three new transactions are first scanned to get the items
and their counts. The results are shown in Table 3.

STEP 3: All the items a to i in Table 3 are divided into three parts,
{b}{c}{f }{d}, {a}{e}{h}{g}, and {i} according to whether they are large (ap-
pearing in the Header Table), pre-large (appearing in the Pre Header Table) or
small in the original database. The results are shown in Table 4, where the



Using the Structure of Prelarge Trees to Incrementally Mine Frequent Itemsets 13

Table 3 The Counts of All Items in the New Transactions

New transactions
Item Count Item Count Item Count
a 1 d 1 g 0
b 1 e 3 h 2
c 1 f 2 i 1

Table 4 Three Partitions of the Items from the New Transactions

Pre-large items in the
original database

Pre-large items in the original
database

Small items in the
original database

Item Count Item Count Item Count
b 1 a 1 i 1
c 1 e 3
f 2 h 2
d 1 g 0

counts are only from the new transactions.
STEP 4: The items in the new transactions which are large in the original

database are first processed. In this example, items b, c, f and d (the first
partition) satisfy the condition and are processed. Take item b as an example
to illustrate the substeps. The count of item b in the Header Table is 7, and
its count in the new transactions is 1. The new count of item b is thus 7+1
(= 8). The new support ratio of item b is 8/(10+0+3), which is larger than
the minimum support threshold, 0.5. Item b is thus still a large item after
the database is updated. The frequency value of item b in the Header Table is
thus changed as 8, and item b is then put into the set of Insert Items. Items c
and f are similarly processed. Item d will, however, become pre-large after the
database is updated. The item d is thus removed from the Header Table and
put into the head of the Pre Header Table with its updated frequency value and
into the set of Insert Items.

STEP 5: The items in the new transactions which are pre-large in
the original database are processed. They include items a, e, h and g. Take
item a as an example to illustrate the substeps. The count of item a in the
Pre Header Table is 4, and its count in the new transactions is 1. The new count
of item a is thus 4+1(= 5). The new support ratio of item a is 5/(10+0+3),
which lies between 0.3 and 0.5. Item a is thus still a pre-large item after the
database is updated. The frequency value of item a in the Pre Header Table is
thus changed as 5, and item a is then put into the set of Insert Items. Item h is
similarly processed. The count of item e in the Pre Header Table is 4, and its
count in the new transactions is 3. The new count of item e is thus 4 + 3 (=7).
The new support ratio of item e is then 7/(10+0+3), which is larger than 0.5.
Item e will thus become large after the database is updated. It is then removed
from the Pre Header Table and put in the end of the Header Table and in the
set of Insert Items. The frequency value of item e in the Hedaer Table is thus
changed as 7. At last, item g will become small after the database is updated.
Item g is thus removed from the Pre Header Table and from the prelarge tree.
After STEP 5, Insert Items={a, b, c, d, e, f, h}.



14 C.-W. Lin, T.-P. Hong and W.-H. Lu

STEP 6: Since the item i is neither large nor pre-large in the original
database (not appearing in the Header Table and in the Pre Header Table), but
large in the new transactions, it is put into the set of Rescan Items, which is
used when rescanning in STEP 7 is required. After STEP 6, Rescan Items={i}.

STEP 7: Since t+c=3+0 < f (= 4), rescanning the original database is
unnecessary. Nothing is done in this step.

STEP 8: The prelarge tree is updated according to the new transactions
with items existing in the Insert Items. In this example, Insert Items = {a, b,
c, d, e, f, h}. The corresponding branches for the new transactions with any of
these items are shown in Table 5.

Table 5 Three Partitions of the Items from the New Transactions

TID Items Corresponding branches
1 a, b, c, e, f b, c, f, a, e
2 e, h, i e, h
3 d, e, f ,h f, d, e, h

The first branch shares the same prefix (b, c, f, a) as the current prelarge
tree. The counts for items b, c, f and a are then increased by 1 since they have
not yet counted in the construction of the previous prelarge tree. A new node
(e:1) is thus created and linked to (a: 4) as its child. The same process is then
executed for the other two branches. The final results are shown in Fig. 3.

Fig. 3 The Final Results of the Prelarge Tree

STEP 9: Since t (= 3) + c (= 0) < f (= 4), set c = t + c = 3 + 0 =
3. After STEP 9, the prelarge tree is updated. Note that the final value of c
is 3 in this example and f - c = 1. This means that one more new transaction
can be added without rescanning the original database for Case 7. Based on the
prelarge tree shown in Fig. 3, the desired large itemsets can then be found by
the FP-growth mining approach as proposed in the reference11) on only the large
items.

§5 Experimental Results
Experiments were made to compare the performance of the batch FP-tree



Using the Structure of Prelarge Trees to Incrementally Mine Frequent Itemsets 15

construction algorithm, the FUFP-tree maintenance algorithm and the prelarge-
tree maintenance algorithm. When new transactions came, the batch FP-tree
construction algorithm integrated new transactions into the original database
and constructed a new FP-tree from the updated database. The process was
executed whenever new transactions came. The incremental FUFP-tree main-
tenance algorithm and the prelarge-tree maintenance algorithm processed new
transactions incrementally in the way mentioned before.

A real dataset called BMS-POS 24)were used in the experiments. This
dataset was also used in the KDDCUP 2000 competition. The BMS-POS dataset
contained several years of point-of-sale data from a large electronics retailer.
Each transaction in this dataset consisted of all the product categories purchased
by a customer at one time. There were 515,597 transactions with 1657 items in
the dataset. The maximal length of a transaction was 164 and the average length
of the transactions was 6.5. The first 500,000 transactions were extracted from
the BMS-POS database to construct an initial tree structure. The value of the
minimum support thresholds were set at 7% to 15% for the three maintenance
algorithms, with 2% increment each time. The next 3,000 transactions were
then used in incremental mining. For the prelarge-tree maintenance algorithm,
the lower minimum support thresholds were set as the values of the minimum
support threshold minus 0.8%, which are 6.2%, 8.2%, 10.2%, 12.2% and 14.2%,
respectively. Figure 4 shows the execution times of the three algorithms for
different threshold values.

Fig. 4 The Comparisons of the Execution Times

It can be observed from Fig. 4 that the proposed prelarge-tree mainte-
nance algorithm ran faster than the other two. When the minimum support
threshold was larger, the effects became more obvious. Note that the FUFP-
tree maintenance algorithm and the prelarge-tree maintenance algorithm may
generate a less concise tree than the FP-tree construction algorithm since the lat-
ter completely follows the sorted frequent items to build the tree. As mentioned
above, when an originally small item becomes large due to new transactions, its



16 C.-W. Lin, T.-P. Hong and W.-H. Lu

updated support is usually only a little larger than the minimum support. It is
thus reasonable to put a new large item at the end of the Headrer Table. The
difference between the FP-tree, the FUFP-tree and the prelarge-tree structures
(considering large items) will thus not be significant. For showing this effect, the
comparison of the numbers of nodes for the three algorithms is given in Fig. 5.
It can be seen that the three algorithms generated nearly the same sizes of trees.
The effectiveness of the prelarge-tree maintenance algorithm is thus acceptable.

Fig. 5 The Comparisons of the Numbers of Nodes

Experiments were then made to show the execution times and the numbers
of nodes of the three algorithms for different numbers of transactions inserted.
The first 500,000 transactions were extracted from the BMS-POS database to
construct an initial FP-tree. The next 3,000 transactions were then sequentially
used each time as new transactions for the experiments. The minimum support
threshold values set at 15% to demostrate the execution times and the number
of nodes. The results are shown in Figs. 6 and 7, respectively. Note the exe-
cution times and the number of nodes were measured for each sequential 3,000
transactions.

As mentioned before, when the number of inserted transactions reached
the safety number, the original database would be processed again. In the exper-
iments, when the lower threshold value was set at 14.2% and the upper threshold
value was set at 15%, the safety number was calculated as f = 500,000*(0.15-
0.142)/(1-0.15) = 4,705. The processing times for 6,000 and 12,000 new trans-
actions were thus more than those for the others in Fig. 6. Besides, it can be
seen that the prelarge-tree maintenance algorithm ran faster than the other two
in Fig. 6. It can also be seen that the prelarge-tree maintenance algorithm had
nearly the same (frequent) node numbers as the other two in Fig. 7.



Using the Structure of Prelarge Trees to Incrementally Mine Frequent Itemsets 17

Fig. 6 The Comparisons of the Execution Times at the 15% Threshold

Fig. 7 The Comparisons of the Numbers of Nodes at the 15% Threshold

§6 Conclusions
In this paper, we have proposed the prelarg-tree maintenance algorithm

for incremental mining based on the concept of pre-large itemsets. The prelarge-
tree structure is used to efficiently and effectively handle new transactions. Using
two user-specified upper and lower support thresholds, the pre-large items act as
a gap to avoid small items becoming large in the updated database when transac-
tions are inserted. When new transactions are added, the proposed prelarge-tree
maintenance algorithm processes them to maintain the prelarge tree. It first par-
titions items of new transactions into three parts according to whether they are
large, pre-large or small in the original database. Each part is then processed
in its own way. The Header Table, the Pre Header Table, and the prelarge-tree
are correspondingly updated whenever necessary.

Experimental results also show that the proposed prelarge-tree mainte-



18 C.-W. Lin, T.-P. Hong and W.-H. Lu

nance algorithm runs faster than the batch FP-tree and the FUFP-tree algo-
rithm for handling new transactions and generates nearly the same number of
frequent nodes as them. The proposed approach can thus achieve a good trade-
off between execution time and tree complexity.

References
1) Agrawal, R., Imielinksi T. and Swami, A., “Mining association rules between

sets of items in large database,” in The ACM SIGMOD Conference, pp. 207-216,
1993.

2) Agrawal, R., Imielinksi T. and Swami, A., “Database mining: a performance
perspective,” IEEE Transactions on Knowledge and Data Engineering, 5, 6, pp.
914-925, 1993.

3) Agrawal R. and Srikant, R., “Fast algorithm for mining association rules,” in
The International Conference on Very Large Data Bases, pp. 487-499, 1994.

4) Agrawal, R., Srikant R. and Vu, Q., “Mining association rules with item con-
straints,” in The Third International Conference on Knowledge Discovery in
Databases and Data Mining, pp. 67-73, 1997.

5) Chen, M. S., Han J. and Yu, P. S., “Data mining: An overview from a database
perspective,” IEEE Transactions on Knowledge and Data Engineering, 8, 6, pp.
966-883, 1996.

6) Cheung, D. W., Han, J., Ng, V. T. and Wong, C. Y., “Maintenance of discovered
association rules in large databases: An incremental updating approach,” in The
Twelfth IEEE International Conference on Data Engineering, pp. 106-114, 1996.

7) Cheung, D.W., Lee, S. D. and Kao, B., “A general incremental technique for
maintaining discovered association rules,” in Database Systems for Advanced
Applications, pp. 185-194, 1997.

8) Ezeife, C. I., “Mining incremental association rules with generalized FP-tree,”
in The 15th Conference of the Canadian Society for Computational Studies of
Intelligence on Advances in Artificial Intelligence, pp. 147-160, 2002.

9) Fukuda, T., Morimoto, Y., Morishita S. and Tokuyama, T., “Mining optimized
association rules for numeric attributes,” Journal of Computer and System Sci-
ences, 58, 1, pp. 182-191, 1996.

10) Han J. and Fu, Y., “Discovery of multiple-level association rules from large
database,” in The Twenty-first International Conference on Very Large Data
Bases, pp. 420-431, 1995.

11) Han, J., Pei, J. and Yin, Y., “Mining frequent patterns without candidate gen-
eration,” in The 2000 ACM SIGMOD International Conference on Management
of Data, pp. 1-12, 2000.

12) Hong, T. P., Wang, C. Y. and Tao, Y. H., “A new incremental data mining
algorithm using pre-large itemsets,” Intelligent Data Analysis, 5, 2, pp. 111-
129, 2001.

13) Hong, T. P., Lin, C. W. and Wu, Y. L., “Incrementally fast updated frequent
pattern trees,” Expert Systems with Applications 34, 4, pp. 2424-2435, 2008.

14) Koh, J. L. and Shieh, S. F., “An effcient approach for maintaining association
rules based on adjusting FP-tree structure,” in The Ninth International Con-
ference on Database Systems for Advanced Applications, pp. 417-424, 2004.



Using the Structure of Prelarge Trees to Incrementally Mine Frequent Itemsets 19

15) Lin, M. Y. and Lee, S. Y., “Incremental update on sequential patterns in large
databases,” in The Tenth IEEE International Conference on Tools with Artificial
Intelligence, pp. 24-31, 1998.

16) Mannila, H., Toivonen, H. and Verkamo, A. I., “Efficient algorithm for discov-
ering association rules,” in The AAAI Workshop on Knowledge Discovery in
Databases, pp. 181-192, 1994.

17) Park, J. S., Chen, M. S. and Yu, P. S., “Using a hash-based method with trans-
action trimming for mining association rules,” IEEE Transactions on Knowledge
and Data Engineering, 9, 5, pp. 812-825, 1997.

18) Qiu, Y., Lan, Y. J. and Xie, Q. S., “An improved algorithm of mining from
FP-tree,” in The Third International Conference on Machine Learning and Cy-
bernetics, pp. 26-29, 2004.

19) Sarda, N. L. and Srinivas, N. V., “An adaptive algorithm for incremental mining
of association rules,” in The Ninth International Workshop on Database and
Expert Systems, pp. 240-245, 1998.

20) Srikant, R. and Agrawal, R., “Mining generalized association rules,” in The
Twenty-first International Conference on Very Large Data Bases, pp. 407-419,
1995.

21) Srikant, R. and Agrawal, R., “Mining quantitative association rules in large
relational tables,” in ACM SIGMOD International Conference on Management
of Data, pp. 1-12, 1996.

22) Zaiane, O. R. and Mohammed, E. H., “COFI-tree mining: A new approach
to pattern growth with reduced candidacy generation,” in IEEE International
Conference on Data Mining, 2008.

23) Zhang, S., “Aggregation and maintenance for database mining,” Intelligent Data
Analysis, pp. 475-490, 1999.

24) Zheng, Z., Kohavi, R. and Mason, L., “Real world performance of association
rule algorithms,” in The International Conference on Knowledge Discovery and
Data Mining, pp. 401-406, 2001.

Chun-Wei Lin: He received his B.S. and M.S. degrees from the

Department of Information Management in I-Shou University,

Taiwan, in 2002 and 2006, respectively. He is currently a Ph.D.

student in computer science and information engineering in Na-

tional Cheng Kung University. His research interests include data

mining, web mining, fuzzy theory and ontology.



20 C.-W. Lin, T.-P. Hong and W.-H. Lu

Tzung-Pei Hong, Ph.D.: He received his B.S. degree in chemical

engineering from National Taiwan University in 1985, and his

Ph.D. degree in computer science and information engineering

from National Chiao-Tung University in 1992. He was in charge

of the whole computerization and library planning for National

University of Kaohsiung in Preparation from 1997 to 2000 and

served as the first director of the library and computer center

in National University of Kaohsiung from 2000 to 2001, as the

Dean of Academic Affairs from 2003 to 2006 and as the Vice

President from 2007 to 2008. He is currently a professor at the

Department of Computer Science and Information Engineering

and at the Department of Electrical Engineering. His current

research interests include parallel processing, machine learning,

data mining, soft computing, management information systems,

and www applications.

Wen-Hsiang Lu, Ph.D.: He received his B.S., M.S., and Ph.D.

degrees in computer science and information engineering from

National Chiao Tung University, Hsinchu, Taiwan. He is an As-

sistant Professor in the Department of Computer Science and

Information Engineering (CSIE) at National Cheng Kung Uni-

versity, Tainan, Taiwan. His current research focuses on web

mining, information retrieval, natural language processing, and

medical informatics.


