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Abstract We suggest a new optical solution for solving the YES/NO
version of the Exact Cover problem by using the massive parallelism of light.
The idea is to build an optical device which can generate all possible solutions
of the problem and then to pick the correct one. In our case the device has a
graph-like representation and the light is traversing it by following the routes
given by the connections between nodes. The nodes are connected by arcs in
a special way which lets us to generate all possible covers (exact or not) of
the given set. For selecting the correct solution we assign to each item, from
the set to be covered, a special integer number. These numbers will actually
represent delays induced to light when it passes through arcs. The solution is
represented as a subray arriving at a certain moment in the destination node.
This will tell us if an exact cover does exist or not.

Keywords: Optical Computing, Unconventional Computing, Natural Com-
puting, NP-complete Problems, Exact Cover.

§1 Introduction
In this paper we propose an unconventional optical device, which uses

light, for solving the Exact Cover (XC) problem.9) This problem can be simply
stated as follows: Given a set U and C a set of subsets of U , the problem asks
to find if there is a subset S of C such that each element of U appears once in
S.

We have decomposed the problem in 2 subproblems: generating all subsets
of C and then selecting the correct one.
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For the first step we have designed a light-based device which has a graph-
like structure. Each arc can represent either an element of C or can be a skipping
arc. An arc will actually delay the signal (light) which passes through by a
certain amount of time. The nodes are connected by arcs in such way all possible
subsets of C are generated.

For the second part we have assigned, to each item from U , a special
positive number such that sum of all numbers assigned to U is not equal to any
other combination of numbers assigned to items from U . The delay induced by
an arc is actually equal to the sum of numbers belonging to the element from C
attached to that arc.

Initially a light ray is sent to the Start node. In each node the light is
divided into 2 subrays. Each arc delays the ray by an amount of time equal to
the number assign to it. Let us denote by B the sum of the numbers assigned to
items from U . At the Destination node we will check if there is a ray arriving at
the moment equal to B (plus some constants introduced by the system). If there
is such signal it means that we can have an exact cover for U . Otherwise U does
not have an exact cover. This is guaranteed by the special numbers assigned to
each item from U .

The paper is organized as follows: Related work in the field of optical
computing is briefly overviewed in section 2. The Exact Cover problem is de-
scribed in section 3. Useful properties of light are discussed in section 4.1. The
proposed device is presented in section 5. We describe both the way in which
all possible subsets of a given set are generated (see section 5.1) and we also
show how to detect the set covering U exactly (see section 5.2). The way in
which the proposed device works is given in section 5.3. A list of components
required by the proposed device is given in section 7.1. Weaknesses of our device
are discussed in sections 7.2-7.5. Other suggestions for improving the device are
given in section 8. Further work directions are suggested in section 9.

§2 Related Work
Using light instead of electric power for performing computations is not

a new idea. Optical Character Recognition (OCR) machines 34) were one of
the first modern devices which are based on light for solving a difficult prob-
lem. Later, various researchers have shown how light can solve problems faster
than modern computers. An example is the n-point discrete Fourier transform
computation which can be performed in only unit time.10,26)

Since each such gate has two input signals and only one output signal, such
architectures are fundamentally dissipative in information and energy. Their
serial nature also induces a latency in the processing time.

In 12) was presented a new, principally non-dissipative digital logic ar-
chitecture which involves a distributed and parallel input scheme where logical
functions are evaluated at the speed of light. The system is based on digital
logic vectors rather than the Boolean scalars of electronic logic. This new logic
paradigm was specially developed with optical implementation in mind.

An important practical step was made by Intel researchers who have de-
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veloped the first continuous wave all-silicon laser using a physical property called
the Raman Effect.7,23,27,28) The device could lead to such practical applications
as optical amplifiers, lasers, wavelength converters, and new kinds of lossless
optical devices.

Another solution comes from Lenslet 16) which has created a very fast
processor for vector-matrix multiplications. This processor can perform up to
8000 Giga Multiple-Accumulate instructions per second. Lenslet technology
has already been applied to data analysis using k−mean algorithm and video
compression.

In 29) the idea of sorting by using some properties of light is introduced.
The method called Rainbow Sort is based on the physical concepts of refraction
and dispersion. It is inspired by the observation that light that traverses a prism
is sorted by wavelength. Rainbow Sort can be implemented by encoding multiple
wavelengths (representing the numbers to be sorted) into a light ray, sending the
ray through a prism and later reading the output with a special detector. As
noted in 29) the implementation for this type of sorting si quite difficult and
involved highy sensitive devices.

A stable version of the Rainbow Sort is proposed in 19).
Naughton (et al.) proposed and investigated 20,33) a model called the con-

tinuous space machine which operates in discrete time-steps over a number of
two-dimensional complex-valued images of constant size and arbitrary spatial
resolution. The (constant time) operations on images include Fourier transfor-
mation, multiplication, addition, thresholding, copying and scaling.

An optical solution for solving the traveling salesman problem (TSP) was
proposed in 30). The power of optics in this method was done by using a fast
matrix-vector multiplication between a binary matrix, representing all feasible
TSP tours, and a gray-scale vector, representing the weights among the TSP
cities. The multiplication was performed optically by using an optical correlator.
To synthesize the initial binary matrix representing all feasible tours, an efficient
algorithm was provided. However, since the number of all tours is exponential
the method is difficult to be implemented even for small instances.

An optical system which finds solutions to the 6-city TSP using a Kohonen-
type network was proposed in 5). The system shows robustness with regard to
the light intensity fluctuations and weight discretization which have been sim-
ulated. Using these heuristic methods, a relatively large number of TSP cities
can be handled.

A system which solves the Hamiltonian path problem (HPP) 9) by using
light and its properties has been proposed in 21). The device has the same
structure as the graph where the solution is to be found. The light is delayed
within nodes, whereas the delays introduced by arcs are constants. Because the
problem asks that each node has to be visited exactly once, a special delaying
system was designed. At the Destination node, a ray which has visited each node
exactly once has been searched. This is very easy due to the special properties
of the delaying system.

A similar idea was used in 11) for solving the TSP problem. The device
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uses white light interferometry for find the shortest TSP path.

§3 The Exact Cover Problem
The description of the Exact Cover problem 9) is the following:
Given a set U = {u1, u2, ..., un} of elements and a set C of subsets of U ,

an exact cover is a subset S of C such that every element in U is contained in
exactly one set in S.

Our purpose is to solve the YES/NO decision problem. This means that
we are not interested to compute the actual subset S. Rather, we are interested
in finding whether a solution does exist or not.

The problem belongs to the class of NP-complete problems.9) No polyno-
mial time algorithm is known for it.

In what follows we denote by m the cardinal of C.

3.1 Example
U = {u1, u2, ..., u5}
C = {C1, C2, C3, C4, C5, C6}
C1 = {u1, u3}
C2 = {u1, u2, u5}
C3 = {u2}
C4 = {u1, u4, u5}
C5 = {u2, u3, u4}
C6 = {u4, u5}

An exact cover for U is :

S = {C1, C3, C6}.

We are not thinking to U as a set of numbers. Rather we adopt a more
general definition: U is a set of items. We do this in order to avoid confusion
which might appear because, later in this paper (see section 5.2), we will attach
positive integer numbers to each item in U . Those numbers have some special
properties and they should not be confounded with the actual value of the items
ui (in the case that these values are numerical).

§4 Why Light Is Good for Our Purpose ?
In this section we argue why light can be used as possible medium for the

implementation. We also describe the operations which are performed within
our device.

4.1 Useful Properties of Light
Our idea is based on two properties of light:

• The speed of light has a limit. The value of the limit is not very important
at this stage of explanation. The speed will become important when we
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will try to measure the moment when rays arrive at the Destination node
(see section 7.2). What is important now is the fact that we can delay
the ray by forcing it to pass through an optical fiber cable of a certain
length.

• The ray can be easily divided into multiple rays of smaller intensity/power.
Beam-splitters are used for this operation.

4.2 Operations Performed within Our Device
The proposed device has a graph like structure. Generally speaking one

operation is performed when a ray passes through a node and one operation is
performed when a ray passes through an arc.

• When passing through an arc the light ray is delayed by the amount of
time assigned to that arc.

• When the ray is passing through a node it is divided into a number of rays
equal to the external degree of that node. Each obtained ray is directed
toward one of the nodes connected to the current node.

§5 The Proposed Device
We have divided our problem into 2 small subproblems:

• to generate all possible subsets of C. We show how our device is capable
of performing this operation in section 5.1.

• to find if there is a subset of C which contains each element of U ex-
actly once. This is possible due to the special properties of the numbers
assigned to each item from U (see section 5.2).

5.1 Generating All Subsets of C
First of all we assign to each item ui from U a positive number (di). The

way in which these numbers are constructed is described in section 5.2. We will
use these numbers when we will compute the moment when a particular ray has
arrived at the output of our device. The sum of all these numbers is denoted by
B.

In this section we want to design a device that will generate all possible
subsets of C.

The first idea for our device was that elements from the given set C
represent the delays induced to the signals (light) that passes through our device.
For instance, if elements C1, C3 and C6 generate the expected exact cover, then
the total delay of the signal should be delay(C1) + delay(C3) + delay(C6). By
delay(Ci) we denote the delay introduced by Ci (which is a subset of U). The
delay(Ci) is computed as sum of delays induced by each item (from U) belonging
to Ci.

If using light we can easily induce some delays by forcing the ray to pass
through an optical cable of given length.
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This is why we have designed our device as a direct graph. Arcs, which
are implemented by using optical cables, are labeled with numbers representing
delays of subsets Ci(1 ≤ i ≤ m). Each subset is assigned to exactly one arc and
there are no two arcs having assigned the same subset. There are m + 1 nodes
connected by m arcs. At this moment of explanation we have a linear graph as
the one shown in Fig. 1.

Fig. 1 First version of our device. Each arc delays the ray by the
amount of time written on it. Note that this device is not
complete because it cannot generate all possible subsets of C.

However, this is not enough because we also need an mechanism for skip-
ping an arc encoding an element of C. Only in this way we may generate all
possible subsets of C.

A possible way for achieving this is to add an extra arc (of length 0)
between any pair of consecutive nodes. Such device is depicted in Fig. 2. A
light ray sent to Start node will have the possibility to either traverse a given
arc (from the upper part of figure) or to skip it (by traversing the arc of length
0 from the bottom of figure).

In each node (but the last one) we place a beam-splitter which will split
a ray into 2 subrays of smaller intensity.

The device will generate all possible subsets of C. Each subset will delay
one of the ray by an amount of time equal to the sum of the lengths of the arcs
in that path.

There is a problem here: even if theoretically we could have arcs of length
0, we cannot have cables of length 0 in practice. For avoiding this problem we
have multiple solutions. The first one was to use very short cables (let’s say of
length ε) for arcs which are supposed to have length 0. However, there is another
problem here: we could obtain for instance the sum B written as B = a1 +3 ∗ ε.
Even if there is no subset of sum B, still there will be possible to have a signal
at moment B due to the situation presented above.
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Fig. 2 Second version of our device. Each subset of C is generated,
but this device cannot be implemented in practice because we
cannot have cables of length 0.

For avoiding this situation we have added a constant k to the length of
each cable. The schematic view of this device is depicted in Fig. 3.

We can see that each path from Start to Destination contains exactly m
time value k. Thus, at the destination we will not wait anymore at moment B.
Instead we will wait for a solution at moment B + m ∗ k since all subsets will
have the constant m ∗ k added.

In Figs. 1, 2 and 3 we have not depicted the items ui from each Ck

(1 ≤ k ≤ m). The delays introduced by each ui (see section 5.2) are actually in

Fig. 3 A schematic representation of the device used for solving an
instance with 6 elements in C. On each arc we have depicted
its length. There are n cables of length k and m cables of
length delay(Ci) + k (1 ≤ i ≤ m). This device does generate
all possible subsets of C and it can be implemented in practice



ngc26402 : 2008/7/18(10:39)

336 M. Oltean and O. Muntean

the delays of all Ck containing ui.
This trick has solved one of the problems related to our device. It shows

how to generate all possible subsets of C. However, this is not enough. Another
requirement of the problem is that each element of U to be represented once
in the exact cover solution. For solving this problem we assign to each element
in U a special integer value. These values will be chosen in such way will be
possible to easily identify the exact cover solution at the Destination node.

In the next section we show how to decide if is there a subset of C which
contains each element of U exactly once.

5.2 Labeling System
We start by a simple definition about what we mean by a ray passing

through an item of U .
We say that a ray has visited (passed through) a certain element ui of

U if that ray has passed through an arc representing one of the subsets of Ck

which contains element ui. Please note that Ck can contain more elements from
U and if one of them is visited by a ray it means that all of them are visited
by that ray since the light has no chance of avoiding parts of an arc once it has
started to traverse it.

Take for instance set C from our example (section 3.1). If the arc encoding
C4 is visited by a light ray it means that all items from that set (namely u1, u4

and u5) are visited.
At the Destination node we will wait for a particular ray which has visited

each element of U exactly once. This is why we need to find a way to label that
particular ray so that it could be easily identified.

Recall from section 5.1 that the rays passing through an arc are marked by
delaying them with a certain amount of time. This delay can be easily obtained
by forcing the rays to pass through an optical fiber of a certain length. Roughly
speaking, we will know if a certain ray has generated an exact cover only if its
delay (at the Destination node) is equal to the sum of delays induced by all
items from U .

We know exactly the particular moment when the expected ray (the one
which has generated an exact cover) will arrive. This moment is B (the sum of
numbers attached to items from U). In this case the only thing that we have
to do is to ”listen” if there is a fluctuation in the intensity of the signal at that
particular moment. Due to the special properties of the proposed system we
know that no other ray will arrive, at the Destination node, at the moment
when the ray generating the exact cover has arrived.

The delays, which are introduced by each arc (which is actually the sum
of delays of particular items from U), cannot take any values. If we would put
random values for delays we might have different rays (which are not covering
U exactly) arriving, at the Destination node, in the same time with a ray
representing an exact cover. This is why we assign, to each element ui of U , a
special number (denoted by di).

We need only the ray, which has generated the exact cover, to arrive in
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the Destination node at the moment equal to the sum of delays of each item ui

(the moment when the ray has entered in the Start node is considered moment
0). Thus, the delaying system must have the following property:

Property of the delaying system
Let us denote by d1, d2, ..., dn the delays that we plan to attached to u1,

u2, ..., un. A correct set of values for this system must satisfy the condition:
d1 + d2 + ... + dn 6= a1 · d1 + a2 · d2 + ... + an · dn,
where ai (1 ≤ i ≤ n) are natural numbers (ai ≥ 0) and cannot be all 1 in

the same time.
Basically speaking ak tell us how many times the ray has passed through

an element uk. Thus, if value ak is strictly greater than 1 it means that the
ray has passed at least twice through element uk. Note that an element ui can
belong to multiple subsets from C. For instance, in the example from section
3.1 we can see that element u1 belongs to 3 subsets (C1, C2 and C4).

Actually each item ui can appear no more than m times on any path
between Start and Destination (see Figure 3). This is because the cardinal of
C is m and each Ck (1 ≤ k ≤ m) is a subset of U (that is each element from U
can appear no more than once). In our case we were not interested to depend
on particular values for m. This is why when we have designed the system of
numbers di(1 ≤ i ≤ n) we have assumed that each item ui can appear any times
in the final solution (not limited to m times). This is the most general case.
Other cases, where has a fixed value can lead to smaller values for numbers di.

Some examples of numbers complying with our property are given in Table
1.

Table 1 Some examples. First column contains the cardinal of U . The
second column represents the numbers assigned to each ele-
ment of U .

n Labels (delays)
1 1
2 2, 3
3 4, 6, 7
4 8, 12, 14, 15
5 16, 24, 28, 30, 31
6 32, 48, 56, 60, 62, 63

From Table 1 it can be easily seen that these numbers follow a general
rule. For a problem with n elements in U one of the possible labeling systems
is:

2n − 2n−1,
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2n − 2n−2,
2n − 2n−3,
... ,
2n − 20.

Remarks

• In 21) these numbers have been used for solving the Hamiltonian path
problem with a light based-device. It was proved 21) that these numbers
satisfy the previously exposed property. In 22) it was proved this system
is minimal (the greatest number is the smallest possible).

• The numbers in this set are also called Nialpdromes (sequence A023758
from The On-line Encyplopedia of Integer Numbers 31)). They are num-
bers whose digits in base 2 are in nonincreasing order.

• These numbers have been used in 15) for solving NP-complete problems
in the context of DNA computers,1)

• The delaying system described above has the advantage of being a general
one, but it also has a weakness: it is exponential.

5.3 How the System Works
In the graph depicted in Figure 3 the light will enter in Start node. It

will be divided into 2 subrays of smaller intensity. These 2 rays will arrive into
the second node at moments delay(C1) + k and k. Each of them will be divided
into 2 subrays which will arrive in the 3rd node at moments 2 ∗ k, delay(C1) +
2 ∗ k, delay(C2) + 2 ∗ k, delay(C1) + delay(C2) + 2 ∗ k. These rays will arrive at
no more than 4 different moments.

In the Destination node we will have 2m rays arriving at no more than
2m different moments. The ray arriving at moment m ∗ k means the empty set.
The ray arriving at moment delay(C1) + delay(C2) + ... + delay(Cn) + m ∗ k
represents the full set (C). If there is a ray arriving at moment B +m ∗k means
that there a subset of C of sum B (this means an exact cover for U).

If there are 2 rays arriving at the same moment in the Destination it sim-
ply means that there are multiple subsets which have the same sum (generating
the same cover - exact or not). This is not a problem for us because we want to
answer the YES/NO decision problem (see section 3). We are not interested at
this moment which is the subset generating the solution.

Because we are working with continuous signal we cannot expect to have
discrete output at the Destination node. This means that rays arrival is no-
tified by fluctuations in the intensity of the light. These fluctuations will be
transformed, by a photodiode, in fluctuations of the electric signal which is
stored into memory and later analyzed.

§6 Complexity
This section answers a very important question: Why the proposed ap-

proach is not a polynomial-time solution for the Exact Cover problem?



ngc26402 : 2008/7/18(10:39)

Exact Cover with Light 339

At the first sight one may be tempted to say that the proposed approach
provides a solution in polynomial time to any instance of the exact cover problem.
The reason behind such claim is given by the ability of the proposed device to
provide output to any instance in O(B) complexity. This could mean that
we have found a polynomial-time algorithm for the Exact Cover problem. A
direct consequence is obtaining solutions, in polynomial time, for all other NP-
Complete problems - since there is a polynomial reduction between them.9)

However, this is not our case. There are two main reasons for this:

• the intensity of the signal decreases exponentially with the number of
nodes that are traversed. When the ray is passing through a node it is
divided into 2 subrays. If divided uniformly we could have a 2 times
decrease in the intensity for each subray. If a ray is passing through 10
nodes we can have a decrease of 210 times from the initial power. A
possible way for handling this issue is discussed in section 7.4.

• The numbers assigned to each item in U increase exponentially with the
cardinal of U .

In 32) it was proved that any analog computer can be simulated efficiently
(in polynomial time) by a digital computer. From this assumption and the
assumption that P 6= NP we can also draw the conclusion that our device is not
a polynomial time one.

§7 Physical Implementation of the System: Difficulties and Solu-
tions
This section describes the components required for the physical implemen-

tation of the system and some difficulties that might appear during construction
and testing.

7.1 Components
For implementing the proposed device we need the following components:

• a source of light (laser),
• Several beam-splitters for dividing light rays into 2 subrays. A standard

beam-splitter is designed using a half-silvered mirror (see Fig. 4),
• A high speed photodiode for converting light rays into electrical signals.

The photodiode is placed in the Destination node,
• A set of optical fiber cables having lengths equals to the numbers in set

U (plus constant k) and another set of m cables having fixed length k.
These cables are used for connecting nodes.

7.2 Precision
Another problem is that we cannot measure the moment B+m∗k exactly.

We can do this measurement only with a given precision which depends on the
tools involved in the experiments. Actually it will depend on the response time
of the photodiode.
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Fig. 4 The way in which a ray can be split into 2 sub-rays by using
a beam-splitter.

The rise-time of the best photodiode available on the market is in the
range of picoseconds (10−12 seconds). This means that if a signal arrives at the
Destination in the interval [B + m ∗ k− 10−12, B + m ∗ k + 10−12] we cannot be
perfectly sure that we have an exact cover or another one which does not have
the wanted property. This problem can be avoided if all cables are long enough.
In what follows we will try to compute the length of the cables.

We know that the speed of light in vacuum is 3 · 108m/s. Based on that
we can easily compute the minimal cable length that should be traversed by the
ray in order to be delayed with 10−12 seconds. This is obviously 0.0003 meters.
This value is the minimal delay that should be introduced by an arc.

Please note that the speed of light in different other media is smaller than
the speed of light in vacuum (due to the refractive indices). This can help us
to solve larger instances of the problem. Table 2 shows the refractive indices of
different materials and the minimal cable length required in order to induce a
delay of 10−12.

In what follows we consider the speed of light in vacuum.
Note that all lengths must be integer multiples of 0.0003. We cannot

allow to have cables whose lengths can be written as p∗0.0003+q, where p is an
integer and q is a positive real number less than 0.0003 because by combining
this kind of numbers we can have a signal in the above mentioned interval and
that signal does not encode a subset whose sum is the expected one.

Once we have the length for that minimal delay is quite easy to compute
the length of the other cables that are used in order to induce a certain delay.
First of all we have to divide all delays introduced by Ck(1 ≤ k ≤ m) with
such factor that the less significant digit (greater than 0) to be on the first
position before the decimal place. For instance if we have delay(C1) = 100 and
delay(C2) = 2000 we have to divide both numbers by 100.

After this operation we will multiply the obtained numbers by 0.0003
factor.
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Table 2 The minimal cable length required to induce the 10−12 sec-
onds delay (fourth column). The cable is made of materials
in the first column. The refractive indices are given in second
column ( frequency=5.09x1014 Hz). The speed of light of light
in that material is given in the third column. Data are taken
from 35)

Material Refractive in-
dex

Speed of light
(m/s)

Cable length
(meters)

Vacuum 1 300000000 0.0003
Water Ice 1.544 194300518 0.00019
Diamond 2.419 124018189 0.00012
Silicon 4.01 74812967 0.00007

This will ensure that if a signal will arrive in the interval [B + m ∗ k −
10−12, B + m ∗ k + 10−12] we can be sure that it encodes the sum B + m ∗ k.

7.3 Problem Size
We are interested in computing the size of the instances that can be solved

by using a limited amount of resources (cables).
Recall from section 7.2 that the minimal delay is 0.0003 m.
This value is the minimal delay that should be introduced by an arc in

order to ensure that the difference between the moments when two consecutive
signals arrive at the destination node is greater or equal to the measurable unit
of 10−12 seconds. This will also ensure that we will be able to correctly identify
whether the signal has arrived in the destination node at a moment equal to the
sum of delays introduced by each item in U . No other signals will arrive within
a range of 10−12 seconds around that particular moment.

Once we have the length for that minimal delay is quite easy to compute
the length of the other cables that are used in order to induce a certain delay.

Recall from section 5.2, Table 1 that an instance with 5 items has the
following delaying system:

16, 24, 28, 30, 31.

From the previous reasoning line we have deduced that the smaller indi-
visible unit is 0.0003. So, we have to multiply these numbers by 0.0003. We
obtain:

0.0048, 0.0072, 0.0084, 0.009, 0.0093.

These numbers represent the length of the cables that must be used in
graph’s arcs in order to induce a certain delay.
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Assume that we have available for our experiments some cables from the
internet networks. They can be easily used for our purpose. Assuming that the
longest cable that we have is about 300 kilometers we may solve instances with
about 29 items in set U ∗1. This value was infered from equation 2n ∗0.0003m =
300km.

Note that the maximal number of items in U can be increased when the
precision of our measurement instruments (photodiode) is increased.

7.4 Power Decrease
Beam splitters are used in our approach for dividing a ray in two subrays.

Because of that, the intensity of the signal is decreasing. In the worst case we
have an exponential decrease of the intensity. For instance, in a graph with
m + 1 nodes (Destination node is not counted because there is no split there),
each signal is divided (within each node) into 2 signals. Roughly speaking, the
intensity of the signal will decrease 2m times.

This means that, at the Destination node, we have to be able to detect
very small fluctuations in the intensity of the signal. For this purpose we can
use a photomultiplier 8) which is an extremely sensitive detector of light in the
ultraviolet, visible and near infrared range. This detector multiplies the signal
produced by incident light by as much as 108, from which even single photons
can be detected.

Another way to amplify the signal is to use doped optical fiber as a gain
medium.6,18) For this operation the signal to be amplified and a pump laser are
multiplexed into the doped fiber. Thus, the signal is amplified through interac-
tion with the doping ions. The costs for this operation could be high because
the amplification might be needed after each node of the proposed device. More
than that, the noise introduced through Amplified Spontaneous Emission might
generate unwanted fluctuations in the intensity of the signal.

Also note that this difficulty is not specific to our system only. Other ma-
jor unconventional computation paradigms, trying to solve NP-complete prob-
lems share the same fate. For instance, a quantity of DNA equal to the mass
of Earth is required to solve Hamiltonian Path Problem instances of 200 cities
using DNA computers.13)

7.5 Technical Challenges
There are many technical challenges that must be solved when implement-

ing the proposed device. Some of them are:

• Cutting the optic fibers to an exact length with high precision. Failing
to accomplish this task can lead to errors in detecting if there was a
fluctuation in the intensity at moment B + m ∗ k,

• Finding a high precision photodiode. This is an essential step for mea-
suring the moment B + m ∗ k with high precision (see section 7.2).

∗1 Assume that each set in C has no more than 1 element. Otherwise the cables’ length for
each element in a particular set Ci should be summed up.
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§8 Improving the Device
The speed of the light in optic fibers is an important parameter in our

device. The problem is that the light is too fast for our measurement tools. We
have either to increase the precision of our measurement tools or to decrease the
speed of light.

It is known that the speed of light traversing a cable is significantly smaller
than the speed of light in the void space. Commercially available cables have
limit the speed of the ray wave up to 60% from the original speed of light. This
means that we can obtain the same delay by using a shorter cable (see Table 2).

However, this method for reducing the speed of light is not enough for
our purpose. The order of magnitude is still the same. This is why we have the
search for other methods for reducing that speed. A very interesting solution
was proposed in 14) which is able to reduce the speed of light by 7 orders of
magnitude and even to stop it.3,17) In 3) they succeeded in completely halting
light by directing it into a mass of hot rubidium gas, the atoms of which, behaved
like tiny mirrors, due to an interference pattern in two control beams.

This could help our mechanism significantly. However, how to use this
idea for our device is still an open question because of the complex equipment
involved in those experiments.14,17)

By reducing the speed of light by 7 orders of magnitude we can reduce the
size of the involved cables by a similar order (assuming that the precision of the
measurement tools is still the same). This will help us to solve larger instances
of the problem.

§9 Conclusions and Further Work
The way in which light can be used for performing useful computations

has been suggested in this paper. The techniques are based on the massive
parallelism of the light ray.

It has been shown the way in which an optical device can be used for
solving the Exact Cover problem.

Further work directions will be focused on:

• Implementing the proposed device,
• Automate the construction process. Cutting new cables each time a new

instance has to be solved is very inefficient. This is why finding a way
to reuse the exiting cables (from previous instances) is a priority for our
research,

• Our optical solution cannot output the exact cover representing the solu-
tion. It can only say if there is a solution or not. However, the YES/NO
decision variant of the XC problem is still NP-complete.9) We are cur-
rently investigating a way to store the visited arcs so that we can easily
reconstruct the path,

• Using Microelectromechanical Mirror Array 25) for inducing delays,
• Finding other non-trivial problems which can be solved by using the pro-

posed device,



ngc26402 : 2008/7/18(10:39)

344 M. Oltean and O. Muntean

• Finding other ways to introduce delays in the system. The current solu-
tion requires cables that are too long and too expensive,

• Using other type of signals instead of light. Possible candidates are elec-
tric power and sound.
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