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Voronoi imaging methods for the measurement of granular flows

H. Capart, D. L. Young, Y. Zech

Abstract A set of digital imaging methods derived from
the Voronoi diagram is proposed and tested on various
liquid-granular flow applications. The methods include a
novel pattern-based particle-tracking algorithm, as well as
estimators of the three-dimensional granular concentra-
tion from two-dimensional images. The proposed algo-
rithms are able to resolve individual grain motions even
for rapid shear flows involving dense, fluctuating granular
ensembles. Full automation is achieved, allowing the der-
ivation of accurate statistics from large sets of individual
measurements, as well as the construction of complete sets
of grain trajectories. Results are presented for different
applications: homogeneous fluidization, steady uniform
debris flow, and unsteady debris surges.

1

Introduction

Flows of granular materials are notable for the diversity of
their behaviours and their involvement in a wide range of
geophysical and industrial processes. While much about
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them can be learned from computational simulations
(Campbell 1990; Kalthoff et al. 1997), there is a corres-
ponding need for detailed experimental measurements.

A variety of techniques are available for multiphase flow
measurements (Bachalo 1994; Chaouki et al. 1997), and
those applied more specifically to granular flows include
force and impact measurements (Savage and McKeown
1983; Zenit et al. 1997), acoustic probes (Bennett and Best
1995), tracked transmitters (Dave et al. 1999), and mag-
netic resonance imaging (Nakagawa et al. 1993). The
present work focuses on digital imaging techniques
applied to the analysis of monocular image sequences.
These are typically acquired by filming a flow free-surface
from above or by imaging the flow through a transparent
wall. As granular flows are characterized by high solid
fractions, opacity of the material generally prevents optical
penetration beyond a few grain diameters. In many
instances, this does not prevent one from making mean-
ingful measurements, and it is not necessary to resort to
sophisticated techniques such as magnetic resonance
imaging or refractive-index matching (Cui and Adrian
1997) to penetrate the flow interior. One would therefore
wish to resort to the powerful imaging techniques of
experimental fluid mechanics (Adrian 1991) to provide
nonintrusive, whole-field coverage of the flow kinematics
of the visible grains.

Granular flows are, however, characterized by three
features that pose problems to imaging velocimetry algo-
rithms: dense dispersions of grains, fluctuating motions
produced by interparticle contacts, and sharp flow gradi-
ents on the scale of only a few grain diameters. The sim-
plest methods of particle-tracking velocimetry (PTV) rely
on minimum displacement matching (Guler et al. 1999)
and fail when the interframe displacement becomes sig-
nificant with respect to the mean particle interdistance.
This limit is quickly reached for dense, rapid granular
flows. More sophisticated particle-tracking methods in-
volving trajectory-based matching (Sethi and Jain 1987)
are easily offset by the uncorrelated granular velocity
fluctuations. The techniques of particle imaging veloci-
metry (PIV) are robust with respect to large displacements
of dense dispersions (Willert and Gharib 1991) but have
difficulties in dealing with intense shear (Huang et al.
1993). Finally, the direct-correlation (Fujita et al. 1998) or
spatial filtering methods (Uddin et al. 1998) do not resolve
individual grain motions, an information which is most
important if one seeks to test microstructural theories.

Similar difficulties are encountered for concentration
estimation. When grains become closely packed, occlusion
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effects hamper the correspondence between two-dimen-
sional observations of the grain number density and their
three-dimensional volumetric concentration. Suggestions
have been made for such a correspondence (Capart et al.
1997), but have not been tested in detail. Proposals based
on luminance measurements (Louge and Jenkins 1997;
Kanda et al. 1999), on the other hand, require case-by-case
calibration and a careful control of illumination, which is
difficult to obtain even in laboratory conditions.

Various strategies have been adopted by researchers to
cope with these difficulties. A first possibility is to di-
minish tracking problems by restricting the investigations
to dilute dispersions or slow deformation rates, and to
avoid concentration estimation problems by dealing with
two-dimensional dispersions of spheres or disks moving
between two closely spaced plates (Elliott et al. 1998;
Wildman et al. 1999). Another widely used approach is to
track only a small proportion of coloured “tracer” parti-
cles included in the dispersion (Natarajan et al. 1995; Liu
et al. 1997; Hsiau and Jang 1998), leading to a corres-
sponding loss of resolution. Finally, a third strategy con-
sists in performing the tracking manually or with manual
supervision (Drake 1991; Capart and Young 1998), limit-
ing the number of measurements to the bounds of human
patience.

In the present work, we develop and test imaging
methods that are aimed at addressing the above short-
comings. Both for velocimetry and concentration, the
methods derive from a pattern-based principle. The idea is
that the local pattern formed by neighbouring grains will
remain stable over a certain time, even for a rapidly
deforming, fluctuating granular phase, and that it can
therefore serve as a match template. Furthermore, it can
also be used to characterize the local degree of packing of
the dispersion. The specific tool chosen to describe local
patterns is the Voronoi diagram. Various properties of the
Voronoi diagram endow the approach with advantages
over other pattern-based methods (Haynes and Turner
1992; Song et al. 1996, 1999; Ruan et al. 1999), and this
will be discussed in detail in the presentation of the
algorithms that forms the first part of the paper. In the
second part, the methods are tested on selected liquid-
granular flows, including homogeneous fluidization,
steady uniform channel flow, and dam-break induced
debris surges.

2

Principle and algorithms

Consider a sequence of images depicting the flow of an
ensemble of grains. Rather than directly correlating win-
dows of pixel values, the present work deals with grain
images by first abstracting them into point-like particles.
The granular ensemble is thus reduced to a set of feature-
points corresponding to grain centroids that are
dispersed in the image plane. Particle identification can
be achieved using a variety of segmentation or filtering
methods, and the particular algorithm used for the
applications is described in Appendix 1. After this oper-
ation, the analysis of the motions and patterns of sets of
point-like particles constitutes the general object of the
Voronoi methods.

2.1

Voronoi construction and properties

Let a dispersion of n feature-points P; occupy positions
r; = (x5 y;) (i = 1,..., n) in the two-dimensional plane
(Fig. 1). The Voronoi construction designates the tiling of
the plane into n polygonal regions (or “cells”) such that
each polygon V; encompasses the region of the plane that
is nearest to P; than to any other feature-point. Feature-
points characterized by Voronoi cells sharing an edge are
termed “natural neighbours” of each other. The graph that
connects natural neighbours further defines a second
tesselation, dual to the Voronoi diagram: the Delaunay
triangulation, composed of triangles D;.

The two constructions present many remarkable prop-
erties that have led to recent applications in a variety of
fields including cell biology (Marcelpoil and Usson 1992),
computational mechanics (Braun and Sambridge 1995),
astronomy (Bernardeau and van de Weygaert 1996), and
molecular hydrodynamics (Espanol 1998). A general over-
view of the Voronoi diagram, its properties, and applica-
tions is given in Okabe et al. (1992), and a mathematical
introduction in Preparata and Shamos (1985). In the present
context, the Voronoi and Delaunay diagrams are of interest
primarily because they provide useful local structures, or
“tokens”, which can be exploited for pattern characteriza-
tion and matching (Ahuja 1982). The most obvious among
these structures are the Voronoi cells and Delaunay trian-
gles themselves, with properties such as area and perimeter.

Structures of a second type, most useful for pattern-
matching, define local “neighbourhoods”. The triplets of
feature-points that are vertices to a common Delaunay
triangle provide one such local neighbourhood (Song et al.
1999). Another structure of this type, key to the present
work, is the Voronoi 1-star (Fig. 2). The first vertex star
(or simply 1-star) S; of feature-point P; is defined as the set
of its natural neighbours, including itself (Senechal 1995).
The 1-star can be visualized as a “star of spokes” origi-
nating at feature-point P;. (Likewise, the 2-star of feature-
point P; can be defined as the set of feature-points that are
natural neighbours to the 1-star of feature-point P;, and so
on). As shown in detail in the present work, the Voronoi
1-star constitutes a very useful token for pattern-matching
in a particle-tracking context. A comparison with other
neighbourhood definitions is provided in Sect. 2.2.

Fig. 1. Voronoi diagram (—) and its dual, the Delaunay trian-
gulation (- - -), constructed on a random dispersion of feature-
points P; (0)



Fig. 2. The Voronoi 1-star S; (—) associated with one of the
vertices P; (0) of the Voronoi diagram (- - -)

The Voronoi and Delaunay tesselations are character-
ized by the following desirable properties:

1) Geometric properties. First, except for unlikely
degenerate cases, the construction is unique for a given
set of feature-points. Secondly, the construction is local,
i.e., the position of remote points does not affect the local
structure of the diagram (Sibson 1981). The tokens de-
scribed above can thus be construed as reliable descrip-
tors of the local point pattern. Thirdly, the construction
is adaptive with respect to variations in the local density
of points. In particular, natural neighbours of a feature-
point tend to “surround” it evenly, regardless of a pos-
sible density gradient in one direction or another (Ahuja
1982).

2) Kinematic properties. The Voronoi diagram is stable
to continuous deformation. This means that if the feature-
points move along continuous trajectories, then the shape
of the Voronof cell will also evolve gradually, and neigh-
bourhood relations will change one by one (except for
unlikely degenerate cases). If the trajectories of the fea-
ture-points are known, this can be used to continuously
update the Voronoi diagram rather than reconstruct it
from scratch at discrete times (Albers et al. 1998). This
property makes the Voronoi 1-star a particularly attractive
token for flowing dispersions of particles, as branches of
the star can be expected to deform gradually, except for
isolated topological events that will affect one branch of
the star at a time. Delaunay triplets are not so attractive in
this respect, since they are affected much more severely by
these “swap” events (Fig. 3). The Voronoi diagram also
remains stable in the case of addition or suppression of a
feature-point, as in the case of particle occlusion.

3) Computational properties. The construction presents
a number of desirable computational properties. First,
algorithms are available that can construct the Voronoi
diagram in O(nlogn) operations (where # is, as before, the
number of feature-points). The particular algorithm used
in the present work is based on Fortune’s plane sweep
method (Fortune 1987). Secondly, once the construction is
obtained, a nearest-neighbour search (useful for matching
operations) can be performed in O(logn) operations
(Preparata and Shamos 1985). Finally, local reconstruction
of the Voronoi diagram (after removal of a spurious par-
ticle image, for example) can be performed in O(1) oper-
ations. These features make it possible to devise efficient
implementations of the algorithms detailed in Sect. 2.2.

Fig. 3a, b. Local Voronoi diagram (—) and Delaunay triangles
(- - -) constructed on a deforming set of points (o) at times a
and b t,. Because of the deformation, “swap” events may change
the local configuration. Delaunay triangles are much more
strongly affected by these topological changes than the Voronoi
cells (and their associated 1-stars)

2.2

The matching problem

Consider now a set of moving particles, with positions
sampled on two image frames acquired at instants ¢, and
t,. Supposing that particle images are indistinguishable
from each other (particles are of the same size, colour,
etc.), the information available is limited to the two sets of
feature-point positions r;; (i = 1,..., n;) and r;, (j = 1,...,
1,). Based on this information, the objective is to match
particles between the two frames. Formally, one seeks a
pairing {i(k), j(k)} associating particle image P; on frame 1
and particle image P; on frame 2 to one and the same
physical particle k. Particle velocity vectors can then be
obtained from:

Tik).2 — Tik),1 (1)
h—t

If the time interval At = t,—t; is small enough, then a
reasonable algorithm is to associate to each feature-point
P;, of frame 1 the nearest feature-point of frame 2. This is
the “minimum displacement” algorithm (Jdhne 1995;
Guler et al. 1999), which can be written formally

match(P;;) = n;in(distp(P,"l,Pjvz)) .
iz

Vi =

(2)

Statement (2) is to be interpreted as follows: for a given
point P;; on frame 1, the best match among points P;, on
frame 2 is chosen as the one that minimizes the “point-
distance” distp(P;P;) = [(xz-—x]-)2+(y,-—y]-)2 1*2, ie., the
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standard Euclidean distance. Although such a general
notation is not necessary at this stage, it will be useful in
the remainder of the presentation as other distances are to
be introduced.

To make the “minimum displacement” algorithm
slightly more robust and avoid multiple matches to one
and the same feature-point, a refinement is to set up the
following optimization problem: find the global pairing
{i(k), j(k)} that minimizes the objective function

min(ny,n,)

Z diStp(Pi(k)_I,Pj(k).z) (3)
k=1

that is, a sum over all selected pairs of the distances be-
tween matched particles Pjq); and Pj),. This is a stan-
dard bijective graph optimization problem, which is
difficult (and computationally expensive) to solve thor-
oughly for large numbers of points. An approximate
solution is, however, easily found using the Vogel algo-
rithm. The algorithm consists in considering for each
particle image the best match and the second best match,
then constructing a reasonable global optimum by picking
particle pairs in the order of maximum difference between
first and second best choices.

The simple match algorithm sketched above presents
two shortcomings. First, from a computational point of
view, it is unnecessarily expensive by requiring the tabu-
lation of the distance between each feature-point of frame
1 and every feature-point of frame 2, however far apart
from each other. It would thus be desirable to narrow
down the match candidates using some suitable criterion.
Secondly, a more serious problem is that the algorithm
fails as soon as the interframe displacement of particles Ar
is not small with respect to the mean particle interdistance
or. In that case, nearest points from two successive images
are likely to correspond to two different physical particles,
and a “goodness-of-match” criterion more robust than the
minimum displacement is required. In Capart (2000), it is
shown that for the case of a rigidly-moving random dis-
persion of points, one must have Ar/ér < 0.35 for mini-
mum displacement matches to be reliable at the 90%
confidence level. When the minimization improvement (3)
is used, the condition relaxes to Ar/or < 0.7, still quite a
stringent constraint in the case of rapidly moving, dense
granular dispersions.

To address these problems, a first possibility is to use
information from the particle’s previous trajectory. Pro-
vided the past trajectory is known, a predictor step can be
used to estimate the likely position of a particle on the next
frame, and restrict the match candidates to those en-
countered in a limited search window around this posi-
tion. Path regularity can then be used as an indicator of
goodness-of-match (Sethi and Jain 1987; Jain et al. 1995).
A refinement consists in solving a complex multi-frame
optimization problem. Such methods, used for instance for
the radar monitoring of air traffic (Brookner 1998), are
successful for a number of PTV applications (Malik et al.
1993; Ushijima and Tanaka 1996) where particles are
sparse and their trajectories well-behaved. However, when
particle density is high and velocity fluctuations are
important, these methods are highly unstable. This was

experienced by the authors in their first attempts at
imaging granular flows (Capart et al. 1997; Capart and
Young 1998), with the consequence that close manual
supervision was necessary to obtain reasonable results.

A second possibility is to use spatial rather than tem-
poral information, and focus on pattern regularity rather
than path regularity. Provided that particle neighbour-
hoods can be defined, these neighbourhoods can be used,
on the one hand, to restrict the match candidates, and on
the other hand, to extract point patterns that can be
compared from one image to the next. These two opera-
tions can be respectively referred to as the “screening” and
“selection” processes. Various ways of defining neigh-
bourhoods have been developed (a review is given in
Ahuja 1982) and applied to particle tracking applications.
With reference to Fig. 4a-b, a common definition is to take
a circular window of radius R around feature-point P; of
image 1, and consider as match candidates the feature-
points of image 2 belonging to this window (or R-neigh-
bourhood). A second circular window (possibly with a
different radius r) can then be used to define a template of
neighbours (or r-star) of particle image P;, which can be
compared with similar templates associated with the var-
ious match candidates on frame 2 (Fig. 4a-b). Such an
approach has been used by Haynes and Turner (1992),

St~ —— -

Fig. 4a-d. Screening (left) and selection (right) operations per-
formed with circular windows (above) and Voronoi 1-stars
(below): a a window of radius R (—) is used to select the match
candidates and a window of radius r (- - -) defines the template to
be matched; b goodness-of-match is evaluated by examining the
area overlap between disks of radius p centred on each feature-
point of the template; c the 1-star Sj,, (—) of the minimum-
displacement match Pj, is used to select the match candidates,
and the point’s 1-star S;; (- - -) defines the match template;

d goodness-of-match between stars S;; and S;, is estimated by
looking at interpoint distances according to the Hausdorff-type
measure of (5). Window-based algorithms (a) and (b) require the
definition of three parameters R, r, p, whereas Voronoi methods
(c) and (d) are non-parametric and are free to adapt to variations
in the local state of the point dispersion



Lloyd et al. (1992), and Ruan et al. (1999), choosing a
particle area-overlap criterion for goodness-of-match
between the templates (Fig. 4b). A similar approach could
be devised with neighbourhoods (and stars) defined in
terms of the K (k) nearest neighbours (defining K-neigh-
bourhoods and k-stars). However, both these approaches
have the drawback that the radii or numbers of nearest-
neighbours considered must be defined a priori, and
cannot adapt to variations or local gradients in point
density (Ahuja 1982). The data structures necessary for
constructing and handling the neighbour lists, which take
the same form as the Verlet lists of molecular dynamics
(Frenkel and Smit 1996), are also rather heavy to manipu-
late in comparison with a structure such as the Voronoi
diagram.

Recently, Song et al. (1996, 1999) proposed to use the
triangles of the Delaunay tesselation as match tokens. The
present work proposes to resort to the Voronofi 1-star both
to define a search neighbourhood and to provide a match
template.

23

Voronoi match algorithm

With reference to Fig. 4c-d, the proposed match algorithm
involves the Voronoi construction for both screening and
selection operations. It consists first in finding on frame 2
the minimum-displacement match Pj,, corresponding to
feature-point P;; of image 1. The match candidates are
selected as the feature-points on image 2 that belong to the
Voronofi 1-star Sjy, of point Pj,,. The Voronoi 1-star of
each of the candidates is then compared with the 1-star of
feature-point P;; to evaluate the goodness-of-match. For-
mally, the best match of point P;; is thus

match(P;;) = Pgleisg,z(diﬁs(&’l’ Si2)) (4)
where S; designates the Voronoi 1-star of point P; and
dists(5;,5;) represents a suitably defined “star-distance”
reflecting the degree of discrepancy between the patterns
formed by two stars S; and S;. For such a function, it is
proposed to choose the median of the distances between
the star extremities once the star centres have been made
to coincide (Fig. 4d). Formally, this can be written

dists(S;, S;) =median| min |(rk1,1—r071)—(rk2,2 — r072)|
k1:1‘.m1 k2=1,.m2
(5)

where vertex k; = 0 (resp. k, = 0) is the centre of star S;
(resp. S,), vertices k; = 1..m, (resp. k, = 1..m,) are the
extremities of star S; (resp. S,), and |r| = (x*+y*)"/? is the
usual Euclidean norm. Expression (5) features three suc-
cessive stages: 1) a translation making the star centres
coincide, allowing their shapes to be compared in a com-
mon frame of reference; 2) an inner loop based on the
minimum norm, whereby for each extremity r; ; of star S;,
the nearest extremity of star S, is found, and their distance
from each other is added to a list; and 3) an outer loop
based on the median norm, whereby the median value of
the list is adopted as an overall measure of the discrepancy
between the two stars S; and S,. The above definition allows
comparison between the shapes of any two stars, without

requiring that they have the same number of branches. It
corresponds to the Hausdorff distance (e.g., Goodrich et al.
1999), except for the use of the median rather than the
maximum in the outer norm. The choice of the median is
made in order to increase the robustness of the compari-
son: even the correctly matched stars (from a physical
point of view) are expected to differ significantly at some of
their extremities (when topological swap events result from
flow deformation, when particle occlusion occurs, when
particles reach the boundaries of the domain, etc.). Note
that the star-distance defined above is “directed”, i.e., in
general, distg(S;,S;) # dists(S,,51). An undirected equiva-
lent is easily defined as 1/2[dists(S;,S,) + dists(S,,S;)], but
this was not found necessary in the present context.

Rather than simply setting j(k) = match(i(k)), an opti-
mization problem can again be set up to improve the
matching and avoid multiple pairings with one and the
same particle. This can be performed once again by
seeking the global matching {i(k), j(k)} that minimizes the
objective function

min(ny,n,)

Z distS(S,-(kh s S'(k).z) (6)

k=1

where an arbitrarily large distance value is attributed to
pairings involving match candidates that the screening
process has not retained (i.e., such that Pj, ¢ Sj>).
Approximate solutions to the optimization problem can
again be obtained using the Vogel algorithm. It is shown in
Capart (2000) that, for a rigidly moving random dispersion
of points, screening the match candidates on the basis of
their membership in the 1-star of the minimum displace-
ment neighbour leads to a limitation in range of
Ar/or < 1.5 at the 90% confidence level. This is more than
twice the range of the optimized minimum displacement
algorithm, but may still be too restrictive in certain situ-
ations. In such cases, the Voronoi algorithm can be gen-
eralized to consider the Voronoi 2-star or higher-order
stars of the feature-points. This was, however, found
unnecessary in the applications examined in Sect. 3.
Qualitatively, the Voronoi match algorithm has the
effect of pairing the neighbour feature-points that are
characterized by similar Voronoi cells on successive im-
ages. For the granular flows examined, it has been verified
that Voronoi cells tend to remain sufficiently stable along
trajectories to allow the procedure to be successful. A
close-up view of Voronoi diagrams corresponding to ac-
tual granular flow images illustrates this point in Fig. 5.
More applications and results are detailed in Sect. 3.

24

Natural-neighbour spatial filtering

The algorithm above evidently does not succeed in
matching all particle images correctly. It is thus desirable
to have an automatic filtering procedure to remove mis-
matches from the set. In the next paragraph, a procedure
for performing such a filtering based on multiple-image
trajectories is presented. Relying on information derived
from a single pair of image frames, it is also possible to
devise spatial filtering procedures. Various proposals exist
for this purpose. Most of them involve comparing each
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Fig. 5a-c. Overview of the Voronoi match algorithm: a image of a
granular flow abstracted into point-like particles (+); b Voronoi
diagrams constructed on these points (thin lines) and on the
points of the next image of the sequence (thick lines); ¢ dis-
placement vectors (true scale) obtained by matching the Voronoi
1-stars. The result amounts to matching visually concordant
Voronoi cells

velocity vector with a local average obtained from neigh-
bouring feature-point velocities. An interesting alternative
(Jahne 1995; Song et al. 1999) consists in exploiting flow
invariants associated with polygonal shapes: an example is
the area of Delaunay triangles constructed on passive
particle tracers, which should be conserved in a diver-
gence-free two-dimensional flow. In the present work, we
are interested in the flow of a granular phase that is not
locally divergence free (the granular dispersion is com-
pressible), and we adopt the first approach. The con-
struction of local averages, however, can again be based on
the Voronoi construction.

The adopted approach resorts to the so-called “natural-
neighbour weights”, introduced by Sibson (1981) for in-
terpolation purposes. The idea consists in subdividing
each Voronoi tile V; into m subtiles Wy, corresponding to
the intersections of V; with the Voronoi polygons obtained
if feature-point P; is removed from the set (Fig. 6).
Weights can then be defined as

= area(Wy) 7)
area(V;)

These weights present various remarkable properties
outlined in Sibson (1981). In particular, they can be used
to derive C* interpolants (Sibson 1981), which have been
used in a particle-tracking context by Lloyd et al. (1995).
By construction, the weights A; sum to 1 and reflect the
proximity of point P; with each of the extremities of its
associated 1-star (Fig. 6). It is thus possible to define the

Fig. 6. Subtiling of the Voronofi cells used to define the Sibson
weights

“star-averaged” velocity associated with feature-point P; as
the weighted sum

v}‘ = Zikvk (8)
k=1

where indices k = 1..m refer to the m extremities of the
1-star of P;, and the v, are obtained from (1) once the
matching has been performed. The above-defined average
does not involve the velocity v; at the star-centre, yet it
presents the remarkable property of yielding v;" = ; if the
velocities are governed by first-order variations (i.e.,
constant gradients) around feature-point P; (Sibson 1981).
One can then define a second-order spatial difference
operator as

Vi = l— (9)

where V; is the Voronof cell associated with point i.
Expression (9) can be verified to reduce to the classical
finite difference Laplacian if the local tesselation happens
to be an orthogonal grid. A robust spatial filtering proce-
dure can then be devised by imposing |[A*v;| < tol (where
tol is a user-defined tolerance), and removing one by one
the outliers by starting with those that create the maxi-
mum local “curvature”. Implementation of the subtiling
algorithm is complicated, but reasonably efficient (Sibson
1981). Once the subtiling is obtained, however, it can also
be used for other purposes, for example to interpolate
velocities onto a regular grid (as in Lloyd et al. 1995).

2.5

Trajectory reconstruction and temporal filtering

If a sequence of many images is recorded, displacement
data obtained from each pair of frames according to the
above algorithms can, of course, be concatenated and
edited by using the more complete temporal information.
Once successive match correspondences are known, pure
concatenation of trajectory segments is trivial. Parallel to
this operation, however, trajectories can be checked and
edited using split-merge operations. The principles
involved are similar to those of path-coherence based
particle tracking (e.g. Ushijima and Tanaka 1996). The
important difference is that these operations can now be
performed on the basis of a pattern-based “skeleton” of
trajectories rather than from scratch.

Temporal filtering can be performed efficiently using
the 4-point stencils shown in Fig. 7 a. A subtrajectory
Ti—1..T;+1 composed of points P;_;..P;,, located at
positions r;_;..r;., for successive times #;_;..t;;, is consi-
dered. Focusing on the central link T; of the subtrajectory,
a robust local measure of path coherence is given by the
“trajectory-distance”

distr(P;, Pir1) = min(A_,A})

=min(|r; —ril,|ri,; — ris1]) (10)
+

where r;” = 2r;; -1y, and r;, | = 2r;—r;_; are respectively
backward and forward extrapolations based on the sur-
rounding segments. One can again filter out likely mis-
matches by imposing distr(P;,P;;) < tol. The motive for
using the minimum norm is illustrated in Fig. 7b: to avoid
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Fig. 7a-b. Trajectory filtering: a four-point stencil used to eval-
uate the local path coherence; b by resorting to the minimum
norm in (10), link T5 can be discarded without discarding link T,

discarding correct links, only those presenting excess
discrepancies with respect to both the forward and back-
ward extrapolations are filtered out.

Once trajectories are “split” at their weak links, one can
attempt “merge” operations for trajectory ends that ap-
pear to fit together well according to the same criterion. An
elegant way to perform the “split” and “merge” operations
in one single sweep consists in recasting the problem as
one of finding for each pair of frames the global match
{i(k), j(k)} that minimizes the objective function

min(ny,n,)

Z diStT(Pi(k).l » Pk 2)
k=1

(11)

and keeping only the matches that satisfy a given toler-
ance. By starting from the “trajectory skeleton” obtained
by the Voronoi matching process, trajectory-based im-
provements can be made in substeps that do not require
the handling of more than two frames at a time. In this
way, one avoids the algorithmic complexity involved in
keeping track of various multiframe trajectories.

In a granular flow context, trajectory information can
be quite useful, for instance, to visualize the granular
motions or to extract autocorrelation statistics. These are
of theoretical importance in granular flows, for instance, to
estimate collisional frequencies or compare self-diffusion
statistics with those of computational simulations.

2.6

Granular concentration estimation

Because they tile the plane without gaps, the Voronoi cells
and Delaunay triangles can be used to provide a local
measure of the planar density # of feature-points observed
in an image. One only needs to take the reciprocal of the
areas, which corresponds to 1 particle in the case of a
Voronoi cell, and 1/2 particle in the case of a Delaunay
triangle. When dealing with two-dimensional granular
dispersions (for instance, disks or spheres constrained to
move between two closely spaced walls), this constitutes
an immediate estimate of concentration. In contrast, when

three-dimensional dispersions of grains are imaged
through a sidewall, the estimation of volumetric concen-
tration ¢ from two-dimensional images is a nontrivial
task. Various authors (Louge and Jenkins 1997; Kanda

et al. 1999) propose to use luminance information for this
purpose. Even in laboratory conditions, however, illumi-
nation conditions are difficult to control precisely. In the
present work, it is therefore sought to use exclusively the
information associated with particle positions, which is
much less dependent on lighting.

Situations are different for the dilute and dense cases. In
the dilute limit, for instance, in the case of sparse disper-
sions of particles restricted to a thin sheet (e.g., a laser
light sheet), one can relate the 3D concentration to the 2D
density of visible particles by assuming that their positions
obey a Poisson process (Adrian 1991). A short analysis
sketched in Appendix 2 yields:

b)) e

where 7 is the number of visible particle centroids by unit
image surface, ¢ is the volumetric solid concentration, and
where it was assumed that spherical particles of diameter d
are contained in a viewing volume of thickness Az. From
(12) it is immediately apparent that as soon as the ratio
¢Az/d grows, occlusion effects cause the surface density 5
to lose its sensitivity to changes in ¢.

Fortunately, when the dispersion becomes dense,
excluded volume effects intervene, and the particle
positions are no longer governed by a random Poisson
process. When the mean particle interdistance becomes of
the order of the diameter, neighbouring particles are
forced to organize with respect to each other in a type of
glassy state (Allen and Thomas 1999). This creates short-
range correlations between grain positions and opens a
possibility of trying to link solid concentration with local
descriptors of particle configurations. Various approaches
can be used to construct such descriptors (for a review and
comparison, see Wallet and Dussert 1998). The Voronoi
diagram provides once again a possible tool, assessed by
Wallet and Dussert (1998) to be one of the best from the
point of view of discrimination power and stability (the
best results for their tests were, however, obtained with
minimal spanning tree approaches). In the present work,
three Voronoi-based indicators are tested.

The first is an estimator for the point density #:

1
B area(V;) (13)

where V; is the Voronoi cell enclosing point i. The second
is the “roundness factor”, which provides a descriptor of
the shape of Voronoi polygons:
4rarea(V;
b= Vi) ; (14)
[perimeter(V;)]
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Finally, a third indicator reflects the local Voronoi “area
disorder” and is defined as:

1

=TT o/n =

Xi
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where

gt = Z)Lk[area(Vk + W) — M]z (16)
k=1

and

m
= Z Jrarea( Vi + Wy)
k=1

(17)

where indices k = 1..m designate the m natural neighbours
of point i, and where the weights 4 and polygons V; and
Wy are defined as in (7) (see also Fig. 6). The “area dis-
order” estimator can be interpreted as the normalized
variance of the areas of the “petals” of the Voronoi
“flower” shown in Fig. 8. The estimator is a local version
of the global area disorder defined by Marcelpoil and
Usson (1992). The weighted averages are chosen in anal-
ogy with the treatment of mixture densities in Duda and
Hart (1973). Note that in contrast with (13), estimators
(14) and (15) are dimensionless and scale-invariant.

For the three indicators above, relationships with con-
centration ¢ are sought in the following power-law form:

d)i = (%) =" (18a)

rcp rcp

b (=& N

d)rcp B <€rcp - €0> a é (18b)

o -
rcp Lrcp

where indices “rcp” and “0” designate the state of random
close packing and the dilute state, respectively; ¢, ~ 0.64
for spheres (Allen and Thomas 1999); £,~0.72 and

%o~ 0.80 are obtained from Monte-Carlo simulations

(as they concern the dilute state, the values do not vary
with particle shape); random close-packing values #;cp,
Ereps and yrcp, as well as exponents o, f3, and y remain to be
determined from calibration tests.

3

Applications and results

The algorithms above were tested on a number of liquid-
granular flow experiments, which also motivated and

Fig. 8. The union of a neighbour cell V; with subtile Wy forms a
“petal” of the Voronoi “flower”. The variance of the petal areas
can be used to construct a local “area disorder” estimator

guided the developments. In the present report, three
applications are selected as testing grounds for the algo-
rithms: (i) homogeneous fluidization tests; (ii) steady
uniform debris flow; (iii) transient debris surges. These
contrasted applications make it possible to highlight
different features of the proposed methods.

3.1

Homogeneous fluidization

In order to test the concentration estimators, it is desirable
to obtain states of homogeneous dispersion for various
values of the solid fraction. A most convenient way of
achieving this is to set up fluidization cell experiments.
These consist of subjecting a static array of grains to an
upward fluid flux, causing the granular assembly to
expand until the voidage is such that the interphase drag
balances the submerged weight of the granular phase. At
some stage, when concentrations become lower than the
random loose-packing concentration ¢y, ~0.55, the
grains become mobile with respect to each other and un-
dergo disordered fluctuating motions. Provided one can
avoid the regions of instabilities (Batchelor 1988), a sta-
tistically homogenous state is obtained in which the grains
randomly explore a variety of local configurations. Such
conditions are the ideal ones to test and calibrate pattern-
based concentration estimators.

In the present work, tests were performed with light
spherical grains fluidized by a water current. The grains
(artificial pearls) have a diameter d = 6.1 mm and a rela-
tive density p/p,, = 1.048, where p is the density of the
granular material and p,, is the density of water. The
cylindrical fluidization cell has a height of 25 cm and a
diameter of 10 cm. The lower part of the cell is filled with a
5-cm-deep layer of small lead spheres in order to diffuse
the incoming water current. Finally, the cylinder is fitted
with a plane rectangular observation window of dimen-
sions 5 by 10 cm allowing one to film the dispersion
without optical distortion. Varying the upward water
velocity in a range of 1 to 3 cm/s enables observations of
fluidized granular dispersions having concentrations be-
tween ¢ = 0.2 and ¢ = 0.55. The relationship between
concentration and fluidizing flux was verified to corre-
spond reasonably well with the Richardson-Zaki empirical
relation (Richardson and Zaki 1954). As the granular
motions are rather slow in this case, tracking of the par-
ticles constitutes a simple matter, and was carried out only
to verify that the state of the dispersion was close to sta-
tistically homogenous. The measured kinetic energy of the
velocity fluctuations was found to agree well with the
relationship proposed by Batchelor (1988) for homoge-
neous fluidization conditions. These verification data are
presented in Capart (2000).

The main purpose of the fluidization experiments is to
test the pattern-based concentration indicators. Once
particle centroids are located with the algorithms of
Appendix 1, the Voronoi diagram can be constructed on
these feature-points, and estimators (13)-(15) obtained for
each of the Voronoi cells. To prevent edge effects from
biasing the statistics, the criterion of Kenkel et al. (1989;
see Okabe et al. 1992) is used to discard Voronoi cells
close to the image boundaries. It consists in excluding



from consideration all cells for which a circle centred at
any vertex and passing through the cell feature-point and
two of its natural neighbours intersects the boundary
(Fig. 9). In Fig. 10, the normalized indicators (18) are
plotted against the normalized concentration. Each data
point represents an average over 20 frames and over all the
visible particles (about 100 particles per image). Power-law
fits are seen to well approximate the data trends. The
calibrated constants take values #,., = 1.40/d* (where d is
the particle diameter); &;p = 0.845 1rcp = 0.92; o = 6.0;

p =7 = 3.5. The particle number indicator (13) is seen to
present the least scatter, but the sensitivity is rather low. In
fact, the sensitivity to particle number is much lower than
was anticipated by Capart et al. (1997) on the basis of a
geometrical reasoning. The two pattern-based indicators
(14) and (15), on the other hand, present a higher degree
of scatter, but with better sensitivity. Overall, the results

Q
G Z

Fig. 9. Criterion of Kenkel et al. (1989) for the identification of
Voronoi cells subject to boundary effects (after Okabe et al.
1992). Because the circle (- - -) intersects the boundary, feature-
point P; (and its associated templates) is excluded from consid-
eration
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Fig. 10a, b. Relationship between the volumetric grain concen-
trations and the Voronoi-based estimators: (@) point density n’;
(O) roundness &’; (<) area disorder y’; (—) power law fits

(the roundness and area disorder estimators are approximately
fitted by a single curve). Inset: images of the dispersions for
a¢p~03b 0.5

suggest that the indicators can be used to measure solid
concentrations, under the conditions that (i) averages can
be performed over a large amount of individual data
points; (ii) the granular dispersion behaves locally in a
random fashion close to the conditions of the fluidization
tests; (iii) calibration can be performed for a given mate-
rial in lighting conditions similar to those of the mea-
surements. One case where these conditions are met is
presented in Sect. 3.2.

3.2

Steady uniform debris flow

To investigate the vertical structure of free-surface liquid-
granular flows, it is of particular interest to be able to
materialize steady uniform flow conditions. A recirculating
flume of novel design was developed for this purpose by
scientists of the Universita degli Studi di Trento, Italy
(Armanini et al. 2000). With reference to Fig. 11, the flume
is composed of two main components: a tilting glass-walled
channel, 6 m in length and narrowed to 20 cm in width,

in which free-surface flows are observed; a conveyer belt,
connected to the channel by chute guides, which recirculates
both water and sediment. During a run, except for minor
losses, the set-up forms a closed loop in which a determined
volume of water and granular material circulates. The global
flow in the channel is governed by the volumes of water
and sediment and by the channel angle, which can be varied
from 0 to 25 degrees. The apparatus is used to study steady
uniform flows of various degrees of maturity in rigid-bed
and loose-bed conditions (Armanini et al. 2000).

To test the Voronoi imaging methods, one of the runs
analysed by Capart et al. (2000) is examined here in detail.
It consists of a rapid high-concentration debris flow in
contact with the rigid flume bottom. The sediment mate-
rial is composed of roughly identical cylinder-shaped PVC
granules having the following characteristics: diame-
ter = 3.2 mm; height = 2.8 mm (hence an equivalent
spherical diameter d = 3.5 mm); relative density
plp,, = 1.540. The flow conditions were the following:
slope = 3 degrees; total discharge (water + sedi-
ment) = 12.4 1/s; delivered sediment concentration
(sampled at the outlet of the flume) ¢ = 0.49. The image
sequence was acquired by filming the flow through the
flume sidewall, using a CCD camera with an image
resolution of 320 x 280 pixels at a frame rate of 500 Hz.

Figure 12 presents typical particle tracking results
obtained using the Voronoi methods. One original image
of the sequence is shown in Fig. 12a. The flow is about
3 c¢m in depth and is heavily loaded with PVC particles.
Voronoi matching results for two subsequent frames are
shown in Fig. 12b. To improve the matching results, one
additional criterion was imposed for the screening of
match candidates, and consists in an elliptic window
constraining the allowable interframe displacements
(Fig. 13). With reference to Fig. 13, the following ellipse
parameters were adopted for the run under consideration:
Uy = 2 mm; vy = 0; w; = 3 mm; w, — 2 mm. The con-
straint is applied uniformly to the whole field, and exploits
information known a priori about the flow to reduce the
number of candidates with respect to the more general
Voronoi 1-star screening criterion. For the selection
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Fig. 11a, b. Recirculating flume developed

at the Universita degli Studi di Trento

= =

] (Armanini et al. 2000) for the experimental

study of steady uniform debris flows: a side

Fig. 12a-d. Analysis of steady uniform debris flow experiments:
a original image frame; b displacement field derived from two
successive frames (displacement vectors are shown true scale);
c displacement field after application of natural-neighbour spatial
filtering; d grain trajectories reconstructed from 20 successive
frames (with temporal filtering). Tick marks are placed on the
axes with a spacing of 1 cm

operation, the Voronoi algorithm is used without changes.
In Fig. 12b, some displacements are seen to be likely
mismatches. Fig. 12c shows the displacement field after
the application of the natural-neighbour spatial filtering
procedure of Sect. 2.4. The procedure is successful at
removing the most irregular displacement vectors, without
pruning too many correct ones. Finally, Fig. 12d shows
trajectories reconstructed from 20 successive frames, after
application of the temporal “split and merge” filtering of
Sect. 2.5.

view; b plane view (photograph courtesy of

L. Guarino)
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Fig. 13. Elliptical window used to refine the screening of the
match candidates. The ellipse constrains the acceptable inter-
frame displacements

Granular trajectories offer a vivid view of the flow
behaviour. The lowermost part of Fig. 12d exhibits irreg-
ular trajectories characteristic of saltating motions (Lee
and Hsu 1994) interrupted by collisions with the rough
bed and with other grains. Trajectories in the upper part,
on the other hand, present smaller fluctuations. These
features are characteristic of the rapid (collisional) gran-
ular flow regime (Campbell 1990). Such dense trajectories,
obtained by tracking all visible grains in an intensely
sheared fluctuating ensemble, have not been obtained
before from experiments. They demonstrate both the
challenging features of granular flows and the robustness
of the Voronoi methods.

The Voronoi methods function in a fully automated
way. It is thus possible to apply the steps demonstrated in
Fig. 12 to a full sequence of images. This is necessary if
one seeks to derive accurate statistics for vertical flow
profiles. From numerical simulations, Louge and Jenkins
(1997) found that a sample size of a minimum of 10,000
measurements was necessary for this purpose, which is far
beyond what can be achieved using manual or even semi-



automated procedures. For the flow under consideration, a
sequence of 500 frames was analysed, producing around
50,000 individual measurements for velocity and concen-
tration. The good performance of the Voronoi procedure
is reflected by the vector yields obtained in this case: on
average, 104 particles are identified on each frame, of
which 94 are matched to particles on the next frame, with
92 acceptable velocity vectors remaining after temporal
filtering. The percentage of successful matches is therefore
around 92/104 = 88%.

The resulting averaged vertical profiles, obtained by
subdividing the flow into 20 horizontal layers, are pre-
sented in Fig. 14. Profiles are shown for the mean longi-
tudinal velocity (u), for the mean concentration ¢ derived
from averages of the point density, roundness, and area
disorder indicators (1) (¢) and () and for the granular
temperature 0. The latter is defined in analogy with the
kinetic theory of gases and constitutes a measure of the
strength of the particle velocity fluctuations (Jenkins and
Hanes 1998). It is estimated here as

0= 07 V) 3 (W) + () (19)
where v/ = v—(v) is the fluctuation velocity vector, and
u = u—(u) and v/ = v—(v) are its components along di-
rections parallel and normal to the bed, respectively. The
brackets (-) denote an average performed over time and
over all particles located within each horizontal layer. The
estimated root-mean-square (rms) error of particle posi-
tion is of the order of 0.25 pixel, or 2% of the diameter of
the particles. At mid-depth of the flow illustrated in Fig. 14,
this leads to an expected rms error of ¢ = 0.05 m/s for the
individual velocity measurements. The relative errors
in individual measurements of velocity v and granular
temperature 0 can then be estimated as:
e 21:3%' ey = ¢ = 20%
T (w) ’ {v-v) '
Thus a small relative rms error is obtained for the
velocities, while a greater but still reasonable relative error
affects the granular temperatures. Errors in velocities
cancel out when the mean velocity profile (u) is estimated
from the large set of measurements. By contrast, errors in
the granular temperature 6 do not average out upon ag-
gregation of a large measurement sample. Thus even small
errors in particle position (only 2% of the particle diame-
ter) are enough to significantly perturb granular tempera-
ture measurements. Because error noise is added in, the
profile of Fig. 14c is likely to overestimate by about 20% the

(20)

actual strength of the velocity fluctuations. More infor-
mation about PTV errors is given in Veber et al. (1997).

In the collisional regime, the randomly fluctuating dis-
persion of grains is expected to be in a state similar to the
fluidized state of Sect. 3.1. Hence the concentration
indicators tested in the fluidization experiments should
respond correctly to changes in the volumetric concen-
tration. This is not the case for all granular shear flows. For
the slower and denser frictional flow regime, in particular,
the local arrangement of grains can be governed by a
flow-dependent microstructure, leading to a breakdown of
the pattern-based estimates. In such cases, it is probably
necessary to resort to other measurement principles
(stereo imaging, radiometric density meters, or other
techniques).

Since the PVC granules are cylinder-shaped and re-
spond differently to illumination, some of the calibration
parameters involved in the concentration relations had to
be obtained anew. A value for the random close-packing
concentration ¢,., = 0.69 was obtained by measuring the
concentration of a static, close-packed assembly of the
PVC grains. Values for parameters #;cp, Creps and ypcp Were
further recalibrated by comparing sidewall and outlet
measurements of the delivered concentration ¢, defined as
the ratio of depth-integrated granular discharge over the
total depth-integrated discharge. Calibration was perfor-
med by requiring that the sidewall integrated ¢ be equal to
the bulk ¢ sampled by trapping outgoing volumes of water
and grains at the flume outlet, i.e.,

0 h
_ f;:,Jr ¢{u)dy __ volume of grains
S (uydy

in which yj, is the elevation of the rigid bed and 4 is the
flow depth. The values obtained by this procedure are
Mrep = 0.60/d% &rcp = 0.835 and yycp = 0.915. All other
parameters in (18) are left unchanged. With these recali-
brated values, the three concentration profiles in Fig. 16b
are seen to be in approximate agreement with each other.
Recalibrated values of ¢, and j,, are rather close to the
values derived from the fluidization tests, whereas 7,
changes drastically. Thus the pattern-based indicators
(roundness and area disorder) appear to present a rea-
sonable degree of stability with respect to particle shape
and illumination. In contrast, the point-density estimator
n is found to be highly shape- and/or illumination-
dependent. Its use is therefore not recommended unless
one can perform well-controlled calibration tests in the
same conditions as the experiments of interest.
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Fig. 14a-c. Averaged vertical profiles for the steady
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The profiles of Fig. 14 further highlight the character-
istics of collisional flow. They are similar to profiles
obtained for rigid bed conditions in computational
simulations for dry, two-dimensional dispersions of disks
(see the illustrative example in Campbell 1990), even
though we are dealing here with a three-dimensional
dispersion of particles embedded in water. Thus the
description of Campbell (1990) applies here with few
changes: the mean velocity presents its steepest gradient at
the bottom; concentration is low near the bottom, reaches
a maximum towards the centre, and tails off again near the
free surface; the granular temperature is large near the
bottom (where a large temperature generation results from
the steep velocity gradient) and decreases towards the free
surface. The quantitative information gathered from these
profiles complements the qualitative picture provided by
the trajectories of Fig. 12d: a dense upper layer of grains
flows rapidly over a relatively dilute layer of highly fluc-
tuating grains close to the bottom, which supports the
submerged weight of the upper layer through collisional
contacts. For more details concerning the physical analysis
of such measurements, the reader is referred to Guarino
(1998), Armanini et al. (2000), and Capart et al. (2000).

3.3

Dam-break-induced debris waves

Transient liquid-granular flows constitute a challenging
application for experimental techniques. Such flows are of
importance in geophysical fluid mechanics, for instance, in
mountain catchments where debris flows usually take the
form of highly unsteady debris surges (Takahashi 1991).
Dam-break waves constitute one of the possible triggering
mechanisms for debris flows (Costa and Schuster 1988;
Capart et al. 2001), and are relatively simple to set up in
idealized laboratory conditions (Capart and Young 1998).
It is this problem which first motivated the development of
the present Voronoi imaging methods.

The flow configuration considered is shown in Fig. 15.
In this small-scale laboratory set-up, clear water is retained
behind a sluice gate (representing an idealized “dam”) in a
10 cm wide rectangular channel. A sudden channel en-
largement occurs 20 cm downstream of the gate, where the
flume width goes abruptly from 10 cm to 20 cm. A hori-

Fig. 15. Dam-break wave over granular bed experimental set-up
installed at the Hydrotech Research Institute of the National
Taiwan University. Shown are the initial conditions before
removal of the sluice gate

zontal layer of loose granular material, 5 cm in depth, fills
the channel bottom both upstream and downstream. Up-
stream of the gate, the water stage rises to a depth of 10 cm
above the horizontal granular bed, whereas the down-
stream water stage coincides with the bed surface. The
granular phase is thus saturated with water throughout the
domain. The granular material is composed, as in Sect. 3.1,
of artificial pearls having a diameter d = 6.1 mm and a
relative density p/p,, = 1.048. A dam-break flow analogue
is obtained by impulsively raising the sluice gate (within
50 ms), releasing a water wave that entrains granular
material from the loose bed. The flow is filmed from the
side and from above using a CCD camera operating at a
resolution of 256 X 256 pixels and frequencies of 100 Hz
(side view) and 125 Hz (top view). Lighting is provided by
two 500 W projectors oriented at angles of 45° with respect
to the camera axis. More details about the experimental
procedure are provided in Capart and Young (1998).

We first focus on the initial stages of the flow, before the
wave reaches the channel enlargement, which correspond
to the prismatic channel conditions treated in Capart and
Young (1998). For these initial stages, the flow is essen-
tially two-dimensional (it is uniform across the width),
and can be entirely characterized by sidewall observations.
In Capart and Young (1998), granular velocity fields for
this flow were presented at selected times, and were ob-
tained through a painstaking manually supervised proce-
dure. The Voronoi methods now allow the tracking to be
performed automatically, with the same accuracy and
much less effort. In particular, tracking can be performed
over many more images in order to reconstitute the long
time trajectories of the grains. This is shown in Fig. 16.
Figure 16a presents an original image frame taken at a
time of 0.17 s after the dam-break. Figure 16b shows the
corresponding displacement field derived from the last two
images, whereas Fig. 16c presents the same data after
natural-neighbour spatial filtering. The results of Fig. 16¢
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Fig. 16a-d. Side-view analysis for the dam-break experiments:
a original image frame at time t = 0.17 s; b displacement field
derived from two successive frames (displacement vectors are
shown true scale); ¢ displacement field after application of nat-
ural-neighbour spatial filtering; d grain trajectories reconstructed
from 18 successive frames (with temporal filtering)



compare quite favourably with the manually obtained
fields of Capart and Young (1998). Finally, Fig. 16d is a
plot of the granular trajectories over the first 18 frames of
the sequence following the dam-break. The flow field is
characterized by rapid deformation and complex trajec-
tories are obtained. Downstream particles surge upwards
with the wave, and are replaced by other particles flowing
in from upstream (hence their trajectories cross in the
course of the transient flow). This new plot would have
been very difficult to obtain without robust, fully
automated procedures.

Beyond the enlargement, the two-dimensional debris
wave expands into a three dimensional surge overrunning
the granular bed. The wave can then be followed by filming
from above, and tracking the visible grains of the flow free
surface. This is shown in Fig. 17, where reconstructed
granular trajectories are plotted for selected instants. The
surge head is characterized by a sharp wavefront, or
“erosional bore”, which radiates from the enlargement and
impulsively sets in motion a layer of bed material. The
wavefront evolves from the debris snout shown in cross-
section on Fig. 16. Seen from above, it creates a zone of
sharp velocity gradients that the Voronoi methods are seen
to handle rather well. For physical descriptions and
numerical simulations of such debris surges, the reader
is referred to Capart and Young (1998) and Capart et al.
(2001).

4
Conclusions

In the present work, the properties of the Voronoi diagram
have been exploited to derive a family of methods for the
imaging analysis of particulate flows. The methods include
a novel matching algorithm for particle tracking velo-
cimetry and a set of indicators for the three-dimensional
granular concentration. They also comprise procedures for
spatial and temporal filtering, based respectively on
pattern and path coherence. The techniques have been
successfully tested on various liquid-granular flow

(b)

Fig. 17a-d. Top-view analysis for the dam-break experiments:
a original image frame at time ¢ = 0.35; b granular trajectories
tracked until t = 0.19 s; ¢ t = 0.27 s; d t = 0.35 s. Dimensions are
given by the flume width, equal to 10 cm before the enlargement,
and 20 cm beyond

applications. Specifically, the Voronoi methods were used
to derive granular velocities, concentrations, temperatures,
and trajectories. They were able to capture rapidly
sheared, densely packed dispersions of fluctuating grains
in a fully automated way. This makes it possible to obtain
long time trajectories and statistically significant mea-
surement samples from experiments, which could other-
wise only be obtained from computational simulations.
While the methods are presently limited to rather idealized
situations with well-sorted artificial grains, work is pres-
ently in progress to extend them to more complex granular
materials. To obtain three-dimensional measurements,
stereoscopic extensions are also contemplated.

Appendix 1: Particle-positioning algorithm
For the application of Voronoi imaging techniques to
dense granular flows, it is desirable to obtain particle po-
sitions (and above all, displacements) accurate to a small
fraction of the grain diameter. Starting with images for
which a particle diameter typically spans between 5 and
20 pixels, the following algorithm has been found to yield
good results, producing an estimated root-mean-square
error of the order of 0.25 pixel.

The images considered feature white, nearly spherical
particles, which contrast well against the darker sur-
rounding fluid. With reference to Fig. 18, the first step of
the positioning algorithm is to convolute the images with a
Mexican hat filter. Let g(x,y) denote an image in the form
of a grey-level map, and G = g;; the corresponding grey-
level matrix of size n, X n,. A smoothing operator is first
applied in the form of a binomial filter of order m = 2r
(Jahne 1995):

/ m m 4T
G = B (B/"6)']

X

(22)

where B (resp. B}(,m)) is a band diagonal matrix of size
n. X ny (resp. n, x n,) and bandwidth m+1 = 2r+1,
having non-zero terms

1 m!
bijv=————"—""—(k=-1,...
= o ol T )
The size m of the binomial filter is chosen as the even
integer closest to 1/3 d*, where d is the pixel diameter of

the particles. The following Laplace operator (Jdhne 1995)
is then applied:

(23)

(24)

T
1" _ o | pQ2)(p2)aNT
G'=G [By (B G)}

(a)

Fig. 18a-d. Particle-positioning algorithm: a close-up of an
original image frame; b after binomial smoothing operator; c after
Laplace operator; d obtained particle positions
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where B ) and B are defined as in (22). The specific
form of Laplac1an (24) is chosen to reduce the anisotropy
induced by the orientation of the pixel array (Jdhne 1995).
The conjunction of the two operators is equivalent to a
convolution of the original image with a Mexican hat fil-
ter. It has the net effect of highlighting grain centroids,
characterized by a radially symmetric pattern of bright-
ness at the centre and darkness one radius away. The
discrete positions of particle centroids are then obtained
as local maxima g (k) (k) ©f the filtered image G”. Finally,
the positions are interpolated to subpixel accuracy
according to

( i(k ~ 8tk )+1,j(k)>

Xk = Xi(k) + Ax
8ilk)-1jk) ~ 2g Wit + 8ilk+1j(k)
. %(gﬁ’ - —g£’ ) A
Yk = Yi(k) \y
T 8l - 28 0T gl
(25a,b)

obtained by fitting parabolas to the grey levels along the x-
and y-directions.

Appendix 2: Visibility of individual particles

in a random dispersion

In the dilute case, reasoning in terms of Poisson disper-
sions can be used to derive a relationship between volu-
metric concentration ¢ and the feature-point density 5
observed on two-dimensional images. With reference to
Fig. 19, consider a set of spherical particles of diameter d,
randomly dispersed inside a sheet of thickness Az. If the
dispersion is dilute, one can consider in first approxima-
tion that the particle positions are uncorrelated and gov-
erned by a homogeneous Poisson process of intensity

n = ¢/(nd’/6). Assumlng that a particle is seen if its centre
is not hidden from view by another particle, the proba-
bility that a particle is visible depends on its distance z
from the side wall and is given by

d*z

prob [no particle inside cylinder of volume r

— ool —n nd*z

(26)

Fig. 19. Relation between the volumetric concentration ¢ and the
projected two-dimensional feature-point density #. A particle is
visible if no other particle centre is present in the cross-hatched
cylinder

Since the distance to the wall z of a particle picked at
random is uniformly distributed over interval [0, Az], one
obtains by integration the result (12), i.e.,

4 3 pAz
= E [1‘ P<_ET>]

where 7 is the expected density of feature-points (i.e., the
number of feature-points per unit image surface) observed
through the side wall. The reasoning above is rather
idealized (illumination is taken for granted and the
simplest possible projection onto the image plane is
assumed). The important point is that, in any hypothesis,
the sensitivity of n with ¢ rapidly decays with a growth in
the ratio ¢Az/d. In particular, a direct proportional rela-
tion between 7 and ¢ is only obtained in the very dilute
state, far from the concentrations encountered in the
granular flow applications of the present work.

(27)
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