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The accuracy of remapping irreqularly spaced velocity data onto a reqular

grid and the computation of vorticity

R. K. Cohn, M. M. Koochesfahani

Abstract The velocity data obtained from molecular
tagging velocimetry (MTV) are typically located on an
irregularly spaced measurement grid. To take advantage of
many standard data processing techniques, the MTV data
need to be remapped onto a grid with a uniform spacing.
In this work, accuracy and noise issues related to the use
of a least-squares-fit to various low order polynomials for
the remapping of these data onto a uniformly spaced grid
and the subsequent computation of vorticity from these
data are examined. This information has relevance to PIV
data processing as well. It has been previously noted that
the best estimate of the velocity vector acquired through
the use of tracer techniques such as PIV, is at the midpoint
of the displacement vector. Thus, unless special care is
taken, PIV data are also initially obtained on an irregular
grid. The error in the remapped velocity and the calculated
vorticity field is divided into a mean bias error and a
random error. In the majority of cases, the mean bias error
is a more significant source of error than the more often
quoted random error. Results of the simulation show that
the best choice for remapping is the use of a least-squares
fit to a 2nd order polynomial and the best choice for
vorticity calculation is to use a 4th order accurate, central,
finite difference applied to uniformly sampled data. The
actual value of the error depends upon the data density
and the radius used for the selection of velocity mea-
surements to be included in the remapping process. In-
creasing the data density and reducing the fit radius
improve the accuracy.

1

Introduction

In recent years, many researchers have made use of full-
field, two-component optical velocity measurement tech-
niques, such as particle image velocimetry (PIV), to derive
flow quantities such as the out-of-plane vorticity from
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velocity data. The velocity field acquired from PIV is
normally thought to be gathered on a uniformly spaced
grid that allows for a variety of standard post-processing
methods to be utilized. The development of molecular
tagging velocimetry (MTV) has placed an additional
complication on the calculation of flow variables in that
the data are not normally collected on a uniformly spaced
grid. This paper deals with the questions related to
remapping MTV data onto a regularly spaced grid and the
methods used to compute the out-of-plane vorticity
component from these remapped data sets.

Molecular tagging velocimetry is a full-field optical
diagnostic which allows for the non-intrusive measure-
ment of a fluid velocity field. This technique takes
advantage of molecules that have long-lived excited states
when tagged by a photon source. This technique can be
thought of as the molecular equivalent of PIV. Rather than
tracking particles placed in the flowing medium, the
luminescence of regions of the flow containing the tracer
molecules is tracked. A more complete description of the
implementation of the molecular tagging technique, its
applications, and the parameters necessary for an optimal
experiment can be found in Gendrich and Koochesfahani
(1996), Gendrich et al. (1997), and Koochesfahani (1999).
The accuracy of velocity measurements made using MTV
is comparable to the digital version of PIV (DPIV).

In the implementation of MTV, a series of laser-lines is
used to generate a two-dimensional spatial distribution in
the intensity field within the flowing medium. Velocity
vectors are calculated at the intersection of these
laser-lines. Generally, the measurement locations are not
uniformly spaced. Thus, it is necessary to place the
velocity data onto a regular grid before flow variables, such
as vorticity, can be computed via standard finite difference
techniques. It should be noted that even though it is
possible to generate a series of regularly spaced laser-lines
in the flow, it is still necessary to remap the data. Both an
unpublished study conducted at Michigan State University
and Spedding and Rignot (1993) have reported that the
best estimate of the location of the velocity vector deter-
mined by a measurement technique which tracks a tracer
in a flow is located at the midpoint of the displacement
vector. Thus, unless special care is taken in the selection of
the measurement windows, data collected from PIV mea-
surements is also not on an uniformly spaced grid.

Few studies have examined the effect of remapping
randomly spaced velocity data onto a regular grid. Agui
and Jimenez (1987) reported that low order polynomial fits
and “kriging” techniques produced the most accurate
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representation of the actual velocity field. However, the
advantage was small with respect to other methods and no
quantitative information on the performance of the poly-
nomial and kriging methods was given. Spedding and
Rignot (1993) compared an inverse distance approach with
the use of a “global basis function” and found that the
global basis function produced generally more accurate
results; however, the results were highly dependent upon
the measurement density.

Several authors have examined the accuracy of various
means to compute vorticity from velocity data already on a
regular grid. Spedding and Rignot (1993) used a 2nd order
accurate finite difference technique for the inverse dis-
tance method and directly differentiated the global basis
function to compute vorticity. It was found that direct
differentiation of the global basis function produced gen-
erally superior results. However, as with the velocity
results, the accuracy was highly dependent upon the ratio
of a characteristic length scale of the flow, L, to the mean
spacing between measurements, J. Abrahamson and
Lonnes (1995) found that calculating vorticity by com-
puting the local circulation around a point resulted in
slightly more accurate vorticity results than differentiating
a least-squares fit to a model velocity field. Luff et al.
(1999) compared the 2nd and 4th order accurate finite
difference methods and an eight-point circulation method
in the calculation of vorticity in the presence of both noise
and missing data points. In terms of only the computed
vorticity rms, the 2nd order accurate finite difference
technique produced the best results.

One shortcoming of the above mentioned studies is that
only the random component of the error field is examined.
Fouras and Soria (1998) found that the error in the vorticity
field could be better represented if it is divided into two
portions: a mean bias error due to spatial filtering, and a
random error resulting from the propagation of error in the
velocity measurements into the vorticity calculation. In
some cases, the mean bias error can be significantly larger
than the random error. This study recommends differenti-
ating a 2nd order polynomial least-squares fit to the velocity
data for the calculation of vorticity based on the 21 closest
points. However, at low data densities, this produces larger
bias errors than the use of a finite difference method. The
results based on differentiating the fit were sensitive to the
number of points used in the fit. This work is based entirely
on regularly sampled velocity data; issues connected to
remapping an irregular data set were not considered.

The aforementioned investigations suggest different
optimum methods for vorticity computation depending
upon the criterion used to assess the error. In our work, we
directly compare several of the different vorticity calcula-
tion methods that were determined in the previous studies
to produce the best results. In addition, the effect of the
remapping of the velocity field on the estimation of the
vorticity is also considered.

2

Comparison method

The present study makes use of a simulation of an Oseen
vortex in order to study the effect of remapping an
irregularly sampled velocity field onto a regular grid and

the calculation of the out-of-plane vorticity component.
This flowfield has also been used in the works of Spedding
and Rignot (1993), Fouras and Soria (1998), and Luff et al.
(1999). The azimuthal velocity, uy, and out-of-plane
vorticity, w of this flow field are described by:

2
wmaxrcore
Uy = 727 (1

0 = eI

— _<r2/r§ore))
€

An example of the velocity and vorticity field generated
can be seen in Fig. 1. Note that even though the mean data
density is the same in both the irregularly sampled velocity
field (Fig. 1a) and the remapped velocity field (Fig. 1b), it
is visually easier to discern the vortical structure in the
regular velocity measurement.

In order to simulate the irregular sampling found in the
original velocity field measurements, the simulation data
are irregularly spaced. The irregular spacing is generated
by sub-dividing the measurement field into  x J-sized
regions, where ¢ is the mean spacing between velocity
measurement points. A random number generator is then
used to determine a location for the simulated velocity
within each J X J-sized region. Equation (1) is then used
to establish the velocity at this location. In this manner,
the mean spacing between measurement points remains
equal to J; however the actual location of the measurement
varies.

The random error inherent in MTV and PIV measure-
ments is simulated by the addition of noise to the velocity
field. The method used is similar to that in Luff et al.
(1999). A random number generator is used to add a
random percentage of noise, with a maximum value of n%
to each component of the Cartesian components, i.e., u
and v, of the velocity field. Using this formulation, the
velocity at each point in the simulation has a value of:

(2a)
(2b)

u= uact(l + nrandom)

V= Vact(l + nrandom)

where #,,ndom 18 @ random number with a value

—1 < Hrandom < +1. The quantities u,. and v, represent
the actual Cartesian velocities determined from u, in

Eq. (1). Although error values ranging from

0% < n < 10% were examined in the simulations, only 0%
and 6% values are presented as they are representative of
the other noise values.

The velocity data in the present study are remapped
onto a regular grid by means of a local least-squares fit to a
two-dimensional 2nd, 3rd, or 4th order polynomial. The u
and v velocity fields are fit separately. Only the velocity
measurements located within the fit radius, R, from the
regular grid point are used in the fitting procedure. In this
study, this radius is normalized by the mean spacing
between velocity measurements, J. For all cases, the
number of points used in the fit is such that the least-
squares fit is over-determined. That is, the number of
points used in the fitting process exceeds the minimum
number necessary for a successful fit, as determined by the
number of coefficients in the polynomial. For the 2nd, 3rd,
and 4th order polynomials, this minimum number of
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Fig. la-c. Sample normalized velocity
and vorticity fields of a Gaussian core
vortex. a Original velocity vector field on
an irregular grid; b velocity vector field
placed upon a uniformly spaced grid; ¢

3
(b)

points are 6, 10, and 15, respectively. Note, therefore, that
the minimum value of R that can be used for the 2nd order
fit is smaller than that for the 4th order fit.

After the fits for the two velocity components are gen-
erated, each of the local fits is evaluated at the coordinate
of the regular grid point in order to determine the velocity
at that location. Clearly choosing a value of R that is too
large will result in a considerable amount of spatial fil-
tering of the data, while a small value of R will limit the
ability of the fit to reduce the random noise present in the
original data. Note that the order of the polynomial places
a limit on the minimum size of R that can be used, as
described earlier. For all of the studies conducted, the
density of the remapped, uniformly spaced grid remains
the same as the initial irregularly spaced measurement
grid.

Four methods are used to estimate the out-of-plane
vorticity,
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The first two methods estimate the two derivatives in the
definition of vorticity by means of a 2nd or 4th order
accurate central finite difference technique (also referred
to as 1st and 2nd order finite difference, respectively, in
several other works). The third method performs a direct
differentiation of the polynomial least-squares fit used in
the remapping of the velocity field. This method has the
advantage that it can be used to estimate the vorticity at
any point within measurement region. The final vorticity

flooded contour plot of normalized cal-
culated vorticity field. Contour lines are
placed at 0.125, 0.25, ...,1

calculation method computes the circulation of the 8
points in the rectangular region extending one regular grid
point in each direction around the point to be examined.
The calculated circulation value is then divided by the area
in order to determine the vorticity. This method has been
shown in Raffel et al. (1998) to be identical to a filtered
version of the 2nd order accurate central finite difference
technique. Figure 2 illustrates the data points used for the
calculation of the vorticity in these various methods.
This study examines the effect of varying the normal-
ized mean data density, L/ and the normalized fit radius,
R/6 on the accuracy of the remapped velocity field and the
calculated vorticity field. The characteristic flow scale, L,
used in this study is the vortex core radius, 7., defined as
the distance from the peak vorticity to the location where
the vorticity has dropped by a factor of e”'. Simulations
are conducted for values of L/J ranging from 2 to 10 and
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Fig. 2a-c. Velocity measurement locations used in the estimation
of the spatial derivatives. a 2nd order accurate finite difference b
4th order accurate finite difference ¢ 8-pt circulation method
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for R/J ranging from 2 to 6. Note that in order for the fit to
be over-determined, not all of these values can be used for
all polynomial orders of the least-squares fit.

As in the results of Fouras and Soria (1998), the
accuracy of both the velocity and vorticity calculations
methods are assessed in terms of the mean bias error
caused by spatial filtering and the random error. Both the
propagation of the error in the original measurements to
the remapped field and the placement of the randomly
spaced points onto the regular grid generate the random
error. For each parameter condition investigated, 5000
independent simulations are conducted. This number of
samples was found to be sufficient for the convergence of
the mean statistical quantities, such as the mean bias error
in this simulation, and results in only a small difference in
the random error in a small number of cases. These cases
are generally ones with larger errors that would not be
recommended for use. The mean bias error will be denoted
by the subscript “bias” and refers to difference between
the mean value of these 5000 velocity (or computed vor-
ticity) measurements and the exact value at each point in
the flowfield determined from Eq. (1). The random error is
quantified by the rms of the velocity (or computed vor-
ticity) data in the sample set. For example, for the
x-component of velocity, these are defined as:

1/2

* 1 g —\2
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In these expressions, u; is the velocity at a particular point
of an individual realization in the simulation. All of the
velocity and vorticity error values reported here are nor-
malized by their respective maximum values determined
from Eq. (1). The normalized values are shown without
the asterisk.
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Remapping results

Figure 3a displays the mean velocity bias error for the 2nd,
3rd, and 4th order polynomial fits. The results presented in
this figure are for the case of 0% added noise because the
addition of noise has no effect on the bias error, as it is a
mean quantity. For all three fits, the mean velocity data
density is kept fixed at L/6 = 3.0. That is, there are nom-
inally seven velocity vectors along the vortex core diame-
ter. For the 2nd and 3rd order polynomial fits, three
different values of R/0 are examined. However, only the
two larger values are used for the 4th order polynomial fit
to ensure there are enough data points available for the fit.
In terms of the mean bias error, reducing this radius re-
sults in a significant decrease in the bias error. For the 2nd
and 3rd order polynomial fits, reducing from R/6 = 4 to R/
0 = 2 results in a decrease of the peak mean bias error
from 8% to less than 1%. This effect is present, although
less dramatic, in the results for the 4th order polynomial
fit. Note that the values specified are the maximum bias
error. The bias errors at other locations is significantly
smaller.

In terms of the mean bias error, the most accurate
results are obtained using the least-squares fit to a 4th
order polynomial. However, the difference in the bias error
between the 4th order fit using R/é = 3, and the 2nd order
fit with R/ = 2 is approximately 0.6%. It is interesting to
note that the results for the 2nd and 3rd order polynomial
fits are nearly identical. For all three fit orders, the peak
bias error occurs at approximately 0.67.or.. In the region
t/Tcore > 1.5, the velocity values tend to be overestimated,
rather than underestimated. Since the area of the region
tlTcore > 1.5 is significantly larger than the region where
the velocity values are underestimated, the net average of
the bias error becomes very small. Thus, one should be
cautious about the use of an accuracy measure that is
averaged over the entire vortical structure as this does not
represent the actual error seen at any individual
measurement location.

Figures 3b and c¢ show the random error found in the
remapped velocity field for cases of 0% and 6% added
noise respectively. From Figs. 3b and c it can be seen that,
generally, the value of the rms error is less than 2% at all
locations. This value can only be reduced by a maximum
of 1.5% by the optimal choice of fit order and R/d, whereas
a reduction of 8% is seen in the bias error. It is also
interesting to note that for the case of 0% added noise,
reducing R/¢ results in a decrease in the random error.
However, for the case of 6% added noise, reducing R/d
results in an increase in the random error.

Unless otherwise stated, the remainder of the results
presented in this paper will use the 2nd order polynomial
for the remapping process. This choice is made because of
this condition has a very small bias error, nearly identical
to the other fit orders, and it is not as computationally
intensive as the 3rd and 4th order polynomials. Figure 4
shows the effect of grid density on the accuracy of the
remapping of the 2nd order polynomial fit for R/ = 2. As
shown in Fig. 4a, increasing the grid density can reduce
the bias error in the remapping. For L/é = 2, the bias error
is nearly 3% of the maximum velocity. Increasing L/ to 3
results in a bias error of less than 1%. It should be noted
that these values are only valid for R/6 = 2. In order to
achieve a bias error of less than 1% for a larger value of
R/o, such as R/6 = 4, L/6 must be greater than 6.

Figures 4b and c¢ show the effect of increasing the grid
density on the random error. For the 0% added error
cases, increasing the grid density also results in a notice-
able decrease in the random error. The addition of noise,
shown in Fig. 4c, generally increases the random error.
The 6% noise added to the data tends to dominate the
random error results and leads to the random error pro-
files being nearly identical for the values of L/ examined
in this study.

4
Vorticity calculation results

In this section, the error generated by the four methods for
calculating the out-of-plane vorticity field will be
examined. First, we will discuss the results from directly
differentiating the various polynomial orders used in the
remapping procedure in order to determine the vorticity
value. Then, the results from this method will be compared
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with those from the finite difference and circulation
methods applied to the remapped data using the 2nd order
polynomial.

Figure 5a shows the mean bias error for differentiating
the 2nd, 3rd, and 4th order polynomials for several values
of R/d. Similar to the velocity bias error results, decreasing
R/0 decreases the bias error. The smallest values for the
mean bias error are found using the smallest values of R/
and the 3rd and 4th order polynomials. These selections
result in a bias error of less than 4%. It is interesting to note
that although the error in the remapping of the velocity
field through the use of the 2nd and 3rd order polynomials
are nearly identical, the vorticity estimates by differenti-
ating these polynomials differ. Further, the vorticity esti-
mates that result from differentiating the 3rd and 4th order
polynomials (for the same value of R/J) are very similar.

Figures 5b and c show the effect of the order of the
polynomial fit on the random component of the error. For
the case in which no noise is added to the velocity data, the
random error is less than 1.5%. The addition of 6% ran-
dom noise results in only a small increase in the random
error for the majority of cases. The 3rd order fit and

Fig. 3a-c. Accuracy of remapped velocity field for three different
values of R/6. a Mean bias error; b random error with 0% noise
added to initial velocity field; ¢ random error with 6% noise
added to initial velocity field

R/6 = 2, are atypical in that a considerably larger increase,
including a spike in the data, is seen in the random error.
It is believed that the larger error is generated because the
number of points utilized for the fit is only slightly larger
than the minimum number of points required. With the
exception of that case, there is generally little difference in
the random error among the various polynomial fits. In
the remainder of this paper, only the vorticity estimated
from differentiating the 4th order fit with R/0 = 3 will be
compared with those calculated using the finite difference
and circulation methods. The results generated by direct
differentiation of the 3rd order fit were not selected for
further comparison because for R/0 = 2, where the bias
error is noticeably less than that of the 4th order differ-
entiation, the random error is significantly larger when
noise is present in the original data. Furthermore, the 4th
order fit results in significantly better velocity remapping
results compared to the 3rd order fit. Thus, the 4th order
fit seems the more suitable selection for performing the
remapping and vorticity calculation.

Figure 6a compares my;,s found by the four different
methods considered here. Once again, the effect of adding
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noise to the initial velocity field on the bias error is neg-
ligible, therefore, only the case of 0% added noise is
shown. The qualitative features of the four methods are
very similar. The maximum y;,s 0ccurs at r/7core = 0
which is the location of the peak vorticity. For #/7coe > 1.5,
there is a small overshoot where the vorticity value is
overestimated. Note that although the numerical amount
of the overshoot is small relative to that of the undershoot,
the area occupied by the region of overshoot is roughly
three times larger than the region of undershoot. Thus, the
overall area-averaged vorticity bias error is very small. As
a result, the estimate of the overall circulation of the vortex
computed by integrating the vorticity field from any of
these methods is accurate to better than 0.1% even though
the peak bias error can be as large as 20%.

In terms of the mean bias error, it is apparent that
differentiating the 4th order polynomial fit, and the use
of the 4th order accurate finite difference technique
produce the most accurate vorticity field information. For
comparison purposes, the results from R/d = 4 are also
shown. As expected, reducing the value of R tends to
improve the accuracy of the vorticity calculation as well
as decreasing the difference between the accuracy of the
two techniques. The circulation method and the 2nd
order accurate finite difference method produce results

—a— L/5=2.0
——— L/8=3.0
—e—— L/5=4.0
—e— L/5=5.0
— — — L/i3=6.0
————— L/3=7.0
——x— L/6=8.0
— — — L/5=9.0
—-e—e— L/3=10.0

Fig. 4a-c. Accuracy of remapped velocity field for different
original velocity data densities for the 2nd order polynomial fit. a
Mean bias error; b random error with 0% noise added to initial
velocity field; ¢ random error with 6% noise added to initial
velocity field

with a significantly larger bias error than the other two
methods.

Figures 6b and ¢ show the random error for the
vorticity calculation methods for the cases of 0% and 6%
added noise respectively. Generally, differentiating the 4th
order polynomial produces the smallest random error
while the 4th order accurate finite difference method
produces the largest. As with the velocity field, the
improvement which can be realized through the use of
the optimal method to minimize the random error is
much smaller than that which can be realized by
minimizing the bias error. However, the difference in the
random error between these two techniques is
approximately 1%.

As expected, increasing the density of the original data
also dramatically reduces the mean bias error as seen in
Fig. 7a. This figure only shows results for the 4th order
accurate finite difference technique and R/0 = 2, however,
the qualitative features of all of the methods are identical.
Increasing the mean data density, L/, from 2 to 4 results
in a decrease of the mean bias error from approximately
7% to less than 1%. Further increases result in only a small
decrease in the bias error. As in the results presented for
the remapping uncertainty, increasing the density of the
data also results in a decrease of the random error for the
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case where no noise is added to the original data shown in
Fig. 7b. However, when noise is added to the original
velocity field, as shown in Fig. 7¢, the random error in
vorticity is found to increase with the increase in the grid
density. For L/é = 10, the random error is nearly 6% of the
peak vorticity value, which is only slightly smaller than the
peak bias error introduced in the L/6 = 2 case. For mod-
erate values of L/, such as L/ = 3, the peak random error
is about 2% of Wy ay.

It should be noted that applying the uncertainty anal-
ysis to the finite difference calculation for vorticity shows
that the error in the vorticity is connected to the error in
the velocity in the form ;s ~ tyms/d. Therefore, as the
grid density increases, the vorticity error is expected to
increase as well; a trend that is not seen in Fig. 7b. The
reason is that the source of the noise itself, i.e., ., is not
fixed and varies depending on the grid density during the
remapping process (e.g., see Fig. 4b). The combined effect
is illustrated in Fig. 7b. However, for the case where noise
has been added to the initial data (Fig. 7c), @.ms shows the
expected increase. In this case, u,s (see Fig. 4c) remains
nearly constant as grid density varies.

Fig. 5a-c. Accuracy of out-of-plane vorticity field computed by
differentiating the local polynomial fit for different values of R/J.
a Mean bias error; b random error with 0% noise added to initial
velocity field; ¢ random error with 6% noise added to initial
velocity field

5

Conclusions

The effect of remapping irregularly spaced velocity mea-
surements onto a uniformly spaced grid and the accuracy
of the out-of-plane vorticity computed from this infor-
mation are studied through the use of a Gaussian core
vortex simulation. The effect of varying the normalized
grid density L/J (ratio of the flow characteristic length to
the mean spacing in the initial velocity measurement) and
the normalized maximum radius from which points are
used in the remapping process, R/, are examined. The
error resulting from the remapping and the calculation of
the out-of-plane vorticity is divided into a mean bias error
due to spatial filtering and a random error due to the
remapping process itself and the propagation of the error
in the original velocity data.

It is found that in general the errors resulting from the
bias error are significantly larger than the random error. In
terms of the mean velocity bias error, it is necessary for the
grid density to be suitably high and for the fit to be local,
i.e., small values of R/J, to generate an accurate remap-
ping. In this study, the least-squares fit to a 4th order
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polynomial produced the most accurate remapping; how-
ever, due to the large number of points needed for the fit to
be determined, it is not possible to use the same small
values of R/6 as can be used with the lower order poly-
nomials. The difference in the bias error between the 4th
order polynomial with R/6 = 3 and the 2nd order poly-
nomial with R/d = 2 is very small. Thus, it is felt that the
use of a 2nd order polynomial for the remapping is ap-
propriate. In order to obtain results with a maximum
mean velocity bias error of approximately 1% or less for
the 2nd order polynomial, the normalized data density L/
should be greater than or equal to 3, and R/J should be less
than or equal to 2. The difference in the random compo-
nent of the error between the various fit orders is relatively
small compared to the changes seen in the bias error. The
rms values only varied by approximately 2% of the peak
value when comparing different methods.

The most accurate results for the vorticity calculation
were obtained by differentiating the 4th order polynomial
fit and by use of the 4th order accurate finite difference
method on data remapped by a 2nd order polynomial fit.

Fig. 6a-c. Accuracy of out-of-plane vorticity field computed by
four different calculation methods for different values of R/J. a
Mean bias error; b random error with 0% noise added to initial
velocity field; ¢ random error with 6% noise added to initial
velocity field

Although the accuracy of these two techniques are com-
parable, the 2nd order polynomial fit combined with the
4th order accurate finite difference technique is better
suited for the calculation of vorticity values from the PIV
or MTV data since this method is less computationally
intensive. In the calculation of vorticity, the noise present
in the original data influences the selection of suitable
values for R/d and L/J. In the absence of noise in the initial
velocity data, L/6 should be made as large as possible for
lowest vorticity random and bias errors. However, if the
measured velocity field contains significant sources of
noise, a large value of L/J is not desirable as it results in a
considerable increase in the random error, offsetting any
potential decrease in the bias error. A choice of L/d =3
and R/J = 2 yields vorticity values with both a mean bias
and random error of less than 2% of the peak vorticity
value for both the noise-free and the noisy initial velocity
field results. It should be noted that the error values
quoted are the maximum error across the vortex core. The
error at most points is considerably less than the quoted
2%.
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It is noted that if the actual values of R/ and L/é are
known in an experiment, it is possible to use the results of
these simulations to extrapolate and estimate the actual
vorticity value from under-resolved data.
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