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Measurement of critical contact angle in a microgravity space experiment
P. Concus, R. Finn, M. Weislogel

Abstract Mathematical theory predicts that small changes in
container shape or in contact angle can give rise to large shifts
of liquid in a microgravity environment. This phenomenon
was investigated in the Interface Configuration Experiment on
board the NASA USML-2 Space Shuttle flight. The experi-
ment’s ‘‘double proboscis’’ containers were designed to strike
a balance between conflicting requirements of sizable volume
of liquid shift (for ease of observation) and abruptness of the
shift (for accurate determination of critical contact angle). The
experimental results support the classical concept of macro-
scopic contact angle and demonstrate the role of hysteresis in
impeding orientation toward equilibrium.

1
Introduction
When planning space-based operations, it is important to be
able to predict the equilibrium locations and configurations
that fluids will assume in containers under low-gravity
conditions. Currently available mathematical theory applies
completely, however, to only a few particular configurations,
such as a partially filled right circular cylindrical container
with liquid simply covering the base. Behavior in space for
such a configuration, although different from what is familiar

in common experience with a terrestrial environment, is
at least consistent with that experience. For more general
containers, however, fluids in reduced gravity can behave in
striking, unexpected ways.

The classical theory, according to the Young—Laplace—Gauss
(Y—L—G) formulation, characterizes fluid locations as equilib-
rium configurations for the surface-plus-gravitational mechan-
ical energy. Using this point of view in a mathematical study,
we have shown that for a cylindrical container of general
cross-section in zero gravity the surface change arising from
small changes in geometry or contact angle can be discontinu-
ous or ‘‘nearly discontinuous’’, leading to large shifts of the
liquid mass. Attempts to observe this behavior experimentally
can be valuable as tests of validity of the concept of macro-
scopic contact angle used in the classical theory, and thereby of
the theory’s effectiveness in predicting fluid behavior.

The principal mathematical result underlying the behavior is
that for particular cylindrical sections a discontinuous kind of
change can be realized as the contact angle c crosses a critical
value c

0
intrinsic to the container. (In this paper we shall

restrict subsequent discussion, without loss of generality, to be
in terms of a partially wetting liquid (0\c\n/2), which is the
case for the materials used in the space experiment.) When c is
larger than c

0
there exists an equilibrium configuration of

liquid that covers the base of the cylindrical container simply,
while for contact angles smaller than c

0
no such equilibrium

configuration is possible. In the latter case liquid moves to the
walls and can rise arbitrarily high along a part of the wall,
uncovering a portion of the base if the container is tall enough.
By simple physical observation of bulk behavior of the liquid,
one can thereby determine whether the contact angle is larger
than or smaller than the critical value for the container.
A practical challenge in this connection is to design cross-
sections for which a large enough portion of the liquid will rise
up the walls for ease of observation as the critical value of
contact angle is crossed, without the containers being unrealis-
tically tall, and so that the change will be abrupt enough to
allow accurate determination of critical contact angle value.

By using two or more containers corresponding to appro-
priately chosen values of c

0
, differing, say, by the accuracy

desired for contact angle evaluation, one can determine the
value of the critical contact angle to lie within a particular
interval. In some cases, geometries can be ‘‘combined’’ into
a single container for determining such an interval. For our
Interface Configuration Experiment (ICE) on the second
United States Microgravity Laboratory (USML-2) Space Shuttle
flight STS-73 these two approaches were conjoined.
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Fig. 2. Proboscis container section showing three members of the
continuum of extremal arcsFig. 1. Wedge container

The experiment was conducted in the Glovebox, a multi-user
facility developed by the European Space Agency/ESTEC,
Brunel Institute for Bioengineering (United Kingdom), and
Bradford Engineering (The Netherlands) for experiments
on Spacelab missions or in the Shuttle middeck. Originally
designed to handle biological experiments, the Glovebox has
been adapted to handle fluids, combustion, and materials
science experiments and has served well in providing a rapidly
accessible, inexpensive platform in which to conduct experi-
ments in space. ICE utilized the Glovebox primarily as
a staging area and a level of containment in the event of a fluid
spill.

Mathematical and computational results that form the basis
for ICE, as well as results of pre-flight drop tower experiments,
are described in Chen et al. (1997). Some of these results are
included here for convenience, primarily in Section 2 and the
figures therein. Further mathematical background and histori-
cal information are given by Finn (1986) and by Concus and
Finn (1974, 1990). Related work on discontinuous behavior in
a corner, using a more physical approach, is given by Langbein
(1990, 1995) and associated parabolic-flight low-gravity experi-
ments by Langbein et al. (1990). Results of drop tower
experiments for a rounded trapezoidal cylinder, a container
precursor to those for ICE (see Concus and Finn 1990), are
given by Smedley (1990). In addition to the containers reported
below, ICE included also a movable wedge container, the
results for which we plan to discuss in a separate study.

2
Mathematical and computational background

2.1
Canonical proboscis containers
The ‘‘double proboscis’’ containers used in the USML-2
experiment derive from the ‘‘canonical proboscis’’ containers
introduced by Fischer and Finn (1993). These, in turn, can
be thought of as generalizations of a basic wedge container
(Fig. 1), a cylindrical container whose section X consists of
a circular arc and a smoothly joined protruding corner of
interior angle 2a. For the wedge container the transition at the
critical contact angle c

0
\n/2[a is sharp. For c

0
Oc\n/2 and

for liquid volume sufficient to cover the base, the height of the
free surface S can be given in closed form as a portion of
a lower hemisphere meeting the walls with the prescribed

contact angle c. Thus for given volume of liquid the height is
bounded uniformly in c throughout this range. For 0Oc\c

0
,

the liquid will move to the corner and rise arbitrarily high at the
vertex P, uncovering the base regardless of liquid volume. The
behavior for the wedge domain is thus discontinuous at c\c

0
.

Physical procedures for determining critical contact angle in this
container can give very good accuracy for larger values of
c (close to n/2) but may be subject to experimental inaccuracy
when c is closer to zero, as the part of the section over which the
liquid accumulates when the critical angle c

0
is crossed then

becomes very small and may be difficult to observe.
The canonical proboscis containers provide a way of

overcoming the above experimental difficulty. These con-
tainers are cylinders whose cross-sections consist of a circular
arc attached symmetrically to a (symmetric) pair of curves
described by

x]C\JR2
0[y2]R0 sin c0 ln

JR2
0[y2 cos c0[y sin c0

R0]y cosc0]JR2
0[y2 sin c0

(1)

and meeting at a point P on the x-axis, see Fig. 2. Here R
0
, as

well as the particular points of attachment, may be chosen
arbitrarily. The continuum of circular arcs C

0
, of which three

are depicted by the dashed curves in Fig. 2, are horizontal
translates of one such arc, of radius R

0
and with center on the

x-axis, and the curves of Eq. (1) have the property that they
meet all the arcs C

0
in the constant angle c

0
. The radius o of the

circular boundary arc can be chosen in such a way that c
0

becomes the critical contact angle value for the container.
Specifically, one can show mathematically that a solution of the
Y—L—G equations governing the equilibrium liquid free-surface
can exist in X if and only if c[c

0
, and that the liquid height

rises unboundedly as c decreases to c
0
, precisely in the region

swept out by the arcs C
0

(the entire proboscis region to the right
of the leftmost arc C

0
shown in Fig. 2). Furthermore a unique

value of o can be obtained for any prescribed proboscis length,
and there holds R

0
cosc

0
\o\2R

0
. Thus, the behavior is not

strictly discontinuous as for the basic planar wedge container
— the liquid shifts increasingly toward the proboscis wall
a c decreases to c

0
— but it can be ‘‘nearly discontinuous’’.
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Fig. 3. Three superimposed double proboscis container sections. From
outermost to innermost, the pair of values of c

0
for the left and right

proboscides of each section are 203/263, 303/343, and 383/443

Numerical solutions depicting such behavior are given by
Concus et al. (1992) for some canonical proboscis containers.
For these containers the rise height in the proboscis can be
relatively modest until c decreases to values close to c

0
, and

then becomes very rapid as c decreases still further. Since the
proboscis can be made relatively as large a portion of the
section as desired, the shift can be easily observed for a broad
range of c

0
. Through proper choice of the domain parameters

for the cases considered, an effective balance can be obtained
between conflicting requirements of a sharp near discontinuity
(for accurate measurement) and a sizable volume of liquid rise
(for ease of observation).

2.2
Double proboscis containers
The double proboscis containers for ICE are similar to the
single proboscis one of Fig. 2, except that there is a second
proboscis diametrically opposite to the first, in effect combin-
ing two single proboscis containers into one. The values of c

0
in

Eq. (1) differ for the left and right proboscides, whose values of
c
0

we denote by c
L

and c
R

, respectively. Similarly, we denote the
values of R

0
for the left and right proboscides by R

L
and R

R
.

These satisfy R
R

cosc
R
\R

L
cosc

L
. The critical value for the

container is the larger of c
L

and c
R

. For the discussion here,
we shall take c

R
[c

L
, so that the critical contact angle c

0
for

a container is equal to c
R

.
The container cross-sections for the experiment, superim-

posed on one another, are shown in Fig. 3. They have been
scaled so that the circular portions all have radius unity. The
meeting points of the vertices with the x-axis are, respectively,
a distance 1.5 and 1.6 from the circle center. For the sections
depicted in Fig. 3 the values of c

L
and c

R
are respectively 20°

and 26° for the outermost section, 30° and 34° for the middle
section, and 38° and 44° for the intermost section.

For these containers the explicit behavior has not been
determined mathematically in the complete detail that it
has for the single proboscis containers. However, numerical
computations and the known behavior of the single proboscis
solution surfaces indicate a predicted behavior as follows: For
contact angles cPc

R
, as c decreases to c

R
the liquid will rise

higher in the right than in the left proboscis, with the rise

becoming unbounded in the right proboscis at c
R

. For contact
angles between c

L
and c

R
the liquid will rise arbitrarily high in

the right proboscis, but the height in the left will still be
bounded. For smaller contact angles the liquid will rise up both
proboscides arbitrarily high. By observing the liquid shift, one
can then bracket the contact angle relative to the values of c

L
and c

R
. For a practical situation in which the container is of

finite height with a lid on the top, the liquid will rise to the lid
along one or both of the proboscides in the manner described
above (provided the liquid volume is adequate); in some cases,
liquid may then travel along the corner at the lid and flow into
the other proboscis from the top.

The selected values of c
L

and c
R

for the three containers are
based on the value of approximately 32° measured in a terres-
trial environment for the contact angle between the ICE
experiment liquid and the acrylic plastic material of the
container. The spread of values of contact angle covered by the
three containers is intended to allow observation of possible
effects of contact angle hysteresis, which is not included in the
classical theory.

2.3
Computed surfaces
The mathematical equations governing the free surface were
solved numerically for the three double proboscis container
sections depicted in Fig. 3, for a range of contact angles c,
to obtain details of the anticipated liquid behavior. It was
adequate to compute solutions for the upper-half domains
only, because of the reflective symmetry. The adaptive-grid
finite-element software package PLTMG was used (Bank 1998).

The numerically calculated equilibrium solution surface for
the upper half of the 30°/34° domain is shown in Fig. 4 for four
values of contact angle, 60°, 50°, 40°, and 35°. (The critical
value for the domain is c

0
\34°.) The three-dimensional views

of the surface are shaded by PLTMG to indicate contour levels.
The viewpoint for each surface is the same. Generally, the
computations indicate that as c decreases toward the critical
contact angle, liquid moves toward and up the two proboscis
walls, with the local maximum heights, as calculated by the
program, at the proboscis tips. The heights at the right are
higher than the corresponding ones at the left. The sur-
faces for the 20°/26° and 36°/44° proboscis domains behave
similarly.

One sees that the numerically computed rise height in the
container is modest until c gets close to the critical value. The
computations indicate that using containers of sufficient
height (five for our containers), one could distinguish between
the critical value c

0
for the container (liquid in right proboscis

rises to the lid) and a contact angle value one degree greater
(liquid rise height less than five).

3
Experiment apparatus and results
All double proboscis vessels flown were similar in construc-
tion; the 38°/44° vessel is depicted in Fig. 5. The primary vessel
components are a two-piece acrylic-plastic (transparent) body,
an aluminum piston and control dial, a stainless steel drive
screw, an aluminum valve, and an aluminum base for securing
the vessel to the experiment platform. O-ring seals are
employed throughout. The internal surfaces of the proboscis
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Fig. 4. Computed equilibrium interface for the 303/343 (upper-half)
double proboscis section for contact angles 603, 503, 403, and 353.
c
0
\343

Fig. 5. 383/443 proboscis vessel (flight unit, ICE-P3): 1 proboscis
container, 2 control dial, 3 piston/plunger, 4 reservoir valve, 5 fill
passage

vessels were precision milled on a numerically-controlled
machine using a diamond tipped cutting tool; the coordinates
were computed from Eq. (1), all dimensions being scaled to
correspond to a circular boundary arc of radius 1.5 cm. The
(interior) height of the vessels is 11.1 cm. The critical surfaces
were finished by an extremely light polish (‘‘wipe’’) using a dry
cloth. The vessels were fabricated in halves divided by the
plane of symmetry, and the two halves were fused without
corruption of the interior corner at the joint.

The interior surfaces of the vessels were cleaned by first
flushing with an aqueous 80% ethanol solution and then
rinsing with continuously flowing distilled water for several
minutes. Afterward the vessels were dried in a vacuum oven at
low temperature (120°F).

The uncertainties in the cut for the fabricating mill were less
than 2.5 lm. As a rough comparison with this uncertainty, one
calculates that if a 30°/34° container section were replaced by
a 30°/33.9° one having the same left and right extremities
(Fig. 3), then the intersection point of the right proboscis with
the circular portion of the boundary would move a distance of
about 8 lm. The error associated with the fusing of the two
half-vessels was estimated by a post-fabrication calibration that
revealed a mean tolerance upper bound of 76 lm for the
proboscis shapes, as determined by the distance of the
container wall to a measured cylinder axis. Uncertainties
associated with absorption of water by the container material
and thermal expansion during flight were estimated to be an
order of magnitude less.

The general experimental procedure for ICE during the
USML-2 flight was to partially fill the selected vessels with
prescribed volumes of fluid and to record with video cameras
the fluid interface configurations that resulted. The crew
procedures for carrying out the experiment consisted primarily
of the steps: (1) unstow equipment, (2) set up Glovebox and
vessel, (3) charge vessel/activate, (4) observe stable surfaces,
(5) disturb surface configuration(s), (6) observe resulting
surfaces, (7) repeat (5) and (6), and (8) reverse fill procedure
and stow. For the three vessels a total of approximately
ninety minutes was required. The Spacelab Camcorder and
a Glovebox full-color 1:1 video camera were utilized. Devices
for the measurement of ambient Glovebox temperature and
local acceleration levels were also used. Figure 6 shows crew
member Fred Leslie conducting the experiment in the Spacelab
Glovebox during the mission.

To begin the experiment, a crew member retrieved the
Spacelab Camcorder (Hi-8mm format) and unstowed the
ICE vessel to be tested. A diffuse backlight panel provided
illumination for the video photography.

The test liquid for all the double proboscis vessels was an
aqueous ethanol solution, 50% by volume. This particular
concentration was selected for the specific wetting conditions
desired. A red dye was added to enhance observations. The
longtime ‘‘equilibrium’’ contact angle for this liquid mixture
on acrylic plastic in the presence of ethanol saturated air was
measured by the sessile drop method to be 32°^2°. The largest
range measured for static contact angle hysteresis of the liquid
on a machined, lightly-polished acrylic surface cleaned in
the same manner as the experiment vessel was 18° for the
receding value and 43° for the advancing value by the tilt-slide
method. Mean values were 20° and 41°, respectively, with an
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Fig. 6. Crew member Fred Leslie conducting ICE-P2 test in Spacelab
Glovebox facility: 1 video monitor, 2 Glovebox, 3 proboscis vessel,
4 Spacelab camcorder

equilibrium value of c
eq
\32°, all values producing a consistent

uncertainty of ^2°. The density, kinematic viscosity, and
surface tension for the dyed aqueous ethanol solution were
measured, respectively, using standard laboratory buoyant-
bulb densiometer, viscometer, and Du NouK y ring, to be
o
0
\896 kg/m3, l\2.75]10~6 m2/s, and p\0.0308 N/m at

room temperature (approximately 72°F).
To carry out the fill procedure, the crew member pulled open

the reservoir valve and turned the control dial, displacing the
entire liquid contents of the reservoir into the double proboscis
container (see Fig. 5). The liquid then assumed a particular
‘‘static’’ configuration (not necessarily an equilibrium config-
uration; a static configuration of an interface implies a possibly
metastable state, common in partially wetting, contact-line-
dominated situations exhibiting significant contact angle
hysteresis; see Kistler (1993, p. 328)). Time was allowed for the
configuration to stabilize (up to 5 min). The crew member then
disturbed the surface by tapping the side of the container with
his finger, lightly at first and then subsequently with increasing
force. The tapping was generally of the order of 10~2 g or
10~1 g, substantially larger than the background steady g level
(\10~4 g) and spurious disturbances (10~4 g to 10~3 g). All
new surfaces that formed in the container during the tapping
process were given time to stabilize and were captured on
video. The tapping, which led eventually to large scale rocking
and sloshing, produced different results for each of the three
containers. These results are discussed below.

3.1
Vessel ICE-P1
The first vessel tested was ICE-P1, the 20°/26° vessel, as
depicted in Fig. 3. Both proboscides for this vessel are

subcritical for the c
eq
\32° liquid. Figure 7 shows two static

interface shapes for the vessel: Fig. 7a was taken shortly after
the fill procedure was completed, and Fig. 7b was taken after
significant disturbances to the vessel had been imparted by
the crew member. Very little change in the interface can be
distinguished between initial and final states, even though
significant disturbances were imparted. This is in accord with
the mathematical predictions, as the measured equilibrium
contact angle 32°^2° is greater than the critical angles for both
proboscides. A somewhat elevated surface in the righthand 26°
proboscis is anticipated, relative to the lefthand one, as
its critical angle is closer to the value c

eq
\32° (cf., Fig. 4).

Imparting larger disturbances might possibly have ‘‘released’’
the liquid to end up with a somewhat larger height difference
between the two proboscides, as in, say, the 40° case in Fig. 4,
but, generally, the video indicated much more stable behavior
for this vessel than for the subsequent ones described below.
For vessel P1, and also for vessels P2 and P3, the initial static
interface shapes prior to the initiation of disturbances were
observed to be largely the same as the terminal ones observed
in the pre-flight drop tower tests reported in Chen et al. (1997).

3.2
Vessel ICE-P2
The lefthand/righthand proboscides for this vessel are the
30°/34° ones, so that the lefthand proboscis is subcritical with
respect to c

eq
\32°, while the righthand one is supercritical.

A series of static interfaces formed during the test sequence is
shown in Fig. 8. Fig. 8a is taken shortly after completion of the
fill procedure. Figures 8b, c, and d are images of static interface
configurations after successive disturbances to the vessel
by the crew member. For this test, once the liquid fill was
completed, light taps on the side of the container produced
small, high frequency surface waves, but did not lead to
observable bulk reorientation of the liquid. As the disturbances
were increased in magnitude, however, instead of returning to
the initial state of Fig. 8a (as was the case for vessel ICE-P1 in
Fig. 7) the liquid rose noticeably and somewhat equally in
the proboscides (Fig. 8b). After allowing sufficient time for
stabilization, the crew member repeated the disturbances
to the vessel, but not increasing them in magnitude. Each
disturbance was imparted by a single ‘‘push’’ (impulse) to the
top lefthand side of the vessel which acted to rock the interface
with a mean amplitude A of approximately 4 mm over a 0.4 s
interval td. Thus, a mean dynamic Bond number Bo{

o
0
aR2/pG0.33 may be computed, where a is the effective

acceleration of the disturbance (aG2A/t2
d
, assumed constant)

and R is a characteristic dimension of the container, in this
case the radius of the circular portion of the boundary
(0.015 m). The interface responded to the impulse disturbance
with approximately 1.3 Hz damped oscillations that decayed
within 10 s. The interface was allowed time to stabilize between
each disturbance. (The imparted disturbances for this vessel
and for Vessel ICE-P3 are described more fully in Sec. 3.4.)

As seen in Figs. 8c and 8d, subsequent, larger disturbances,
carried out to explore further the initial liquid rise, led to an
increased rise only in the 34° righthand supercritical proboscis.
The penetration of the liquid into the righthand proboscis took
place not only when disturbances to the cell were applied to the
top righthand but also to the top lefthand side of the vessel.
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Fig. 7 Fig. 10

Fig. 8

Fig. 9
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Fig. 7. Static interface shapes for ICE-P1 (203/263) vessel. 7a (left): after
completion of fill; 7b (right): after disturbances by crew member
Fig. 8. Static interface shapes for ICE-P2 (303/343) vessel. 8a (left): after
completion of fill; 8b, 8c, and 8d (sequentially to the right): after
successive disturbances by crew member
Fig. 9. Static interface shapes for ICE-P3 (383/443) vessel. 9a (left): after
completion of fill; 9b, 9c, and 9d (sequentially to the right): after
successive disturbances by crew member
Fig. 10. Static interface shape for ICE-P3 (383/443) vessel one week
after that shown in Fig. 9d

This result indicates, somewhat emphatically, that the slight
differences in proboscis fabrication, which were designed to
produce unbounded flow up the righthand proboscis only, do
influence fluid behavior strongly, even in the presence of
hysteresis. In practice, however, significant disturbances
(G0.05 m/s2, BoG0.3) were necessary in order to overcome
contact angle hysteresis and to bring about the large shifts of
liquid depicted in Figs. 8c—d. (Remark: When BoZ1, destabil-
ization and break-up of the surface can be anticipated
experimentally, as described by Masica et al. (1964). For the
inverted circular cylinder, numerical studies by Concus (1968)
indicate similar stability limits.) It is remarkable that although
the hysteresis range for the test liquid is 20°OcO41°, the
interface behaved in a manner that is in accord with the
mathematical predictions of discontinuous type of behavior
based on the idealized Y—L—G theory using a value c

eq
\32°. It

is striking also that the uncertainty of ^2° for c
eq

did not mask
the effect on this behavior of the subtle differences in the
left and right proboscides designed for the 30°/34° critical
angles.

It would be of interest, of course, to repeat the experiment to
confirm the behavior for this vessel and to rule out random or
other effects that may have influenced it. The results are
striking, but they cannot be considered absolutely conclusive
in view of the hand-held nature of the experiment, for which
applied disturbances could not be controlled precisely.
Nevertheless, until additional experiments can be done,
there remains the record of the compelling results that were
obtained.

3.3
Vessel ICE-P3
Both proboscides for the third vessel, the 38°/44° one, are
supercritical for the test fluid. Therefore, the mathematical
predictions are that the liquid should rise spontaneously to
the lid in both left and right proboscides. Because the right
proboscis is more supercritical than the left, greater/faster rise
may be anticipated there. A series of images, similar to those in
Figs. 8a—d, are presented for vessel ICE-P3 in Fig. 9. Figure 9a
shows the interface after completion of the fill procedure, and
Figs. 9b, c, and 9d show interfaces after subsequent distur-
bances to the vessel. Again, each image displays the liquid in
a static state. Disturbances to this vessel caused large shifts of
the liquid up both proboscides, with more up the righthand
proboscis. The liquid continued to penetrate higher in each
proboscis regardless of the direction of the impulse distur-
bance. These results are in accordance with the predictions,
except that the liquid did not move spontaneously — significant
disturbances (BoZ0.3) were necessary to bring about equilib-

rium-type behavior within the approximately 20 minutes
allowed for the experiment.

After completion of the ICE-P3 procedures (Fig. 9d), the
crew placed the vessel (delicately) in the aft end cone of the
Spacelab module, where it was allowed to remain for seven
days. During this time it was observed that a liquid continued
to creep, though very slowly, toward the end state configura-
tion of Fig. 10, which was photographed with a 35 mm camera
at the end of the seven days. The lighting is not as favorable
here, but the liquid free surface can still be easily identified.
The liquid is seen to have risen further in the lefthand
proboscis (cf., Fig. 9d), while the liquid in the righthand
proboscis rose to the lid, covered it, at least partially, and then
started advancing down the lefthand proboscis. The Y—L—G
equilibrium theory requires that the base, lid, and entire length
of both proboscides be wet by the liquid. (The isolated drop in
the lower left quadrant of Fig. 10 was present prior to the long-
term storage (see Fig. 9d).)

These findings suggest that the idealized theory can indeed
be successful in predicting fluid behavior, if sufficient time is
available to establish equilibrium. The time required to reach
the configuration in Fig. 10 may have been lessened by existing
mechanical and thermal disturbances, the latter hastening
migration of the liquid toward equilibrium through successive
evaporation and condensation, a process (associated with
Kelvin energy) not included in the Y—L—G theory. Figs. 9d and
10 show that the fluid bulk remained connected and that
condensate drops on the container walls, common in many
partial wetting systems subject to temperature cycling on
Earth, were not present. We note that liquid near the proboscis
tip in the cases for which the theory predicts that the liquid still
should be advancing (right proboscis in Figs. 8c—d, both
proboscides in Figs. 9c—d), resembles the convex shape
computed by Weislogel and Lichter (1997) for the tip of
a spreading liquid drop in a wedge.

3.4
Remarks
Although detailed instrumentation was beyond the scope of the
resources available for the expeirment, it is possible to obtain
from the video recordings an approximate indication of the
perturbing accelerations imparted by the astronaut and the
resulting fluid rises. These are shown in Fig. 11 for Vessels
ICE-P2 and ICE-P3 over the time period when the larger
perturbations were being applied. The rise heights, solid circles
denoting the right and open circles the left, are measured at the
proboscis tips. The accelerations were calculated by dividing
the measured distance traversed after an impulse was applied
by half the time-of-travel squared. A triangle pointing upward
denotes a rocking motion that imparted an acceleration
primarily to the right proboscis and a downward pointing one
an acceleration primarily to the left. The large impulse for
Vessel ICE-P2 at time 225 s is the one that drove the fluid
a substantial distance up the right proboscis. The liquid
continued to rise up the right subsequently, nevertheless, even
for disturbances applied to the left. We note again that the
shape of the surface near the proboscis tips give the clearest
representation of what was revealed on the video tape — the
convex shape indicates liquid that is advancing, the more
concave shape, as in Figs. 4 and 7, liquid that is not.
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Fig. 11. Time sequence of disturbance accelerations a (right scale)
and resulting fluid heights (left scale) for vessels ICE-P2 and ICE-P3.
Solid circles denote heights at the right proboscis tip, open circles

heights at the left. Upward pointing triangles denote accelerations
imparted primarily to the right proboscis, downward pointing ones to
the left

The results of the experiment provide insight into the role of
container geometry, contact angle, contact angle hysteresis,
input disturbances, and length of time in predicting interface
configurations. What is clearly established is the role of
hysteresis near critical values for which slight changes in
container geometry result in large changes in interface
configuration. Hysteresis is found not to prevent the predicted
behavior, but only to noticeably impede it. Significant perturba-
tions to the interface are necessary to ‘‘encourage’’ the fluid to
behave as predicted in reasonably rapid time.

4
Conclusions
The USML-2 ICE experiment shows in a striking way the
discontinuous type of behavior for the double proboscis
containers at the predicted critical angles. Even though
hysteresis was large and surface friction impeded reorientation
of the liquid, the mathematically predicted behavior at critical
contact angle was observed. This lends credence to the validity
of the concept of macroscopic contact angle and its Y—L—G
formulation as tools for predicting fluid behavior.

Appendix
One of the referees requested a discussion in terms of pressure
difference of the statement in Sect. 3.3. that a greater/faster rise
in the right proboscis for the 38°/44° container could be
anticipated. We give such a discussion here.

The radii R
L

and R
R

are critical values reflecting singular
behavior (unbounded rise height in a proboscis) that manifests
itself at the corresponding critical contact angles c

L
\38° and

c
R
\44°. For either of them (say R

R
) we have, according to the

theory described in (Chen et al. 1997).

R
R
\

DXD
DRD cos c

R

with a corresponding (critical) pressure jump dP
R
\2pR

R
across the arc C

R
when c\c

R
; DXD is the area of the container

section and DRD the length of its boundary R.
At a contact angle c\c

R
, the pressure jump occurs across an

arc C of radius R that meets the proboscis boundary R
R

in
angle c. Denoting by q

R
the inclination of R

R
at the contact

point with C
R

and the container section circular arc, we have

R\
R
R

cos(q
R
]c

R
)

cos(q
R
]c)

.

Thus, the pressure change across C will be

dP
R
\

2pDR Dcosc
R

DXD
cos(q

R
]c)

cosq
R
]c

R

.

An analogous formula holds for the left proboscis, whenever
c\c

L
.

Using Eq. (1) one can then calculate that dP
R
[dP

L
for all

contact angles less than or equal to c
L
\38°, and in particular

for the value ceq\32° for the experiment liquid.
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