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The study of self-sustained oscillating plane jet flow
impinging upon a small cylinder

F.-B. Hsiao, Y.-W. Chou, J.-M. Huang

Abstract Experimental studies of a plane jet impinging upon
a small circular cylinder are conducted by hot-wire measure-
ments. The cylinder is located on the jet centerline within the
potential-core region. The jet—cylinder interactions on the
instability shear layer frequency, the cylinder wake shedding
frequency, and the induced self-sustained oscillation phenom-
enon are carefully investigated. Test data indicate that the
self-sustained flow oscillation is mainly generated by the
resonant effect of the flow between the jet exit and the cylinder.
Its resonant frequency is found to vary linearly and exhibits
jump-stage pattern as a function of the distance between the jet
exit and the cylinder. The feedback mechanism and the
hydrodynamic instability theorem are proposed to predict
correctly the frequency jump position, wave number and the
convection speed of the self-sustained oscillating flow for
different jet exit velocities.

List of symbols
a sound speed
c growth rate of the instability
d cylinder diameter
E( f ) energy content of velocity fluctuations at specific

frequency
f
0

fundamental frequency of the jet
fr resonant frequency
fs vortex shedding frequency of the cylinder wake
H height of the plane jet at the exit
K ratio of U

c
and U

0
L impinging length (distance from jet exit to cylinder

front)
Re Reynolds number (\U

0
H/l)

R
I,II(q) cross-correlation function between the two sensors

I and II
St Strouhal number (\fd/U

0
)

T
0

one period of a periodical signal
t time scale
U streamwise mean velocity
U

c
convection speed

U
0

mean velocity at the nozzle exit
u@ streamwise RMS velocity fluctuation
u@( f ) amplitude of streamwise velocity fluctuation at

specific frequency
v@( f ) amplitude of transverse velocity fluctuation at

specific frequency
X,Y streamwise, transverse coordinate
Xcy,Ycy streamwise, transverse coordinate of the cylinder
l kinetic viscosity
j
0

initial instability wavelength of the jet (\U
0
/2f

0
)

j
r

resonant instability wavelength (\U
0
/2f

r
)

/
u

phase of the streamwise velocity fluctuation
D/

I,II
relative phase difference between the two sensors
I and II

q time delay in the cross correlation function
a wave number

1
Introduction
A basic shear layer impingement flow field is formed when an
obstacle is located in the downstream of a free shear flow. As
the shear flow impinges upon a rigid surface, an induced
periodic self-sustained oscillation can be observed by the
interactions of the unstable shear layer and the downstream
obstacle (Brackenridge 1960; Ho and Nosseir 1980; Rockwell
and Kayayoglu 1986; Rockwell and Naudascher 1979). Powell
(1961) pointed out that the acoustic disturbances near the
vicinity of the impinging surface are the sources on radiating
pressure fluctuations with specific tones, which lead to the
transverse undulation of the impinging plane jet column. Such
a self-sustained oscillating flow is found to perform jump and
stage behaviors for the resonant frequency of the velocity and
pressure fluctuations.

There are many combinations in the shear layer and solid
body interacting flow studies. The shear layers may include jet,
mixing layer and wake (planar or axisymmetric). The solid
body may be sharp edge corner, flat (or curved) plate, wedge,
orifice and cylinder. Most of the researches on jet—edge or the
jet—plate interactions focused on the frequency jump and stage
characteristics, and the dominant mechanism results in the
self-sustained flow oscillation (Chanaud and Powell 1965;
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Fig. 1. Experimental layout of the
plane jet

Ho and Nosseir 1981; Rockwell and Kayayoglu 1986).
A succession of events is observed to govern the occurrence of
self-sustained flow oscillation: (i) impingement of organized
vortical structures upon the solid body; (ii) upstream
propagating disturbances; and (iii) subsequent amplification
of the velocity fluctuations within the shear layers. In other
words, the feedback effects from the interacting coherent
structures at the impinging point can further excite the
evolution of the shear layer upstream, such that the periodical
shear oscillation can be obtained.

The conventional investigations on jet—cylinder impinging
flow focused mainly on the mechanisms of vortex—edge
interaction and the pressure fluctuation of the cylinder. The
impinged cylinders usually have larger diameters as compared
to the width (or spreading) of the jet column. The resonant
frequency of the induced self-sustained flow oscillation
observes to be coupled with the jet fundamental instability
frequency. Recently, Chou et al. (1996) selected a ‘‘small’’
cylinder, which is placed downstream of the plane jet exit, to
study the resulting jet—cylinder interaction behaviors. The
major difference from the past studies is that the cylinder
diameter is smaller than the width of the jet exit. In such a case,
the downstream evolving coherent structures of the jet shear
layer can no longer directly impinge upon the small cylinder as
that for the conventional jet and ‘‘large’’ cylinder impingement.
However, the self-sustained oscillating flow can still be
observed under the jet and small cylinder impingement. Its
resonant frequency here is not the fundamental frequency of
the natural jet, f

0
, but instead matches with the shedding

frequency of the cylinder wake.
Up to now, the intrinsic characteristics of the wake shedding

instability in the resonant self-sustained oscillating flow is still
not clear for a small cylinder wake immersed in a jet column. In
this paper, the flow structures and induction mechanisms of the
self-sustained oscillating flow for a plane jet impinging upon
a small circular cylinder are extensively studied. The Reynolds
numbers effect in the flow filed is also examined in details.

2
Experimental facilities and data processing
The experiment is conducted in a plane jet with a height of
15 mm and an aspect ratio of 20 at the nozzle exit, as shown in
Fig. 1. The jet facility is an open-circuit, blowing-down type

wind tunnel. The air source of the jet is generated by a variable
speed centrifugal blower. The turbulence intensity at the nozzle
exit center is below 0.3% in the operating velocities of
U

0
\5—26 m/s. The corresponding Reynolds numbers based on

the jet exit height, H, range between 5.02]103\2.7]104.
The plane jet column can be divided into shear layer region

and potential core region, as shown in Fig. 2(a). There are two
cylinder diameters (d\3 and 4 mm), which are relatively
located in the downstream of the jet centerline, are employed
in the present study of jet—cylinder impingement. The
shedding frequencies measured in the cylinder wake under the
jet velocity of U

0
\10 m/s, are 700 Hz (d\3 mm) and 500 Hz

(d \4 mm), respectively. The corresponding Reynolds
numbers based on the cylinder diameter, d, are 2.07]104
(d\3 mm) and 2.77]104 (d\4 mm). Their calculated
Strouhal numbers based on the shedding frequencies are
0.21 (d\3 mm) and 0.2 (d \4 mm), respectively. In most
measurements here, the cylinder moves downstream along the
centerline from the jet exit. The impinging length is then
defined as the distance between the jet exit to the front surface
of the cylinder. The arrangement of the impinged cylinder in
the jet column is plotted in Fig. 2(b).

Two independent traversing mechanisms are used to
control the positions of the cylinder and the measuring
sensors. Their movements are computer-controlled with
a spatial resolution of 0.02 mm. By using cross-type hot
wire sensors, the streamwise and transverse velocity compo-
nents in the flow field can be measured simultaneously. In
some cases, a single-wire sensor is used as a reference signal
source of velocity fluctuation. A 12-bit A/D converter
associated with a PC computer is used for data acquisition and
subsequent data processing. The mean velocity and fluctuation
intensity are obtained by long-time average calculations. The
FFT and the phase-average techniques are employed to per-
form the spectrum and vorticity analysis of the flow structures.

3
Results and discussion

3.1
The resonant frequency
For a natural jet, the initial most amplified instability wave
is recognized to dominate the downstream evolution of the
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Fig. 4. Variations of resonant Strouhal number with different jet exit
velocities and Xcy\0.5 H

Fig. 3. Comparisons of fundamental frequency and resonant
frequency with different jet exit velocities and Xcy\0.5 H. d, n, ]:
measured data, —: f

0
JU3/2

0
,2 : f

S
JU

0

Fig. 2. Schematic representation of a the plane jet, and b the
impinging jet flow field

coherent structures. Its fundamental frequency and the jet exit
velocity is found to exhibit a relationship of f

0
JU3 /2

0
, as shown

in Fig. 3. As for the conventional cylinder wake flow, the
organized shedding vortices could be clearly visualized in the
range of 300(Re(105(Roshko 1954). The vortex shedding
frequency is now proportional to the freestream velocity, i.e.,
fsJU

0
. The non-dimensional Strouhal number, which is based

on the vortex shedding frequency of the cylinder wake and the
cylinder’s diameter, keeps a constant value of about 0.2. The

dashed lines in Fig. 4 illustrate the calculated results by
St

s
\f

s
d/U

0
\0.212 (1!12.7/Re) for both cylinder diameters of

3.0 and 4.0 mm. This clearly demonstrates the major differ-
ences of the dominant instability frequencies between the jet
and the wake as a function of the operating velocities. When
the circular cylinder is located at Xcy\0.5H on the jet
centerline, a cross-wire sensor is used to measure the
frequency spectra at 2j

0
(j

0
\U

0
/2 f

0
)\1.24 H \18.6 mm. It

is compared to that of the natural jet, as shown in Fig. 5.
A pronounced peak at a characteristic frequency (i.e., the
resonant frequency, f

r
), at 700 Hz is observed for the

impinging cylinder case, which is obviously distinct from the
fundamental frequency of the natural jet. By varying the jet exit
velocity, it can be found that the resonant frequency is fairly
proportional to the jet exit velocity. That is

frJU0

The results are further plotted in Fig. 3, and are compared with
the instability frequency of the natural jet. It is noted that the
resonant frequency is consistent with the calculated shedding
frequency of the wake behind a circular cylinder, in which the
corresponding Strouhal numbers, Str\fr d/U

0
, are also well

calculated around the constant value of 0.2, as shown in Fig. 4.
Earlier investigations by Lucas and Rockwell (1984) pointed

out that the resonant frequency induced by the presence of an
obstacle in a jet is identical to the fundamental frequency.
In the present jet—small cylinder interacting flow study, as the
cylinder is located within the potential core region, the
evolution of the instability waves becomes dominated by the
shedding frequency in the wake of a circular cylinder. The
induced resonant frequency here is obviously not equal to the
fundamental frequency of a plane jet. In fact, the disturbances
generated by the shedding vortices of the cylinder act as an
exciting source to govern the resonant frequency of the entire
impinging jet flow field. On the other hand, as the cylinder is
located further downstream, which is outside the jet potential
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Fig. 5a,b. Energy spectra of instability waves for a natural jet,
b impinging jet at U

0
\10 m/s, Xcy\0.5 H and X\2j

0

Fig. 6a—d. Variations of resonant frequency according to the
impinging length with different jet exit velocities at X\2j

0
, Y\H/2

core region, the disturbances generated by the cylinder wake
can no longer produce effective influence on the evolution of
the self-sustained oscillating flow. Under this condition, the
resonant frequency is found to be the same as the fundamental
frequency of the natural jet, f

r
+f

0
. However, higher energy

content of the evolving fundamental instability can be obtained
(as compared to that of the natural jet) due to enhanced
feedback effect from the impinged cylinder. From the
measured results shown in Fig. 6, it clearly reveals that the
development of the self-sustained oscillating flow and the
subsequent evolving coherent structures are significantly
affected by the relative positions of the cylinder in the jet
column (i.e. within or outside the jet potential core region).

3.2
The characteristics of self-sustained oscillating flow
Recalling the results of Fig. 6, the variations of the resonant
frequency are obtained as the small cylinder moves along
the streamwise direction of the jet centerline (the detecting
single-wire probe is fixed at 2j

0
from the jet exit). It is noted

that the induced flow structures between the jet exit and the
cylinder can be divided into several discontinuous stages due
to the frequency jump behaviors. According to the feedback
mechanism proposed by Ho and Nosseir (1981) for the jet
impinges on a flat plate, the governing feedback equation can
be written as

a\
L

jr
]

L

ji
(1)

where jr\Uc/fr and ji\a*fr. While a, L, and a denoting wave
number, impinging distance and speed of sound, respectively,
then Eq. (1) becomes

a\fr A
L

Uc
]

L

aB (2)

As aAUc in subsonic flow,

a+
fr L

U
c
\

fr L

KU
0

(3)

Here U
c
\ KU

0
. The wave number, a, must be an integer under

the resonant condition and remains constant until the
frequency jump occurs. When the wave number keeps
constant, the resonant frequency decreases as the impinging
length is increased. Discrete variation of the resonant wave
numbers then leads to the resonant frequency jumping
accordingly. Moreover, the position of the frequency jump,
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Fig. 7. Cylinder position corresponding to the frequency jump for
each stage at various Reynolds numbers

Fig. 8a,b. Schematic diagram of a the instrument,
b the detected reference velocity signal

Fig. 9a,b. Evolution of the amplitudes of resonant frequency
instabilities for a u@( fr), b v@( fr) at various impinging lengths at X\2j

0
,

Y \ H/2

L/H, is found to be independent of the Reynolds number.
Figure 7 also depicts that the resonant frequency jump
positions for each stage related to the impinging length are
independent of the jet exit velocity. This is in good agreement
with the theorem based on the feedback mechanism.

In the present jet impinging flow field, the upstream
propagating disturbances are in the form of pressure wave
from the cylinder surface generated by the shedding vortices.
The initial most amplified instability is thus excited under the
shedding vortex induced disturbances, and then governs the
downstream evolution of the coherent structures associated
with the self-sustained flow oscillation. The induction mecha-
nism of the self-sustained oscillating flow can then be
pictorially illustrated in Fig. 8. The disturbances produced by
the cylinder wake would propagate upstream to excite the thin
shear layers near the jet exit, and then lead to the formation

and evolution of the coherent structures. The control
parameters are found to be the resonant frequency ( f

r
) and the

jet convection speed (U
c
).

By using a cross-wire sensor, the growth of the streamwise
and transverse velocity fluctuations of resonant instabilities is
detected at different impinging lengths. Figure 9 shows that the
local saturation for the energy of resonant instabilities matches
with the initial position of each frequency jump stage, in which
the resonant frequency reaches local maximum and is equal to
the cylinder wake shedding frequency. Here, by placing the

396



Fig. 10a,b. The cross-correlation coefficient of the velocity signals at
different streamwise positions, a U

0
\10 m/s, b U

0
\18 m/s.

Fig. 11a—d. Variations of time delay at various streamwise positions
a U

0
\10 m/s b U

0
\12 m/sc c U

0
\16 m/s d U

0
\18 m/s.

cylinder at X\1.3H of the jet centerline, the amplitude growth
of the peak frequency (i.e. the resonant frequency) attains its
maximum value such that a self-sustained oscillating flow can
be obtained. Based on the feedback mechanism, the dominated
instability frequency of the coherent structures is consistent
with the frequency of the exciting source in the interaction
region. In doing so, the flow can keep a self-sustained situation
when the resonant frequency keeps the same as the shedding
frequency of the cylinder wake.

In the present study, a single-wire sensor is also used as
a reference signal located at the lower shear layer region
(labeled as wire I shown in Fig. 8). Now, the cross-wire (wire II)
is moving along the upper shear layer to measure the
characteristics of the flow field. The cross-correlation coeffic-
ient, R

I,II
(q), between the two hot wires I and II, in the resonant

impinging flow field is found to perform a sinusoidal
oscillation pattern, as shown in Fig. 10. Note that the offset of
the local sinusoidal peak represents the relative time (or phase)
delay of the two detecting signals. When the hot wire II moves
farther away from the reference wire I, the delay time may
increase accordingly. Their phase difference D/

I,II
is expressed

in terms of

D/
I,II

2n
\

q
T

0
(4)

The delay time and phase difference variations at different
streamwise positions are plotted in Fig. 11. Note that a periodic
(coherent) behavior of the phase difference variation is clearly
observed, and the slope of the phase difference change with

respect to the measuring position remains constant. It reveals
that the induced resonant instabilities here exhibit in the form
of a succession of organized vortical structures, which govern
the subsequent self-sustained flow oscillations.

The following describes various procedures for determining
the wavelengths of the resonant instabilities with the aid of Fig.
11(a):

(I) There are three events to calculate the phase differences
from the local minima to the local maxima within the region
from the jet exit to the cylinder (i.e. the impinging length).
Then the wavelength can be calculated by

j
r
\

L

3
\

1.2]15

3
\6.0 mm.

(II) The spatial extensions in each stage of phase difference
changes are nearly the same, so j

r
\6.0 mm.

(III) From the Rayleigh theorem for a parallel two-
dimensional inviscid flow (Rayleigh 1880), the basic steady
flow is of the form U\U (y) in the streamwise direction, and
the instantaneous velocity fluctuation can be written as

u@(x,y,t)\uL (y)e* (ax~ct) (5)
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Table 1. Summarized instability properties of the self-sustained
oscillating flow

Velocity f0 fs fr jr Uc\fr ) jr K\Uc/U0
(m/s) (HZ) (Hz) (Hz) (mm) (m/s)

U0\10 540 700 700 6.0 4.2 0.42
U0\12 700 840 840 6.0 5.04 0.42
U0\16 1216 1120 1050 6.0 6.3 0.40
U0\18 1450 1260 1200 6.0 7.2 0.40

Fig. 12. Flow properties of the self-sustained oscillating flow

where uL (y) is the amplitude distribution in the transverse
direction, a\a

r
]ia

i
the complex wave number, and c the

growth rate. With the assumptions above, it is now possible
to estimate the propagating wave characteristics from the
measured data. From Eq. (5), the velocity ratio at the two
streamwise locations acquired from the hot wire I and II can be
derived as

u@(x
2
,y,t)

u@(x
1
,y,t)

\expM![a
i
(x

2
!x

1
)]ia

r
(x

2
!x

1
)]N (6)

Let /
u

be the phase of u, Eq. (6) can be rewritten as

/
u
(x

2
, y, t)\/

u
(x

1,
y, t)]a

r
(x

2
!x

1
) (7)

Therefore,

j
r
\

2n
ar

\
2n(x

2
!x

1
)

/u(x
2
)!/u(x

1
)
+6.0 mm (8)

To sum up, the wavelength of the vortex structures in the
self-sustained oscillating flow field should be equal to 6.0 mm.
Since the corresponding resonant frequency is 700 Hz as
measured in Fig. 4b, the phase velocity becomes
U

c
\f

r
]j

r
\700]6.0\4.2 m/s.

In the case of impinging length L\1.2H here, the wave
number is a\L/j

r
\1.2]15/6.0\3. It performs an integer,

which is consistent with the theorem proposed by Ho and
Nosseir (1981). Based on the criterion that the values of
wavelength at the beginning of each stage are the same, the Eq.
(3) can be rewritten in the form

a
i`1
ai

\
L
i`1
Li

(9)

where subscript i denotes the stage number. Therefore,
the wave numbers are 3, 5, and 9 in each stage, respectively.
Recalling Eq. (3) derived from the feedback mechanism
associated with Fig. 7, the position of the frequency jump
is independent of the jet exit velocity. In other word,
the maximum impinging length of each stage where the
frequency jump occurs would not change for different jet exit
velocities.

Recalling Eq. (3) again, the wave number remains constant
due to linear relationship between U

0
and f

r
. Accordingly,

the wave number and the wavelength of the self-sustained
oscillating flow are both independent of the jet exit velocity.
As a result, the eigenvalue of jr is also independent of the
Reynolds number of the jet flow. Figures 11(a)—(d) present
the variations of phase difference (time delay) at different
measuring position for jet exit velocities from U

0
\10}18 m/s.

Their distributions are all in similar pattern.
In summary, for the jet-cylinder impinging flow field, the

eigenvalues of wavelength, wave number, and phase velocity
for the induced self-sustained oscillating flow are shown in
Table 1 and Fig. 12. All of these eigenvalues are proven to be
independent of the jet exit velocity. Thus, the results of the
self-sustained oscillating flow under a specific test condition
can also be extended to identify the flow characteristics at other
velocities.

4
Concluding remarks
The plane jet impinging upon a small cylinder located in the
jet potential core region is extensively studied by hot wire
measurements. The resonant frequency of the induced self-
sustained oscillating flow is found to match with the vortex
shedding frequency produced from the cylinder wake. It is
different from the shear layer fundamental instability domin-
ated self-sustained oscillating flow patterns, which occur in the
larger obstacle and shear layer impingement case. In other
words, the impinged cylinder could be considered to be
‘‘small’’ when its diameter is relatively smaller as compared
with the local width of the jet potential core where the cylinder
is placed. The instabilities of the cylinder wake now dominate
the characteristics of the self-sustained oscillations over the
entire flow field. This is primarily due to the jet potential core
provides a uniform flow passing through the submerged small
cylinder, and this would generate more energized shedding
vortices than that from the shear flow field passing upon
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the relatively larger impinging obstacles. It reveals that the
pressure fluctuation on the cylinder surface performs the
upstream-propagating disturbance in the feedback loop of the
shear flow field, such that its resonant frequency is well locked
to the cylinder wake shedding frequency.

Moreover, the frequency jump behaviors of the self-
sustained oscillations are observed to occur at the same
position even for different jet exit velocities. In addition, their
corresponding wavelengths and wave numbers also remain
invariant under the four jet exit velocities tested. These results
are in good agreement with the the feedback mechanism by Ho
and Nosseir (1981), which stated that the resonant frequency,
the wave number in each stage, and the wavelength were all
indepentent of the jet exit velocities. From the other viewpoint,
it is well known that the Strouhal number of the cylinder wake
flow may keep constant as the Reynolds number is large
enough. This means that the resulting wavelength should
almost be Reynolds number independent. The present
calculated Strouhal numbers (Str) based on the resonant
frequency indeed show nearly a constant value of Str \0.2
even at different Reynolds number. It is then reasonable that
the wavelength would not vary accordingly. As a result, the
frequency jump positions and the wave number remain the
same regardless of the Reynolds number variations.
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