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Conditional sampling and state space reconstruction
A. Porporato

Abstract This work looks into the existing links between
conditional sampling techniques for coherent structure identi-
fication and methods for state space reconstruction which
come up in the field of nonlinear time series analysis. It is
shown that the sampling condition used by the VITA method
corresponds to a round hyper-cylinder, having as its axis the
main diagonal of an embedding space reconstructed with the
delay method. Such a geometrical interpretation allows us to
better understand certain typical characteristics of the method
and to see bursting events as excursions of the system leaving
the high-dimension basic turbulence.

1
Introduction
The identification of coherent structures (for an outline see
Robinson 1991) in a turbulent flow field is a far from simple
operation, as the coherent and non-coherent components in
a turbulent field co-exist and dynamically interact (Hussain
1986). Therefore, in order to identify the coherent structures
and give them a suitable description it is fundamental to have
the most detailed knowledge possible of the flow field. In many
cases, however, only a scalar time series measured at a single
point in the flow is available. With such a limitation the
difficulty of coherent structure identification considerably
increases and the objective must be reduced to looking for
characteristic signs of coherent structures in the available
series. To this purpose a large number of methods using the
most diversified instruments of time series analysis have been
proposed (e.g. Bonnet 1995).

Among these methods, the present paper will deal with those
known as conditional sampling (Antonia 1981), investigating
the links between these and the techniques for state space
reconstruction, which are the basis of modern nonlinear time
series analysis (e.g. Grassberger et al. 1991; Abarbanel et al.
1993). These latter techniques, at least from a theoretical point

of view, allow us to reconstruct the dynamics of a system in
a space topologically equivalent to the actual phase space,
starting with only a single time series. In such a space, known
as embedding space, the information contained in the series
becomes more accessible, and consequently the detection of
the coherent structure also proves to be more profitable.
Thanks to the link between state space reconstruction and
conditional sampling, it is possible to re-interpret some of the
most recognised methods of conditional sampling. Further on,
we will focus especially on the VITA method (Blackwelder and
Kaplan 1976), to show how the operations carried out on the
data correspond to a state space reconstruction and how in
the embedding space its sampling condition has interesting
geometrical and physical interpretations.

2
State space reconstruction
The state space reconstruction of a system from the knowledge
of a single scalar variable is one of the fundamental problems
of the nonlinear time series analysis (e.g. Grassberger et al.
1991; Abarbanel et al. 1993). It is based on the general
consideration that the interaction between the variables is such
that each component contains information on the complex
dynamics of the system and that consequently, even by
measuring only one of the variables that govern the system,
it is possible to reconstruct a space which is topologically
equivalent to the real phase space (Packard et al. 1980; Takens
1981; Sauer et al. 1991).

Although in practice the reconstruction can be obstructed by
the presence of noise and by the brevity of the series available
(Casdagli et al. 1991), the reconstruction techniques have been
successfully applied to the time series of low-dimension
chaotic systems. One cannot say the same thing of systems
(such as fully turbulent flows) characterised by a high level of
spatio-temporal complexity. For such systems, the methods of
nonlinear time series analysis are still only in their preliminary
stages (Abarbanel et al. 1993; Cross and Hohenberg 1993) and
their dynamics has a dimension which is too high to be
comprehensively reconstructed applying the available methods
to a single scalar series. However, even if one must be cautious
of the limitations of nonlinear analysis for turbulent time
series, one should not be too discouraged. In fact, also in this
case with the correct application of the reconstruction tech-
niques we can obtain an embedding space which, although not
equivalent to the real phase space of the system, allows us to
well take advantage of the information present in the time
series. In such space the analysis of the time series is more
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profitable and consequently, as already observed in part by
Keefe (1988), the identification of coherent structures also
proves to be more effective.

2.1
The delay method
The delay time method of Takens (1981; see also Packard et al.
1980; Sauer et al. 1991) is the most common method for state
space reconstruction (e.g. Grassberger et al. 1991; Abarbanel
et al. 1993). Choosing a suitable delay time q (usually a multiple
of the sampling interval Dt, i.e. q\JDt), the method entails the
construction from the shear time series u
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where m is the embedding dimension. Equation (1) is the
original form but, in general, the Takens method can utilise
information both on the present and on the future, according
to the so-called mixed reconstruction (Casdagli et al. 1991)
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with m\ap]1]af . When af\0 Eq (1) is re-obtained and the
reconstruction is said to be predictive. If mP2D]1 (where
D is the fractal dimension of the attractor) such vectors
describe an object topologically equivalent to the attractor of
the physical system from which u has been measured. Apart
from these conditions concerning the value of m there should
not be any other limits to the choice of the parameters m and q.
In practice, however, as Takens theory pre-supposes a noise-
less series of infinite length, the application of the method
proves to be heuristic. The quality of the reconstruction
depends on q and m and their combination, q

w
\(m[1)q,

which is the width of the reconstruction window. The values of
the optimal embedding parameters depend on the compromise
of contrasting requirements: firstly, m must exceed by at least
twice the dimensions of the attractor (for some types of
analysis Sauer et al. (1991) have shown that it is sufficient that
m is greater than D); furthermore q must be sufficiently great to
not involve data which is too correlated in such a way that the
supply of new information is superior to the noise level in the
series. Finally, q must not be so great as to sample data too
distant in time and therefore (if the system is chaotic) with
a dynamic link which by then is too weak (see Casdagli et al.
1991). Thus, the choice of optimal embedding parameters is by
no means simple and, even if numerous methods have been
proposed (see Rosenstein et al. (1994) for a review), there does
not seem to be one which is in any way preferable.

As shown by Casdagli et al. (1991), the quality of the
reconstruction proves to be lower the higher the complexity of
the system and the noise level in the series are. As a result the
dynamic reconstruction is only totally feasible for chaotic
systems of low dimensions, while for systems of a higher
dimension (as fully turbulent flows certainly are) it can only be
partially feasible, in that it is not possible to reach sufficient
values of m to totally unfold the attractor. For this reason,
therefore, it is advisable to firstly determine q

w
and, only

following that, within the established reconstruction window,
choose the values of m and q. It is clear that in this second
phase, high values of m are generally preferable, even if (with

q
w

constant) the contemporary reduction of q makes the
addition of new variables less and less significant and can even
cause disturbances which reduce the quality of the reconstruc-
tion. This was evident in the paper by Porporato and Ridolfi
(1997), where it was observed that beyond a certain value of
m the quality of the prediction (strictly linked to the quality
of the reconstruction) carried out with q constant ceased to
improve because of the extension of the window width.
Furthermore, too large values of m can excessively aggravate
the calculation burden to the point that any benefits obtainable
would be considered unjustifiable.

In this work, we will only take into account the method of
Takens. Other methods of state space reconstruction do exist
(see Abarbanel et al. 1993), among which we recall that of the
successive derivatives and that based on the principal compon-
ent analysis. Gibson et al. (1992) demonstrated the close link
that exists between these different methods.

2.2
Application to measured turbulent series
The variable under examination is the near-wall longitudinal
velocity component, indicated as usual as u(t), measured using
a Laser Doppler Anemometer in smooth-pipe flows with
Reynolds numbers (calculated using the mean bulk velocity
and the diameter of the pipe) equal to 7000 and 15000.
The measurement point is placed in the buffer region,
where the maximum production of turbulence is found, at
y`\yu

*
/l\15, where y is the distance from the wall, u

*
the

friction velocity and l the kinematic viscosity (hereafter, the
variables with ‘]’ indicate the adimensionalization with the
‘wall’ variables u

*
and l). For details about the description of

the experimental apparatus or on the preliminary elaborations,
one can refer to Porporato and Ridolfi (1997).

To standardise the sampling features of the two series and to
make the comparison between the elaborations more coherent,
the following analyses are based on tracts lasting approxim-
ately 10000 temporal ‘wall’ units (t`\tu2

*
/l), that assure

a sufficient number of bursting events in the series. The
number of points, the duration of the series and the time
interval between the data (these two latter in temporal ‘wall’
units) respectively proved to be equal to 30883, 9905 and 0.321
for the series with Re\7000 and equal to 23750, 10780 and
0.451 for that with Re\15000. In dimensional terms, this
corresponds to a measure of duration of 999 s for Re\7000
and of 290 s for Re\15000. Figure 1 shows the initial part of
the two velocity series. The irregular and intermittent behav-
iour with prevalently strong positive gradients is typical of
near-wall turbulent series.

In order to determine the optimal embedding parameters,
two methods for the assessment of q have been applied. The
first of these is the fill factor method (Buzug and Pfister 1992).
According to it, the optimum q is chosen corresponding to
the first maximum of the fill-factor function, defined as the
logarithm of the average volume of all m-dimensional parallel-
epipeds, given by the points of the attractor. The second
method adopted is based on the consideration that a correct
reconstruction should ensure the maximum possible separ-
ation between trajectories (Buzug and Pfister 1992). Details of
the application of these methods are given in Porporato and
Ridolfi (1997). The results, which provide an upper bound to
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Table 1. Optimal delay-times

Re\7000 Re\15000

Fill factor (q`) O1.9[2.2 O2.2[2.7
Maximum spreading (q`) O1.6[2.2 O1.8[2.7
Average displacement (q`w ) +7 (m[10[12) +8 (m[10[12)
Critical window width (q`

w
) +8 +8

Fig. 1a,b. Traces of the initial part of the turbulent velocity time series,
normalized with the ‘wall’ variables. a Re\7000; b Re\15000

the choice of the optimum values of q, are for both methods
of around q`\2 and 2.5 respectively for Re\7000 and
Re\15000 (Table 1).

Since in high dimension systems the value of q
w

is more
important than the value of q, the methods of the critical
window width (Gibson et al. 1992) and of average displacement
(Rosenstein et al. 1994) were also applied. These were specifi-
cally proposed to estimate the critical window width of the
reconstruction. According to the first of these, the value of q

w
is

chosen as a fraction of the critical window width, q*
w , which

represents the window width below which the eigenvectors of
the principal component analysis correspond (to the leading
order) to Legendre polynomials, i.e.

qw\kq*
w\2kS 3u2

(du/dt)2
(3)

where the over bar denotes a time average over the entire
length of the series. (We presume to use series from which the

mean value has already been subtracted; in such a case u2
represents the signal variance, whose square root, u@, is the
standard deviation.) Based on empirical results, Gibson et al.
(1992) suggest that k\0.5 provides good results. The advant-
ages of this method are the facility and speed in implementa-
tion and its solid theoretical foundations, while on the other
hand, the need to numerically estimate the derivative of the
signal can run the risk of noise amplification. In this applica-
tion, working on signals which are already noise reduced,

the trials carried out using different formulae of numerical
derivation have provided practically coincident results. It is
interesting to note that the critical window width proves to be
both proportional and close to the Taylor time microscale
(Tennekes and Lumley 1972, pg. 211), being

q*
w
\J6j (4)

Since j represents the intercept of the parabola that matches
the autocorrelation at the origin, the recommended value of q

w
can also be expressed using the autocorrelation of the signal.

The method of average displacement (Rosenstein et al. 1994)
is a method of geometrical type that provides a value of q

w
ensuring an average expansion of the reconstruction sufficient
to well unfold the attractor. The values are chosen when for
a given m, the slope of the curve of the distance from the
identity line or main diagonal at the growth of q reaches 40%
of its original value. It is necessary to underline, particularly in
view of what will be said in the following, that the average
displacement proposed by Rosenstein et al.,
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is not precisely the distance from the main diagonal (which will
be introduced in Sect. 3), but the distance from it taken on the
hyper-plane u

i
\const.

The results of the application of these last two methods
are in agreement between themselves (Table 1), with values
of q`

w
around 7—8. Since for high dimension systems the

constraints on q
w

are stronger than for that on q, it is most
probable that the best reconstructions are those where, without
exceeding the q

w
obtained, values of q` below 2 (contrary to

what would be required for fill factor and maximum spreading
of trajectories methods) are used, thus applying values of
m which are greater than 4. In other words, it is preferable to
use a greater number of co-ordinates with delay time lower
than the optimal (and so with a lesser supply of information for
single co-ordinates) rather than a too low, even if dynamically
more significant, number of co-ordinates.

An indication of the quality of the reconstructions can be
taken from the analysis of the two-dimensional representations
obtained from the two time series (Figs. 2a and b). The
projections are similar and reveal evidence of arch-shaped
trajectories in the upper part. Theses are due to the intense
positive gradients present in the series and, as we will see, are
linked to the bursting events detected by the VITA technique.

3
The VITA method
Following the definition of Antonia (1981), ‘conditional
sampling’ is a mean to distinguish and provide quantitative
information about interesting regions of a turbulent flow. As
suggested by the name itself, it associates the presence of
a coherent structure with the verification of particular ‘condi-
tions’ in the time series. Some these methods usually involve
subsequent values of the time series, it is logial to think that the
conditions imposed on the time series have a geometrical
equivalent in the embedding space. We will attempt to look
more deeply into this link for one of the most efficient and
practised methods of conditional sampling: the VITA method.
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Fig. 2a,b. Two-dimensional reconstructions in the plane
Mu(t), u(t]q)N. a Re\7000, q`\2; b Re\15000, q`\2

The VITA method (Blackwelder and Kaplan 1976) focuses
on tracts of strong fluctuation of the longitudinal velocity
component. The Variable Interval Time Average of the
quantity u(t) is defined as

u(t)
T
\

1

T

t`T/2
:

t~T/2
u(s) ds (6)

In a similar way, the local variance is

var(t)
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\(u[uN

T
)2
T
\u2

T
[uN 2
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When the value of var(t)
T

is high, the signal shows intense and
rapid fluctuations that for brief integration intervals corres-
pond to intense gradients. In the frequency domain, the link
between the signal and local variance is not immediate:
numerical tests carried out on a white noise show that it
actually should correspond to a low-pass filter (similar to that
of the moving average) with a slope and modulation propor-
tional to 1/T.

var(t)
T

is the new turbulent variable on which the condi-
tional sampling is carried out, defining a detection function

D(t)\G
1

0

if var(t)
T
PKu2

otherwise
(8)

where T and K are the parameters of the method. Since the
method is quite sensitive to the threshold values and there are
no objective criteria concerning their specification, an adjust-
ment is generally made by comparison with visualizations. We
will return later on to VITA parameters.

The success of the VITA method is essentially due to the ease
of implementation and to the good correspondence between its
detections and the second quadrant events that correspond to
peaks in turbulent production (ejections). These latter are, in
fact, generally included between intense gradients (Alfredsson
and Johansson 1984) detected by the VITA which can be
interpreted as internal shear layers (Landahl 1990). Recently
Jeong et al. (1997) drew attention to the link between the
typical behaviour of VITA detections and the near-wall passage
of highly elongated quasi-streamwise vortices, while Tardu
(1995) observed the existence of two different types of VITA
events divided in single and multiple shear layers and
characterised by a different regeneration mechanism.

3.1
The VITA method in the embedding space
We now show that the VITA method has an interesting
correspondence in the embedding space. To this purpose, let
us introduce a mixed reconstruction, centered on the i-th point
and realised with q\1,
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where a\(m[1)/2, and write the discrete version of the local
variance centring the sum on u
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having set T\m Dt. (Notice that the choice of an uneven m and
the use of a mixed reconstruction are solely finalised to make
the notation coherent and do not represent a limitation.) It
now is easy to show that in the embedding space of dimension

m, var(t)
i,m

is a simple function of the distance of the point
u
i

from the main diagonal. The distance d
i

between the point
u
i

and the generic point u
b

of the main diagonal is written as
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Minimising the distance with respect to u
b
, we obtain
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Fig. 3. a Traces of the averaged velocity profiles during VITA
detections; b relative two-dimensional reconstructions in the plane

Mu(t), u(t]q)N, using the same delay times as in Fig. 2a—b. Solid lines
refer to Re\7000, broken lines to Re\15000

Fig. 4a,b. Values of the first five maxima (solid lines) and of the mean
(broken line) of the local variance versus the window width T.
a Re\7000; b Re\15000

Finally, we can make the expression of the local variance
appear in (13) to have
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m

a
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The VITA method therefore associates the presence of
coherent structures to the distancing of the representative
point from the main diagonal. The condition (8), in the
embedding space reconstructed according to (9), thus corres-
ponds to a round hyper-cylinder having the main diagonal

as its axis and a radius of JmKu@. This becomes evident in
embedding spaces of smaller dimensions. Letting, to be brief

u
i~1

\x, u
i
\y, u

i`i
\z, when m\2 one has var

2
\(x[y)2/4

PKu2, which determines the points distant at least J2Ku@
from the main diagonal, while for m\3 one has

var3\(x2]y2]z2[xy[xz[yz)/9PKu2 (15)

which corresponds to sampling external points with respect the
round cylinder having the main diagonal as its axis and radius

J3Ku@.
The geometrical interpretation in the embedding space

enables us to give an interesting physical interpretation of the
conditional sampling achieved by VITA, that would corres-
pond to the idea of coherent structure as an orbit which
distances itself from the high-dimensional central body of the
attractor, similarly to what happens in the bursting model
hypothesised by Newell et al. (1988) and in the low dimension
model of Aubry et al. (1988). (Although there is no demonstra-
tion that wall turbulence has an attractor, here such a term is
used loosely to indicate the object that the system describes in
its phase space.) Figure 3 shows the conditionally-averaged
velocity obtained by aligning the VITA detections at the
maximum gradient and the relative two-dimensional projec-
tions of the plane Mu(t), u(t]q)N. The arch-shaped behaviour

already found in the projections of the series (Figs. 2a and b) is
even more evident and shows the typical excursion during
bursting events when the system leaves the central body of the
attractor relative to the basic turbulence.
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Fig. 5. Difference between the mean of the first five maxima of
the local variance and its mean value. Re\7000: open symbols;
Re\15000: solid symbols

3.2
VITA thresholds and embedding parameters
As we have seen, the VITA parameter T corresponds to the
windows width q

w
of the reconstruction and, being q\1, also to

the embedding dimension m. Therefore, by varying T and
maintaining K constant, we can study the influence of m on the
reconstruction of the attractor and, as a result, on the VITA
detections. Since T governs the way in which the attractor
expands with respect to the VITA cylinder, by improving the
reconstruction with a correct choice of the embedding para-
meters, the reliability of the method should also improve.

The criteria of average displacement and critical window
width gave for both series q`

w
+7[8, which is slightly

underestimated with respect to the values usually recommen-
ded in literature for T` (see Luchik and Tiedermann 1987 and
Yuan et al. 1994). The reason for this may be related to the fact
that, differently from VITA, the employed criteria for choosing
q
w

are not based directly on the real distance from the main
diagonal of the embedding space, whilst the most appropriate
variable for the choice of T is the distance from the main

diagonal or, equivalently, the local variance var(t)
T

. To this
regard, Figs. 4a and b show the behaviour of the first five

maxima and the mean of var(t)
T

versus the window width.
While the mean value proves to be always increasing, without
indicating whether the expansion corresponds to an effective
better unfolding of the attractor, the maxima present a peak
indicating the existence of particular reconstructions giving
maximum expansion of the most external orbits and, therefore,
also maximum efficiency of the conditional sampling. Figure 5
reports the difference between the curves of the mean values of
the first five maxima (solid lines in Figs. 4a and b) and that of

the mean value of var(t)
T

(broken lines in Figs. 4a and b).
Either from Figs. 4a and b or from Fig. 5 it can be observed that
the reconstruction windows giving maximum separation
between external orbits and the main body of the attractor are
obtained for T` around 10—20. There is then a range of T` that
assures the best conditional sampling and corresponds quite
well to the values recommended in literature. This can
represent a possible way for determining the parameter
T without having to resort to the comparison with visualiz-

ations, making it easier to apply VITA to different kinds of flow
and turbulence variables. More generally, the use of var(t)

T
in

nonlinear time series analysis could be preferable to other
methods for the choice of q

w
, such as the average displacement,

at least for cases where the system presents different coexisting
dynamics.

The behaviour of the number of detections versus T (keep-
ing constant the value of K) is similar to that reported by
Johansson and Alfredsson (1982, Figs. 8 and 9). For both series,
the number of detections grows up until T`\20—30 to then
decrease to the point of a single great detection when T is equal
to the duration of the entire series. Such a behaviour is easily
interpreted in the embedding space where, at first, the increase
of T is reflected in the rapid expansion of the attractor whose
trajectories progressively come out of the VITA cylinder.
Subsequently, the growth rate of the attractor becomes about
equal to that of the VITA cylinder (whose radius grows as

Jm). Finally, when T is very high and the local variance tends
to the global one, with K\1 the inequality var(t)

T
[Ku2 is

always satisfied.
For what concerns the parameter K, we have seen that

choosing it corresponds to fixing the radius of the hyper-
cylinder defined by VITA. Once T is established, the value of
K should separate the part where is more probable to find
non-coherent turbulence (inside the cylinder) from that
dominated mainly by intense fluctuations of energy relative to
the passage of coherent structures (on the outside). Following
the attractor scheme proposed by Newell et al. (1988), the
radius of the hyper-cylinder should be such to exclude only
those orbits that constitute the high dimensional body of the
attractor typical of non-coherent turbulence, sampling instead
those that correspond to the passage of coherent structures. In
effect, even if such a distinction is not clear-cut due to the
strong dynamic interconnection between basic turbulence and
coherent structures (e.g. Hussain 1986), the p.d.f. of the series
of distance from the main diagonal (Figs. 6a and b) shows
a double behaviour corresponding to different dynamics in the
system. Both graphs present a possible double exponential
behaviour indicative of a double family of events: one being
much more frequent relative to the trajectories which remain
near the main diagonal, the other one being rarer relative to the
more distant trajectories. Such two behaviours are underlined
by the two straight lines (obtained by the least squares method)
relative to the points with a distance lesser or greater than

0.6 u2 respectively (the commonly adopted value of K being
around 0.6). Even though there is some scatter, probably due to
the relatively small number of events detected, there is a region
between 0.6 and 1.2 where the passage between the two
behaviours takes place. Besides the interest of its physical
interpretation, this fact could help in allowing for a choice

of the parameter K directly based on the p.d.f. of var(t)
T

.
We close the discussion on links between VITA and

embedding parameters with a brief comment on the role of the
embedding dimension m. As previously said, once q

w
is fixed,

beyond a certain value of the embedding dimension the quality
of the reconstruction does not have substantial improvement
by the addition of new variables. This is confirmed in the tests
(not shown here) carried out fixing the window width of the
reconstruction and applying VITA with values of q higher
than 1. Beyond values of m sufficient to guarantee a good
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Fig. 6a,b. Probability density functions of the local variance. The
straight lines are the regression curves (least squares method) of the
points with distance respectively smaller than (open squares) and
bigger than (open triangles) 0.6u@. a Re\7000; b Re\15000

Fig. 7. Contour plot of Eq. (20) showing the generatrixes of the
cylinder defined by on a plane orthogonal to the identity line; the
VITA-defined circumferences are also shown; see Eq. (15)

reconstruction (about 8—10), the detections practically co-
incide with those obtained with q\1. From an applicative
point of view, the employment of m which is not too great, can
be useful to reduce the calculation times in the case of highly
over-sampled signals.

3.3
Higher-order local moments
The geometrical interpretation of the local variance suggests
possible extensions in the analysis of turbulent series employ-
ing higher-order local moments. The local first-order moment
is simply the moving average on tracts of duration T. Imposing
a threshold condition on the moving average, one obtains
a criterion which is most similar to the ULEVEL method (Lu
and Willmarth 1973), with the advantage of a lesser number of
false detections because of the filtering of high frequency
fluctuations of the signal.

The local third-order central moment (with respect to the
local mean)

ter(t)
T
\(u[uN

T
)3
T
\u3

T
[3u2

T
uN
T
[2uN 2

T
(16)

indicates the degree of asymmetry of the sequence, while that
of the fourth order,

quater(t)
T
\(u[uN

T
)4
T
\u4

T
[4u3

T
uN
T
]6u2 2

T
uN 2
T
[3uN 4

T
(17)

quantifies the degree of intermittency. Before discussing the
possible applications, it could be interesting to analyse the
geometrical correspondence of (16) and (17) in embedding
spaces of lower dimension. In dimension 2, pairs of values
having the same mean are found on the line that perpendicu-
larly intersects the main diagonal at the point with co-ordinates
equal to the mean. The local variance is given by the square of
the distance from the mean diagonal and the entire embedding
plane is spanned by two families of perpendicular lines, one
relative to the mean of the values and the other to their
variance. As information about the time order in the sequence
is missing, neither these two quantities are sufficient to clearly
identify the pair (two pairs exist with the same mean and
variance but with opposite values of the derivative, that are
found symmetrically from both parts of the bisector) nor does
the definition of higher-order moments add further informa-

tion, being ter
2
{0 and

quater
2
\

(x[y)4

16
(18)

which, as the local variance, establishes pairs of parallel lines to
the main diagonal. For m\3 those sequences having the same
mean value and the same local variance rest on the circumfer-
ence given by the intersection between a perpendicular plane
to the main diagonal and a round cylinder which has the
same main diagonal as its axis. With the introduction of the
asymmetry of the sequence,

ter3\(2x3[3x2y[3xy2]2y3[3x2z]12xyz

[3y2[3xz2[3yz2]2z3)/27 (19)

a cylinder is established, having the main diagonal as its axis
and generatrix of equation

w([3v2]w2)

3J6
\const (20)

in an orthogonal frame of reference Mv, wN where the origin of
the axes is placed on the trace of the main diagonal and the axis
w intersects the old axis z (Fig. 7). On the circumference
defined by the mean and the variance, the third-order moment
establishes 6 points which constitute the possible combinations
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Fig. 8a—d. Curve families obtained by sectioning the surfaces defined
a by Eq. (23) and b—d by Eq. (24) (see text for details)

of the only three values that give the assigned mean, variance
and third-order moment. The fourth-order moment

quater3\
2(x[xy]y[xz]z)2

27
(21)

does not add ulterior information, since apart from one
constant corresponds to the same family of cylinders defined
by the local variance. The fact of dealing with central moments
(with respect to the local mean), means that the surfaces
defined by them are always cylinders with the main diagonal as
their axis. Thanks to this fact, by projecting the equations in
a positive orthogonal reference Mg, f, 0, mN having the main
diagonal as its first axis, it is still possible to have an idea of
their form even for m\4. In the new reference such first axis
disappears and one obtains

var4\
f2]02]m2

4
(22)

ter4\
3(f2[02)m

8
(23)

quarter4\
2f4]204]6f2m2]602m2]m4

16
(24)

As expected, the generatrixes of the local variance are spheres
with their centre on the main diagonal, while for the third- and
fourth-order moments it is necessary to refer to further
sections. Figure 8a shows the family of curves that are obtained
by annulling in Eq. (23) f or 0, while Figs. 8b—d show those
which are obtained by annulling in Eq. (24) f, 0 and m,
respectively. Calculating the local fifth-order moment one can
see that this does not give further information, since its relative

generatrixes prove to be proportional to the product var
4
·ter

4
.

The application to turbulent series requires much higher
values of m to those which have just been discussed, in order

that significant reconstructions can be obtained. Figures 9b—d
show the second, third and fourth local moments, calculated
with T`\10 and 100 for the tract of the series Re\7000
already previously considered. The local fourth-order moment,
despite having a similar behaviour to that of the local variance,
proves to be a bit more selective in identifying large scale
intermittences, as one can see from the low level of base noise
in the tracts with small scale fluctuations. Even more interest-
ing is the local third-order moment that, by keeping the sign of
the deviation, allows us to distinguish the sign of fluctuation
with respect to the local mean values. In the presence of
a brusque variation of velocity, it performs a double oscilla-
tion: if the gradient is positive, it first has positive peak
followed by a negative one, while the sequence is inverted if the
gradient is negative. This is evident, for example, in the tract
between t`\6200 and 6450, where the local third-order
moment, calculated with T`\100 (note how by passing from
T`\10 to 100 the behaviour becomes more significant,
loosing sensitivity to the brusque small scale fluctuations but at
the same time highlighting those of the middle or large scales),
prevents a marked double oscillation that in the time series
corresponds to a double sequence of progressive decreasing in
velocity followed by a sudden increase. Such behaviour brings
to mind the multiple ejections burst (Tardu 1995) where
sequences of one or more ejections of middle intensity
are followed by a final very intense one, and suggests the
employment of the local third-order moment, possibly asso-
ciated to that of the second or fourth-order, to highlight the
presence of sequences of events and make their classification
and regrouping easier. As an example of this, Figs. 10a and
b respectively show the projection in delay co-ordinates of the
local third-order moment for the trace of Fig. 9c (T]\100)
and the behaviour of the local fourth-order moment versus that
of the third. These make the distinguishing characteristics of
the dynamics during these multiple ejections evident and
recall as previously discussed with reference to VITA, the
possibility of a connection between bursting events and
heteroclinic excursions (e.g. Newell et al. 1988; Aubry et al.
1988).

The evidence that VITA detections and high-order moment
related events correspond to excursions of the system leaving
the basic turbulent dynamics is particularly important from
a physical point of view, because it supports the hypothesis
of coherent structure as moments of simplification of the
dynamics with respect to the non-organised turbulence (see
e.g. the discussion and references in Porporato and Ridolfi
1997 and Perona et al. 1998). According to this idea, during
coherent structure formation the system is attracted towards
a state of lower dimension (i.e. coherent) from which in turn
it is suddenly repelled due to the saddle-type nature of this
low-dimension state. The present results are in agreement with
the experimental evidence of low-dimension elements during
bursting events reported in Porporato and Ridolfi (1997) and
with the low-dimension description of the bursting oscillation
given by Perona et al. (1998).

4
Conclusions
In this work, we have looked into the link between state
space reconstruction and conditional sampling techniques,
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Fig. 9. b—d Traces of the local moments
relative to the velocity trace shown in a. Solid
lines refer to T`\10, broken lines to
T`\100. b Local variance; c local third and
d fourth-order moments

observing that the most effective conditional sampling tech-
niques implicitly put a stage in which a kind of state space
reconstruction is performed before the actual conditional
sampling. The discussion has primarily concerned the VITA
method, i.e. local variance, and the other main local statistical
moments. The geometrical interpretation in the embedding
space has given the possibility to better understand certain
typical features of the method as well as offered an initiative
towards a more objective choice of parameters directly based
on the available series. Naturally, other methods of conditional
sampling are amenable to similar interpretations, as well as
various extensions considering different surfaces in the
embedding space or different methods of reconstruction can
be obtained.

From a physical point of view, observing that VITA events in
the embedding space correspond to excursions of the system
leaving the basic turbulence supports the idea of coherent
structures as phases of dynamical simplification as hypothe-
sised in the model by Newell et al. (1988) and in other
low-dimensional models of the bursting cycle (see Perona et al.
1998 and references therein).

Methods from nonlinear time series analysis could have
numerous applications in turbulence studies. The employ-
ment of the methods for state space reconstruction, for
example, could be useful for multivariate turbulent series or
for multi-point measurements in the identification and the
study of spatiotemporal dynamics of coherent structures
(Afraimovich et al. 1992; Healey 1993) or in the investigation of
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Fig. 10. a Two-dimensional reconstruction of the local third-order
moment trace shown in Fig. 9c with the broken line. b Local
fourth-order moment versus the third (broken lines of Fig. 9d and 9c
respectively)

nonlinear correlations in flow fields (Prichard and Theiler
1995).
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