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A new tracking algorithm of PIV and removal of spurious vectors

using Delaunay tessellation

X. Song, F. Yamamoto, M. Iguchi, Y. Murai

Abstract A new algorithm of Delaunay Tessellation Particle
Tracking Velocimetry (DT-PTV in abbreviation) is proposed
for tracking particles in images of a PIV system by making use
of the Delaunay tessellation (DT). The algorithm is tested by
using numerically simulated particle images. The calculation
results based on DT are compared with those obtained by

a conventional algorithm of Binary Image Cross-correlation
method (BICC). The new algorithm shows higher performance
of obtaining more identical particles in two consecutive images
correctly with shorter computation time even if the images
contain many particles. A further application of DT to
elimination of spurious vectors is also discussed.

List of symbols

A the label of one image

B the label of consecutive image after image A

C cross-correlation coefficient

N the number of triangles in image A

Np the number of vertices of a polygon

M the number of triangles in image B

Q flux of flow
radius of an interrogation area

Re Reynolds number

S area of a polygon

Xc coordinate vector of gravity center of particle image

f a triangle which is considered as a pattern

r displacement vector of the paired particles

tri tessellated triangle set

v velocity vector of particle

u, v velocity components in the x, y directions, respec-
tively

X, y coordinates

At time interval

o non-dimensional particle number density
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Subscript
i index in image A
j index in image B

1

Introduction

A number of methods and algorithms for particle-image-
velocimetry (PIV) based on cross-correlation algorithms have
been developed. Among these methods, it is common to
determine the displacement of ensembles of particle images
(“particle image pattern”) by cross-correlation methods (Willert
and Gharib 1991; Huang et al. 1993a, b) or tracking methods
(Gui and Merzkirch 1996). The used “pattern” is the gray scale
values of the pixels in a limited area. On the other hand, some
researchers (Uemura et al. 1990; Yamamoto et al. 1993, 1996)
developed another type of particle-tracking algorithm based
on the binary image cross-correlation (BICC) in which the
“pattern” is extracted from the locations of particles in an
interrogation area, i.e., the “pattern” is not the distribution of
gray values of pixels but the spatial distribution of particles.
Beside the correlation method, another widely used algorithm
called Particle Tracking Velocimetry (PTV) is based on tracking
particles in four time step consecutive images, (Nishino et al.
1989; Kasagi and Nishino 1991; Malik et al. 1993). Wernet (1993,
1995) developed a technique which was based on fuzzy logic. In
this method, fuzzy logic technique had been utilized to minimize
the error rate in particle tracking. Further application of this
method is to estimate individual velocity vector error. These
methods process the locations of particles that are obtained
from binarization images. Although some information will be
lost in the course of binarization, the coordinates of the gravity
center of particles can be obtained at a higher spatial accuracy.
The merit of using the locations of particles is that it is
convenient to extend these methods to the three-dimensional
case, because the three-dimensional coordinates of the particles
can be calculated from the particle locations in two or more
images. Furthermore, these methods are useful for measuring
dispersed bubbles in multi-phase flows. In the present research,
a new tracking algorithm based on Delaunay Tessellation
Particle Tracking Velocimetry (DT-PTV) was developed. This
DT-PTV also use the information on the location of particles in
an image. In contrast with the conventional PTV, we track

a triangle constructed by the locations of three particles after
applying Delaunay Tessellation (DT). By introducing DT into
PIV, we can devise not only an algorithm for particle tracking
but also make the post-processing for PIV (i.e. removal of
spurious vectors, interpolation) more powerful and effective.
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DT has had a considerable attention in the literature since
1980s. DT finds wide applications in the fields of mesh
generation for the finite element analysis method (FEM) and
an interpolation problem for computer graphics. The main
advantage of DT is to connect every scattered point efficiently to
form elements in either the two-dimensional or three-dimen-
sional space. The elements are triangles in the two-dimensional
case while they are triangular pyramids in the three-dimensional
case. DT is a powerful tool for spatial analysis of scattered data,
because the element-like data are easy to be handled, which can
be seen from the finite element analysis.

DT has two additional advantages: the first is unique
tessellation, the other is the capability of constructing reason-
able triangles whenever possible. In general, Delaunay tessella-
tion associated with an arbitrary set of points in the plane is
unique except in some special cases. For instance, there are two
choices to form the triangles from four points that are located
at the vertices of a square. However, these cases are seldom
found in practice. The unique tessellation means that no matter
where we start to tessellate the scattered data, the tessellated
results are the same. In other words, if all particles move within
a limited distance, the tessellated triangular grid system will
not be changed suddenly. From this viewpoint, we can devise
a new algorithm based on DT. We can track triangles instead of
particles in PIV system, because a triangle has much more
information than that of a particle, e.g., the shape, the area, the
length of three edges, etc. Another advantage ensures the high
accuracy of interpolation. Delaunay triangles are formed under
the condition that each triangle will not have too small
included angles. This is also very important, for too small
included angles will decrease the accuracy of interpolation.
Due to these properties, Delaunay triangulation is suitable for
analyzing the spatial scattered particles in an image.

The main aim of PIV is to extract velocity distribution from
the recorded images containing many particles. We can
consider these particles as a kind of scattered data. If DT is
applied to PIV, the spatial relations of particles will be easier to
be analyzed by generating a triangular grid system. A grid
system is very useful, because some CFD programs which
are based on triangular elements can be utilized directly to
calculate other physical information, such as vorticity and
pressure, and interpolation becomes more convenient. The
triangle grid system can be used further to detect the spurious
vectors by checking whether the continuity equation in
a triangle is satisfied or not.

There are many papers describing the algorithm of DT.
Watson (1981) published an algorithm that had the advantage
of being particularly simple in a short computation time.
The algorithm has a time complexity bound of O(N"?),
where N stands for the number of points. Sloan (1984) and
Sloan (1987) gave an implementation of Watson’s algorithm
for computing two-dimensional Delaunay triangulation.

An example of applying DT into PIV can also be found.
Bryanston-Cross et al. (1997) calculated the vorticity map by
forming DT from the measured velocity data.

2

Delaunay tessellation

The main condition to construct the Delaunay triangle mesh is
that there is none of nodes within the circumcircle of any

a b

Fig. 1. a A Super-Triangle completely encompasses all of the points to
be triangulated. b If a new point is in one of the circumcircles of
tessellated triangles, this tessellated triangle is interested by connect-
ing the point P to three vertices A, B and C

tessellated triangles. We can assembly Delaunay triangulation
by introducing each point, one at a time, into an existing
Delaunay triangulation.

According to the Watson’s algorithm (Watson 1981),
a Super-Triangle which completely encompasses all of the
points to be triangulated is introduced, as shown in Fig. la.
When a new point is introduced into the triangulation, we can
always find an existing triangle which encloses this new point.
(The existing triangle is called Super-Triangle in the first case
of new point.) Three new triangles that connect the new point
to each of vertices of the found triangle can be obtained, as
shown in Fig. 1b. Any triangle containing the new point within
the circumcircle is treated as being intersected. Adding all
these triangles which will be intersected together can form
a polygon. New triangles that are formed by the new point and
each of pairs of vertices on the boundary of the polygon are
generated. After dealing all the points to be tessellated, the final
triangulation is computed by removing all the triangles that
contain one or more of the vertices of the Super-Triangle.
Figure 2 is an example of the results of DT, where the number
of particles is 208.

3

DT-PTV

As described in Sect. 1, except in special cases, DT is unique
and most of triangles have no small induced angles. These two
properties are important to apply DT to PIV.

3.1

Algorithm

The algorithm of DT-PTV for two-dimensional PIV system is
described as follows.

Assume that we have obtained the locations of particles in
two successive images after image processing. As shown in
Figs. 35, two images A and B stand for the images at different
time t and t+ At, respectively. We can generate a triangular
mesh by using DT for each image. All tessellated triangles in
the image A are denoted as {tri;} (i=1, ..., N). We select an
arbitrary triangle tri; in {tri;}, and then the coordinates of the
center of the triangle are denoted by x, and y.. The purpose of
DT-PTV is to find the most possibly paired triangles in an
interrogation area of the image B in which the coordinates are
x. and y, and the radius is R. Triangles whose centers are in
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Fig. 2. DT of particles. Particles in image are
located in the nodes. Number of particles =208
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We check the relation between a triangle tri; and any other
triangles {tri;} by calculating the cross-correlation coefficient
of two triangles. Two triangles with a maximum cross-
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Fig. 4. Selection of an arbitrary triangle with center of x,, y, in image = Where f; and f; are triangles in the images A and B, p and q are
A (t=t,) the distances between the gravity centers of two triangles in
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x and y directions, respectively. According to the mathematical
discussion of cross-correlation by Yamamoto et al. (1996), the
cross-correlation coefficient of the two triangles in the images
A and B is expressed by

Area(tri;ntri;)

Cij=
\/Area(trii)Area (triy)

(2)

where Area stands for the area of each triangle as an
interrogation region, tri;Ntri; is the overlapping area as shown
in Fig. 3. After the triangles of a pair have been found, three
pairs of particles of these triangles can be obtained. The
displacement vector of the paired particles Ar is calculated
from the distance between their two centers, and the velocity is
obtained as v=Ar/At.

3.2
Implementation

3.2.1

Calculation of Cij

In an earlier paper (Song et al. 1996) we calculated Cij from
Eq. (2) by overlapping two triangles in two images directly.
Some experts of PIV pointed out that this calculation might not
be applicable to a flow field with strong translation or rotation,
because the overlapped area of two triangles would become
very small. We tested by numerical simulation and found that
when the time interval of two images At became larger, it was
impossible to find two paired triangles correctly, for Cij of
paired triangles was too small.

In the present paper the calculation of Cij was modified to
solve the problem. Before calculating Cij we transformed the
coordinates of two triangles to ensure a good tracking. Let the
gravity centers of two triangles move to the origin, and rotate
the two triangles so that the vertex of the biggest included angle
of each triangle lies in the positive axis of x, then calculate the
Cij of these two transformed triangles. Figure 6 illustrates the
procedures. The present method emphasizes the similarity of

Triangle A weem——

Triangle B

Triangle A" ee——

Triangle B’

Fig. 6. After translation and rotation of the triangles A and B, the
cross-correlation coefficient of these two transformed triangles A" and
B’ is calculated

the form of two triangles. If two triangles are paired triangles,
the deformation between them must be limited, and hence the
value of Cij must make a maximum. The rotation procedure
can let us track triangles more correctly even if strong rotation
exists in the flow field. For the flow with weak rotation, the
rotation procedure will be of no effect.

We need to add a procedure to avoid calculating the value of
Cij for two obviously non-paired triangles. Denote integers 1,
2 and 3 as the edges of a triangle according to the ascending
sequence of edges’ lengths, two paired triangles must have the
same order of three integers in an counter-clockwise sequence.
If there are two triangles with different order of three integers,
we can skip calculating Cij. Such an apparently small modifica-
tion of the algorithm can decrease the computation time by
15% ~25%.

3.2.2

Calculation of the overlapping area of two triangles

As seen from Eq. (2), it is important to calculate correctly and
efficiently the overlapping area formed by two triangles. This
problem is called “Clipping of Polygons” as described by
Harrington (1987). The algorithm for solving this problem can
also be found in many textbooks on computer graphics. The
possible number of edges of polygons that are formed by two
triangles is 3, 4, 5 and 6.

3.23

Area of polygon

For a polygon with N, points of an odd number, its area is
given by

4

S=

Iz

1
= 2 Ge—x1) (e —Yi-1) (3)
2 k=2

where x; and yx denote the coordinates of the vertex Pr. When

Np is an even number, the area is as follows.

NP/2

S:E Z {(x2k—1—x1) (Yak—Yak-2)
k=2

+ (X2 —x3) (}’2k+1_)’2k—1)}> (4)

3.24

Image with noise

Noise in image will change the tessellated triangular mesh and
therefore cause a wrong result of paired triangles. Fortunately,
from a practical point of view, such case will not happen so
frequently. According to the principle of Delaunay tessellation,
there is no node within the circumcircle of any tessellated
triangles, and therefore each particle due to noise should be in
a tessellated triangle. A triangle containing the noise particle
may not find its paired triangle. However three particles in the
triangle can still find their paired particles among the other
triangles because they usually belong to more than one
triangle. Assume that particle F in Fig. 7 is a noise point for
example, F will always exist in the tessellated triangle ACE. The
triangle ACE fails to find its pair, but point 4, E and C still can
find their pair from the triangles ABC and CED. From this
example we can conclude that the a few noises will not change
the final result of paired particles.
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Fig. 7. Noise in image. F is a false particle

3.25

Simple test

In order to verify the performance of the procedure of
rotational transformation described in the Sect. 3.2.1, a simple
numerical simulation was carried out to test the effect either in
the case of solid rotational flow or in the case of translation
flow. In both cases, 2000 triangles were generated randomly in
the first image, while the movement of each vertex in a triangle
between two images is calculated according to the local velocity
where the vertex locates. The size of the image is 256 x 256
pixel. The unit of rotational speed is degree/interval and

the unit of velocities # and v in the translation flow is
pixel/interval. The cross-correlation coefficient between each
paired triangles in two images is calculated. Both the mean
values and the standard deviations of all the cross-correlation
coefficients are also calculated (Tables 1 and 2).

Table 1 shows that the cross-correlation coefficients will
become smaller as the rotational speed increases. But with the
procedure of rotational transformation, we can get the larger
coefficient than those without rotational transformation,
that means the judgement of the similarity by rotational
transformation is more correct than the circulation without
rotational transformation. On the other hand, in the case of
translation flow, Table 2 shows the rotational transformation
will not affect the result, because both the average values and
the standard deviations of the cross-correlation coefficients
keep the same when we add the rotational transformation.

4
Results and discussion

4.1

Generation of images

An analytical solution of the Navier—Stokes equation was used
for testing the performance of the new cross-correlation
method. The following expressions for the two velocity
components u and v satisfy both the continuity equation and
the Navier-Stokes equations.

u=cos(x) cos(y) exp(—2t/Re)
(5)
v=sin(x) sin(y) exp (—2t/Re)

where x € [—3/2m, 3/2n], ye[—2m, 27].

Table 1. Numerical simulations for verifying the performance of
rotational transformation in the case of rotational flow field. Angle of
rotation stands for the rotational angle between two images, CCC
stands for cross-correlation coefficients between two triangles, STD
stands for the standard deviation, RT means the procedure of
rotational transformation. The unit of angle is degree

Angle of  Average of STD of CCC  Average of STD of CCC
rotation  CCC with  with RT CCC without without RT
RT RT

0 1.000 0.00E 400 1.000 0.00E + 00
10 0.985 1.64E—05 0.680 2.09E—01
20 0.944 1.49E —05 0.554 2.23E—01
30 0.886 1.54E—05 0.490 2.09E—01
40 0.820 4.40E — 06 0.435 2.04E—01
50 0.753 2.00E—05 0.400 2.02E—01
60 0.691 9.58E — 06 0.377 1.88E—01
70 0.633 4.51E—05 0.346 1.80E—01
80 0.582 6.09E — 06 0.339 1.70E—01
90 0.537 4.96E — 06 0.324 1.62E—01

Table 2. Numerical simulations for verifying the performance of the
procedure of rotational transformation in the case of rotational flow
field. u and v are the translational velocities in x and y directions,
respectively. The means of CCC, STD and RT are described in Table 1.
The unit of u and v is pixel/interval

u v  Average STDof CCC  Average STD of CCC
of CCC with RT of CCC without RT
with RT without RT

2 2 1 1.23E—03 1 3.22E—05
4 4 1 9.07E—05 1 6.00E —05
6 6 1 8.81E—05 1 5.68E —05
8 8 1 6.71E —04 1 1.07E—04

10 10 1 2.45E—04 1 7.74E—05

12 12 1 2.58E—04 1 1.01E—04

14 14 1 1.62E—03 1 3.20E—04

16 16 1 3.89E—04 1 2.39E—04

18 18 1 4.84E—03 1 4.80E—03

20 20 1 5.82E—04 1 3.46E —04

The resulting flow pattern is shown in Fig. 8 at Re=1000. In
the present study particles with the coordinates (x, y) were
located randomly. The coordinates (x, y) were calculated with
adding a +1% error randomly to simulate a realistic image.
Furthermore +3% of the particles were removed or added
randomly in the second image because several particles often
disappear when photographing a real image. The velocity
components # and v were calculated according to Eq. (5) at
time t, while x, and y, were calculated at the consecutive t + At
by

x,=x+u-At
(6)
N=y+v- At

Particles are convolved with the kernel matrix having
a Gaussian intensity distribution which has the following form
(Willert and Gharib 1991):

I(X)=1I, exp <—M> (7)

207
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Fig. 8. Flow pattern for a simulation at
Re=1000 and t=0

Fig. 9. Generated image at time ¢, I, =240, 6 = 68.3 %, 256 x 256 pixels,
the number of particle=977

where X, denotes the gravity center of a particle and ¢ stand for
the standard deviation of a Gaussian intensity distribution. The
generated images are shown in Figs. 9 and 10.

4.2

Results of the numerical simulation

We can generate a triangular grid system for any distribution
of particle images after the procedure of DT as described in
Chap. 2.

The generated images were processed according to the
algorithm of DT-PTV. The velocity of each node was obtained.
Figs. 11-14 show the results of the numerical simulation.
Table 3 lists the computational conditions. The third and fifth

Fig. 10. Generated image at time ¢+ At, I, =240, 6 =68.3%, 256 x 256
pixels, the number of particle =986

rows are the conditions of Figs. 11-14, respectively. Whether
all vectors in these figures are spurious or not has been
checked. From these figures and Table 3 we can see clearly
that when At is small, there is almost no difference between
DT-PTV and BICC. However, when At becomes bigger, we can
find more correct vectors by DT-PTV than by BICC. Consider
the areas of the vortex centers parts shown in Figs. 13 and 14.
The DT-PTV is superior to BICC because DT-PTV finds more
vectors in these parts. Figure 13 shows that it is impossible to
calculate the vectors by BICC, because it causes many spurious
vectors.

Table 3 also lists the computation times. The time cost
in computation by DT-PTV was shorter than that by BICC,
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especially when the number of particles and the radius of
interrogation are large. The times of calculating particle
centroids from the original images are not included because
they are very short. The time for generating a triangular mesh

is shorter than 10/100 s when the particle number is about
1000. This can be seen from the algorithms of DT-PTV and
BICC. For BICC, it needs a longer time for searching one point
and to calculate the distance between two points, and this
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Table 3. Computational results

Num. At R CPU TIME Vectors num.
BICC DT-PTV BICC DT-PTV

632 0.01 0.1 131 6 632 632

631 0.05 0.1 130 6 630 631

1505 0.1 0.12 2480 24 1500 1480

1498 0.2 0.22 7437 26 1245 1383

1500 0.3 0.33 14721 31 910 1295

The first column is the number of particles. A means the time interval
between two images, whose unit is second. R stands for the radius of
interrogation, its unit is centimeter. Computation time is CPU times
which are measured to the 1/100th s. The computer is CONVEX 3400.
The last column lists the number of all vectors found. Whether they
are spurious vectors or not has not been checked. The time for
generating a triangular mesh is shorter than 10/100 s

procedure will last until the end of computation. However,
for DT-PTV, after the triangular mesh is generated, it is not
necessary to calculate the distance between two points since
the geometrical relation between the two points is already
known.

4.3
Applicability of DT-PTV
The applicability of PIV system is related to particle number
density and moving velocity of particles. Because the flow
structure varies a lot in practical situations, and seeding
methods and illumination methods are also quite different, it is
not easy to evaluate the applicability of each PIV system. In the
present paper, we introduce a non-dimensional parameter
called non-dimensional particle number density to evaluate the
applicability. Similar evaluation parameter can also be found
in the paper of Baek (1996).

We define newly a non-dimensional particle number density
as

TN
P = Tmax ? (8)

where N is the particle number in an image, S is the area of the
image in pixel’ and .,y is the radius of the interrogation area.
In fact p is the ratio of the maximum distance of the moving
particle to the average distance between particles in the image.
We evaluated the performance of DT-PTV and found that

the higher applicability of DT-PTV can process the image when
the particle number density is larger than 4. In the two
examples mentioned above, p is 3.6, 4.2 and 0.8, respectively. It
can be said that DT-PTV works much better when p is about 4.
In contrast, BICC and 4-frame PTV cannot work properly when
p is larger than 2.

5

Elimination of spurious vectors

A velocity field obtained by PIV usually includes spurious
vectors. These vectors are difficult to be eliminated completely,
because they distribute randomly. Many methods have been
devised to remove spurious vectors. One of the most popular
methods is a manual method (Sun et al. 1996). A vector is
regarded as being incorrect if it is not within a certain tolerance
of both magnitude and direction in comparison with its
neighbors. However, making use of this method, we meet
difficulties when the flow pattern has a significant deformation,
e.g. a flow with strong vortex. In this case we cannot set a limit
for the tolerance of the vectors’ directions because the
directions may vary from 0 to 27. Furthermore some spurious
vectors may have the same order of size compared to their
neighbors, and we cannot remove them only by the manual
method.

Some authors, e.g. Hartmann (1996), Astola (1990) proposed
the so-called Median Filter Method. Westerweel (1994) used
a Statistical Model to remove spurious vectors. The present
authors tested all these methods. We found that they could
remove some of the spurious vectors and that the Statistical
Model performs much better. The Median Filter Method is
a smoothing procedure. Some correct vectors will be smoothed
by the components of spurious vectors. In fact, the Median
Filter Method is widely used in the field of reducing picture
noises in color television. The Statistical Model considers



that the occurrence of spurious vectors satisfies a kind of
probability function. As we know, one of the most important
properties is that in the flow field, the continuity equation
should hold everywhere in many cases. Here we developed

a method which can delete such kind of spurious vectors when
their neighbors will not satisfy the continuity equation.

Since the vector for each particle in the field must satisfy the
continuity equation (Wada 1996), we can detect the spurious
vectors by checking the continuity equation in a triangle. If the
continuity equation is not satisfied in a triangle, at least one
vector in a node will be a spurious vector. We need two steps
to find out a spurious vector. The first step is to find out
which triangle contains a spurious vector, the next step is to
determine node at which the spurious vector is in the triangle.
A further step to check the neighboring triangles is needed.
Usually it is sufficient if two triangles are checked.

It is convenient to calculate the net flow flux in the triangle
or to calculate the integral form of the continuity equation in
a triangle. These methods are identical. As shown in Fig. 15,
(x:, y:) and (u;, v;), i=1, 2, 3, are the coordinates of the vertices
of a triangle and velocities of them. Q;, Q, and Q; are the flux
at three edges, respectively. Assuming that the density is
constant, we have,

jV~ﬂ'ds=<j§ﬁ~ﬁdl=Q1+Q2+Q3 9)
s c

Here S is the area of the triangle and C is the circumference
of the triangle. Separating Q;, Q, and Q; into two groups
according to the sign of the flux, where one is positive, denoted
as Q7, and the other is negative Q. We define

L Q+Q+Q
max(|Q*],1Q])

We can use E to determine the spurious vector. From
Eq. (10), we can see that E varies from 0 to 1. Usually the
magnitude of E of a normal triangle is very small. However,
if a triangle contains one spurious vector, it will become
considerably bigger than usual. It is sufficient if the threshold
of E=0.5 is set to determine whether a triangle contains
a spurious vector or not. After the triangle is judged to have
a spurious vector, we can determine the spurious vector by
checking the other triangles containing this node, since one
node usually belongs to several triangles.

Figure 16 illustrates how to remove the spurious vector by
checking four nodes and four triangles. Table 4 shows the

(10)

X3,Y3
Q4

X1, )1 X2,Y2

Qs

Fig. 15. Flow flux at three edges. The integral form of continuity
equation in a triangle is as Q,+Q,+Q;=0

2 3 2 3

Fig. 16. Removal of the spurious vectors by checking flow flux at four
triangles
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Table 4. Triangles and their vertices

Triangle Node number Triangle Node number
(1) 2,3,4 3) 1, 2,4
(2) 1, 3,4 (4) 1,23

triangles and their vertices. Assuming that a vector on one
node, for example node 3, is a spurious vector, E,), E;) and E,
are larger than 0.5, E,, is less than 0.5.

We can detect spurious vectors readily and effectively by the
method described above. Sometimes it is not sufficient if only
two triangles are checked to determine a spurious vector. For
instance, if there are two spurious vectors in one triangle,
we need to check more than two triangles for determining
these spurious vectors. However these cases happen seldom.
Figure 17 illustrates the result of deleting spurious vectors for
the original distribution of vectors shown in Fig. 14.

6

Conclusion

A new algorithm of DT-PTV has been proposed in this study. It
is similar to the Particle-Tracking-Velocimetry (PTV) algo-
rithm because we track each triangle instead of each particle. It
can also be regarded as an extended method of BICC since
the patterns are constructed by the spatial distributions of
particles. There are many types of algorithms for PIV based
on cross-correlation methods. In these methods usually the
cross-correlation coefficients of two particle distribution
patterns are calculated. Particle identification is established
with a pattern matching technique. However, DT-PTV focuses
on the degree of similarity of spatial distributions of particles.
The information of gray scale values of the particle is not used
but the coordinates of particles. The present method can save
computing time and memory capacity significantly. The
calculation time is considerably shorter compared with other
PIV algorithms. DT is a powerful tool for post-processing of
PIV. Interpolation for velocity distribution leads to higher
accuracy because Delaunay triangles with small included
angles are reasonable triangles. The spurious vectors can be
detected correctly by checking the flow rate in a triangle based
on the equation of continuity.

The performance of DT-PTV mainly depends on particle
distribution in an image. When the non-dimensional particle
number density is less than one, there is no difference between
BICC and DT-PTV. DT-PTV does not work significantly better
than the BICC or other PIV techniques on less complex flow
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fields. But in the case of higher particle number density
(usually larger than 2), BICC cannot work well. DT-PTV is
suitable for tracking particles with higher density rather than
that with lower density.

The algorithm of DT used in the present study is applicable
to a multi-dimensional space. In three-dimensions the element
becomes a triangular pyramid. The present study can be
extended to the three-dimensional case.
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