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Experiments on the lift of a spinning sphere in a range of intermediate
Reynolds numbers

B. Oesterlé, T. Bui Dinh

Abstract The lift force experienced by a spinning sphere
moving in a viscous fluid, with constant linear and angular
velocities, is measured by means of a trajectographic tech-
nique. Measurements are performed in the range of dimen-
sionless angular velocities c\au/V lying between 1 and 6, and
in the range of Reynolds numbers Re\2aV/l lying between 10
and 140 (a sphere radius, u angular velocity, V relative velocity
of the sphere centre, l fluid kinematic viscosity). A notable
departure from the theoretical relationship at low Reynolds
number, C

L
\2c, is obtained, the ratio C

L
/c being found to

significantly decrease with increasing c and increasing Re. The
following correlation is finally proposed to estimate the lift
coefficient in the range 10\Re\140:

C
L
:0.45](2c[0.45) exp ([0.075c0.4Re0.7)

1
Introduction
The prediction of the force exerted by a fluid on a suspended
particle is of great interest for the study of suspension flows,
which concerns many industrial fields, such as pneumatic
transport, chemical engineering or environmental mechanics.
In the case of solid particles conveyed in a confined fluid flow,
significant spinning motion may be induced by particle—wall
collisions or particle—particle collisions. It is therefore neces-
sary to know the influence of the spinning motion on the force
and on the torque undergone by a particle. In particular, the lift
force arising from particle spin must generally be taken into
account in order to perform trajectory calculations in Lagran-
gian modelling, or to express the fluid—particle interaction
terms when using Eulerian formulations. In the present paper,
we are interested in the lift force exerted on a spinning
spherical particle in a finite range of moderate Reynolds
numbers, which are frequently encountered in suspension
flows.

The hydrodynamical force on a moving body is usually
resolved into the drag force F

D
, in the direction of the relative

motion, and the lift force F
L

, which is orthogonal to the
direction of the relative motion. These force components are
characterized by the dimensionless coefficients C

D
and C

L
,

defined by

C
D
\

F
D

1
2 oV2A

(1)

C
L
\

F
L

1
2 oV2A

(2)

where o is the fluid density, V is the magnitude of the relative
velocity, and A is the frontal area of the body. In a similar
manner, the dimensionless torque coefficient can be defined by

C
T
\

T
1
2 oV2Aa

(3)

where T is the torque and a denotes a reference length.
Under steady conditions, and in a fluid with constant density

and constant kinematic viscosity l, it can be shown by
dimensional analysis that these coefficients depend on the
Reynolds number Re\2aV/l and on the dimensionless
rotational velocity c\au/V, where u stands for the angular
velocity, which is assumed to be normal to the relative
translation velocity. Unfortunately, even in the case of the
simpler shape, which is the spherical one, very few results are
known, especially at intermediate Reynolds numbers. The
range of very small Reynolds numbers was theoretically
investigated by Rubinow and Keller (1961), by means of
matched asymptotic expansions. In this case, C

D
is indepen-

dent of c, whereas the lift and torque coefficients are found to
be

C
L
\2c(1]O(Re)) (4)

C
T
\

32 c
Re

(1]o(Re)) (5)

where the symbol O means that the ratio O(Re)/Re remains
bounded as Re]0, and the symbol o means instead that the
ratio o(Re)/Re tends to zero as Re]0. In Eqs. (4) and (5), the
reference length a is the sphere radius, and the reference area
A is na2. Note that Eq. (5) means that the torque does not
depend on the linear velocity V when Re]0. Dennis et al.
(1980) calculated the torque on a rotating sphere in a fluid
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Fig. 1. Illustration of the sphere arrangement

Fig. 2. Sketch of the experimental apparatus

at rest. Since C
T

cannot be defined as above when V\0,
a modified dimensionless torque coefficient was computed in
terms of the rotation Reynolds number (or Taylor number)
Reu\1

2
cRe. The corresponding prediction agrees very well

with the measurements of Sawatzki (1970). Appreciable
deviation from Eq. (5) can be observed when Reu[10.

On the other hand, a number of experimental results
concerning the lift force on a spinning sphere were obtained
at high Reynolds numbers (Re[104), especially by Maccoll
(1928), Davies (1949) and Tani (1950): in that range, the lift
coefficient is almost independent of the Reynolds number, and
much lower than predicted by Eq. (4). At low spinning rate,
a negative lift may occur, as first pointed out by Maccoll (1928).
Such an effect was confirmed by Tanaka et al. (1990) in the
Reynolds number range from 6]104 to 1.5]105. However,
such large Reynolds numbers do not belong to the range we are
dealing with in the present paper.

In the range of moderate Reynolds numbers, lying between
1 and 104, much less information is available. The only known
works concerning the lift on a spinning sphere at such
Reynolds numbers are the experimental studies of Barkla and
Auchterlonie (1971) and Tsuji et al. (1985), and the numerical
investigation by Chegroun and Oesterlé (1993). Using a conical
pendulum technique, Barkla and Auchterlonie (1971) esti-
mated the lift and drag coefficient of a rotating sphere in the
range 1500\Re\3000. The lift coefficient was found to be
roughly proportional to c for c[5, the coefficient of propor-
tionality being 0.09^0.02. At lower values of c, the ratio C

L
/c

was increasing with decreasing c(C
L
/c+0.16^0.04 in the

range 2\c\4). Another technique has been used by Tsuji
et al. (1985), who studied the trajectories of spheres bouncing
on an inclined plate. The relation between lift and spin was
determined by measuring the angular velocity from strobo-
scopic photographs, and comparing the recorded trajectories
with calculated trajectories which were computed assuming
proportionality between C

L
and c. For Reynolds numbers

between 550 and 1600, and dimensionless angular velocities
less than 0.7, they proposed the following relationship

C
L
\(0.40^0.10)c (6)

A numerical investigation in the range 0\ReO40, performed
by Chegroun and Oesterlé (1993), showed that the lift coeffic-
ient decreases with increasing Re at fixed c. At low Reynolds
numbers (ReO5), the predicted values of C

L
were approxim-

ately proportional to c, however the ratio C
L
/c was found to

significantly decrease with increasing Re for Re[5. Neverthe-
less, such results need still to be confirmed and to be extended
at higher Reynolds numbers.

This brief review shows that there is still a lack of informa-
tion in the range 1\Re\500, which corresponds, for instance,
to the frequently encountered case of particles having a dia-
meter between 0.1 and 1 mm, suspended in a gas or a liquid
flow. That is the reason why we aimed at performing lift
measurements at Reynolds numbers belonging to this inter-
mediate range.

In this paper, we will first describe the original experimental
technique we developed for such measurements. Complete
results concerning the lift coefficient will then be given and
discussed. The present results are compared with the above-

mentioned previous works, and an empirical correlation for
predicting the lift coefficient is finally proposed.

2
Experimental arrangement and method
As pointed out by Tsuji et al. (1985), direct measurement of the
force acting on a spinning sphere is very difficult in the range
of Reynolds numbers lower than 103, since it would need the
use of a very small sphere, placed in a uniform liquid flow,
and the transverse force would be too small to be measured.
Moreover, such a direct method would involve a supporting
device, including for instance an electric motor, which might
lead to significant flow disturbance. The present experimental
technique lies therefore on an indirect method, which consists
in examining the trajectory of a sphere moving upwards in
a liquid at rest. As can be seen in Fig. 1, the sphere is equipped
with two very thin cylindrical axles, which are symmetrically
fixed along a diametrical direction. A sketch of the experi-
mental apparatus is given by Fig. 2. The motion is induced by
means of a counterweight (M) and two suspension threads,
which are coiled on the axles, yielding a rotational velocity
which can be deduced from the measurements of the velocities
of the sphere and of the counterweight (the latter being
measured by means of the laser device shown on Fig. 2). Note
that the lateral deviation of the sphere is exaggerated for the
sake of clearness of the figure.

In order to allow the angular velocity of the sphere to be
controlled and measured, sphere diameters of at least 1 cm
were chosen. Moreover, the relative velocity of the sphere
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Fig. 3. Upward motion of the sphere in the straight part of the
trajectory

Table 1. Summary of test conditions and run references

Sphere Sphere Axle Mass Thread Run
material diameter diameter [g] diameter reference

[mm] [mm] [mm]

Brass 17.0 1.00 24.150 0.08 Ba
0.12 Bb

1.00 24.302 0.12 Bc
1.50 27.020 0.12 Bd

Duralumin 30.2 1.50 42.192 0.08 Da
0.12 Db

2.00 49.374 0.12 Dc
55.1 1.50 251.26 0.12 Dd

2.00 252.10 0.12 De

Titanium 25.0 1.50 39.170 0.12 Ta
0.18 Tb

38.8 1.50 138.544 0.18 Tc

centre with respect to the fluid should be high enough so that
any possible free convection motion may be neglected. Under
such conditions, Reynolds numbers ranging between 10 and
140 could be obtained by using a sufficiently viscous liquid,
and the transverse force acting on the sphere could be detected
and measured by analysing its trajectory, as will be shown
hereafter.

2.1
Description of the motion of the sphere
The momentum conservation of the sphere yields the following
general equation of motion, written under vectorial form:

(m]ma)
dV
dt

\m@g]F
L
]F

D
]F

T
(7)

where m and m
a

are the mass and the added mass, respectively,
of the sphere and the axles, and m@ is the apparent mass of the
sphere (including the axles), obtained by subtracting the mass
of the liquid displaced from the total mass m, in order to
account for the buoyancy force. V is the sphere velocity, g is the
gravity acceleration, F

L
and F

D
are the lift and drag force

vectors, and F
T

denotes the tension of the suspension threads.
Note that the lift and drag forces in Eq. (7) include the
contribution of the cylindrical axles.

The conservation of angular momentum leads to

J
du
dt

\[T]a1FT
(8)

where J is the moment of inertia of the moving body (sphere
and axles), u its angular velocity, F

T
the magnitude of the

tension of the threads, and a
1

denotes the coiling radius, which
is the sum of the radii of the axle and of the thread.

Due to the presence of the fixed pulley A, the sphere reaches,
after an acceleration phase giving rise to a lateral deviation,
a steady rectilinear motion with constant linear and angular
velocities, as illustrated in Fig. 3. During this steady-state
phase, the equations of motion lead to the following simplified
expressions of the lift, drag and torque, where u denotes the
angle between the straight trajectory and the vertical direction:

F
L
\m@g sin u (9)

F
D
\F

T
[m@g cos u (10)

T\a1FT
(11)

Because of the friction at the pulleys, the force F
T

is not
accurately known, so that the drag force and the torque
unfortunately cannot be measured by the present technique.
On the contrary. Eq. (9) shows that the lift force can be directly
derived from the measurement of the angle u, keeping in mind
that the result must be corrected to take into account the lift
due to the axles (as described farther).

The main advantage of this experimental procedure lies in
the fact that the linear and angular velocities of the sphere can
be controlled by the choice of sphere diameter and density,
axle diameter and counterweight mass. Furthermore, the
behaviour of the sphere during the steady rectilinear phase of
the trajectory does not depend on the initial conditions. This
technique makes it possible to provide new results under
steady-state conditions, unlike the previous experiments
performed at Re\104, referred to in the Introduction to this
paper. It must be pointed out, however, that the proposed
method is restricted to the range of moderate Reynolds
numbers investigated herein. Experiments at higher Reynolds
numbers (103—104) were unfortunately not possible, since such
measurements would require a very large tank in order that the
steady rectilinear motion could be reached, due to the sphere
inertia increase involved by larger diameter or higher velocity.

2.2
Experimental data and procedure
Results presented hereafter were obtained in a tank of 1]1 m
side and 1.2 m depth, filled with a vegetable oil of density
901 kg/m3, and whose viscosity, lying between 0.07 and
0.09 Pa s, was carefully measured in terms of temperature. The
motion of the sphere could be observed through a plexiglass
window which is the front wall of the tank. The sphere
trajectories were photographically recorded under strobo-
scopic illumination, supplied by a Xenon flash tube (flash
duration about 80 ls). The frequency of the strobe light was set
at 10 flashes/s.

Five lathe-turned, polished spheres were used, the character-
istics of which are shown in Table 1. Cylindrical steel axles have
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Fig. 4. Example of trajectory photograph (Re\22.42, run reference
Ba6, see Table 1)

been symmetrically fixed on each side of the sphere, the length
of each part lying between 72 and 92 mm. The ratio of the axle
diameter to the sphere diameter ranged from 0.038 to 0.088.
The diameters of the suspension filaments (nylon threads)
were 0.08, 0.12 or 0.18 mm, depending on the mass of the
sphere.

Before each experiment, the sphere is placed on the bottom
of the tank (starting point S) by means of a moving supporting
device (electric motor and endless screw), and the position
of the pulley is adjusted in such a manner that the line AS
is perfectly vertical (A being the point of contact between
the thread and the pulley). After waiting for the liquid to be
perfectly still, the sphere is released with zero initial linear and
angular velocity, and its trajectory is recorded. The counter-
weight velocity V

c
is simultaneously measured by a laser

device, which may be vertically displaced in order to insure
that the measurement is performed during the straight part
of the sphere trajectory. The sphere velocity V, as well as
the angle u between the rectilinear trajectory and the
vertical direction, are obtained directly from the trajectory
analysis using a digitizing table. For the sake of preciseness
in photograph readings, each trajectory is first recorded
without spinning of the sphere, so that any uncertainty due
to the scale of the picture and to the stroboscope frequency
can be eliminated using the known data concerning the drag
coefficient of a non-spinning sphere (as given by the expres-
sion proposed by Morsi and Alexander, 1972). The angular
velocity of the sphere is then calculated by

u\
Vc[V

a1
(12)

A typical example of trajectory photograph, showing the lateral
deviation due to the sphere rotation, is given in Fig. 4. It must
be emphasized that the light-spots on the photograph repres-
ent only a small part of the sphere, since they are due to the
reflection of the flashes by the polished spherical surface. As
can be seen on the reference scale on the right of the figure,
which gives also the actual size of the sphere, the field of
view of the photograph covers about the half of the depth of
the tank. Measurements of V and u, which were generally
performed between 1

3
and 1

2
of the full height of the tank,

are deduced from coordinate readings of two points P
1
, P

2
,

belonging to the rectilinear part of the trajectory. The assump-
tion of steady rectilinear motion of the sphere is checked by
comparing the distances between two successive spots in the
lower and higher part of the path P

1
P

2
: if the discrepancy

exceeds 5%, the measurement is rejected. The accuracy of the
measurements will be discussed below.

2.3
Lift correction and uncertainty assessment
In order to account for the presence of the axles, the measured
lift force F

Lm
is corrected by subtracting the lift force due to the

axles, that is:

F
L
\F

Lm[F
La (13)

where F
L

is the lift of the sphere and F
La

is the lift of the
cylindrical axles. The corresponding correction for the lift
coefficient is written:

C
L
\C

Lm[C
L,#:-

2a
#:-

l
na2

(14)

where a
#:-

and l are the radius and the total length of the axles,
respectively. C

L,#:-
is the lift coefficient of the axles, which can

be estimated from the work of Ingham and Tang (1990), who
numerically calculated the lift of a rotating circular cylinder
at Reynolds numbers Re

#:-
\5 and Re

#:-
\20 (based on

cylinder diameter). The predicted lift coefficients were C
L,#:-

\

2.77c
#:-

at Re
#:-

\5, and C
L,#:-

\2.54c
#:-

at Re
#:-

\20, where
c
#:-

\a
#:-

u/V is the dimensionless angular velocity of the
cylinder, in the range of 0Oc

#:-
O3.

In our experiments, c
#:-

lies between 0 and 0.5, and the
cylinder Reynolds number is in the range 0.5ORe

#:-
O5.

Therefore, we decided to adopt the result obtained by Ingham
and Tang (1990) at Re

#:-
\5, namely C

L,#:-
\2.77c

#:-
. Numer-

ical calculations of the lift correction using such an estimate
show that the lift due to the axles is 6—14% of the total
measured lift, so that a 10% error in the cylinder lift leads to an
uncertainty of about 1% in the sphere lift estimate.

Our uncertainties that must be taken into account are
mainly due to the inaccuracies in the measurements of the
angle u and of the sphere velocity V. Considering that the lift
coefficient is inversely proportional to V2, and proportional to
sin u (with u@1), the relative error in C

Lm is given as follows:

DC
Lm

C
Lm

:

Du

u
]2

DV
V

(15)

where Du/u and DV/V are about 10% and 5%, respectively,
according to repeated digitizing tests intended to assess the
preciseness of coordinate readings. As a consequence, it can be
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Fig. 5a–c. Measured lift coefficient as a function of the
dimensionless angular velocity c (solid lines refer to Rubinow
and Keller’s theoretical result). a 10\Re\40; b 40\Re\80;
c 80\Re\140

considered that the measured values for the lift coefficient are
accurate to about 20%.

According to Eq. (12), the angular velocity uncertainty can
be expressed as

Du
u

\
DVc]DV
DVc[V D

]
Da1
a1

(16)

where DVc/Vc and Da
1
/a

1
are approximately 2%. Due to the

denominator DVc[V D , the first term of the r.h.s. in Eq. (16),
which may reach about 15%, is a major source of error.
Therefore, taking into account Dc/c\Du/u]DV/V, the
uncertainty in determining the dimensionless angular velocity
c can be roughly estimated to 20%.

Such a large uncertainty could conceivably have been
avoided in using some device allowing the angular velocity
to be directly obtained from the photographs, like segments
marked on the sphere surface, as was used by Tsuji et al.
(1985). So far, such a method was not possible in the present
experiments, due to lighting problems which could not be
suppressed completely: in particular, as shown by Fig. 4, the
stroboscopic illumination produces only a small light-spot on
the spherical surface, which is not broad enough to detect any
rotational motion of the sphere.

3
Results and discussion
All test conditions are summarized in Table 1, and detailed
experimental results, which cover the ranges 10\Re\140 and
1\c\6, are listed in the Appendix. In order to compare the
dependence of the lift coefficient upon the dimensionless
angular velocity with the theoretical result of Rubinow and
Keller (1961), and to study the influence of the Reynolds
number, it was decided to split the range 10\Re\140 into six
subranges, and to plot C

L
as a function of c in each Reynolds

number subrange.
Corresponding results are displayed in Fig. 5a—c, where the

solid lines illustrate the Rubinow and Keller’s relationship,
C
L
\2c, valid at small Reynolds numbers. In spite of some

scatter in the experimental results, the present measurements
reveal the tendency to obtain lower lift coefficients at higher
values of the Reynolds number. At the lower Reynolds
numbers investigated here (Fig. 5a), the lift coefficient can be
seen to be approximately proportional to the dimensionless
angular velocity. However, such a linear variation of C

L
with

c does not exist at higher Reynolds numbers, as shown by Fig.
5c. The dispersion of the results, which is particularly high in
the range 40\Re\80, may exceed the estimated uncertainty
since it is not only due to the above-quantified inaccuracy on
measured lift coefficients and angular velocities (which are
illustrated by error bars for the outermost points), but also to
some inescapable irregularities in the sphere trajectories, or
to possible influence of the suspension threads. Unfortunately,
no attempt could be made to evaluate such effects.

As can be seen in Fig. 6, which is a plot of the lift coefficient
as a function of the Reynolds number, the present data
compare favourably with the numerical predictions by Cheg-
roun and Oesterlé (1993), which are restricted to ReO40. In
particular, the numerically predicted influence of the spinning
rate, as well as the effect of the Reynolds number, are

qualitatively confirmed by the present experiments: C
L

can be
seen to decrease with decreasing c or increasing Re. Moreover,
the experimental results seem to indicate that the influence of
c vanishes for Reynolds numbers exceeding about 100. At such
values of Re, the lift coefficient is very slightly decreasing with
increasing Re. Regarding the flow structure, the numerical
predictions show that the recirculation region, due to the
separation which is known to take place for Re[20 for the non
rotating sphere (Taneda 1956; Dennis and Walker 1971),
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Fig. 6. A plot of the lift coefficient as a function of the Reynolds
number. Symbols refer to the present experiments, and solid lines
refer to the numerical results of Chegroun and Oesterlé (1993)

Fig. 7. A plot of the ratio C
L
/c as a function

of the sphere Reynolds number Re. Present
results (symbols) are compared to the
experimental results by Tsuji et al. (1985) and
Barkla and Auchterlonie (1971), depicted by
shaded areas, and to the proposed correlation,
given by Eq. (17), for c\1; 2; 3 and 4 (lines)

disappears as soon as the sphere is rotating, owing to the
no-slip condition at the sphere surface. For the same reason,
the location of the stagnation point is displaced at a distance
from the sphere, and a rotating layer exists close to the
boundary. Although no information about the flow structure
can be provided by the present experiments, this phenomenon
may explain the significant dependency of the lift upon Re in

the range investigated here, due to the crucial changes in the
pressure field and shear stress distribution at the rear side of
the sphere which occur at such intermediate Reynolds num-
bers. Further numerical calculations are needed in order to
clarify this point.

In spite of the noisy character of the experimental data, it is
possible to propose an approximate relationship expressing
the lift coefficient in terms of c and Re, provided that the
suggested correlation matches the theoretical expression given
by Eq. (4) at low Reynolds numbers, as well as the experimental
results obtained by Barkla and Auchterlonie (1971) and by
Tsuji et al. (1985) at higher Reynolds numbers. The best fit is
given by the following correlation:

C
L
:0.45](2c[0.45) exp([0.075c0.4Re0.7) (17)

In Fig. 7, Eq. (17) is plotted for c\1; 2; 3 and 4, together with
the experimental values of the ratio C

L
/c. The figure shows that

the complete range of Reynolds numbers up to about 2000 can
be described using the suggested correlation, which has the
proper limiting behaviour for both small and high Reynolds
numbers. Notwithstanding the scatter in the data, the unam-
biguous decrease of the ratio C

L
/c with increasing c and

increasing Re is satisfactorily described by Eq. (17), which may
therefore be expected to provide some improvements in
the prediction of the lift of spinning particles in suspension
flows. However, considering the lack of data for Re[140,
it is suggested to restrict the use of Eq. (17) in the range
10\Re\140.
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4
Conclusion
Results concerning the lift experienced by a spinning sphere
moving in a viscous fluid have been obtained by means of
a trajectographic technique, which was shown to be able to
provide new interesting information which is necessary,
for instance, for the computation of particle trajectories in
suspension flows. The lift coefficient has been measured under
steady-state conditions, in the range of sphere Reynolds
numbers 10\Re\140 and for dimensionless angular vel-
ocities c ranging from 1 to 6.

Despite of the difficulty to get very accurate measurements,
the influence of the Reynolds number and of the dimensionless
angular velocity has been pointed out, and a new empirical
correlation has been proposed for the lift coefficient in the
range 10\Re\140. It is suggested that this original correla-
tion should be used in order to supplement the previously
existing results of Rubinow and Keller (1961), Tsuji et al.
(1985) or Barkla and Auchterlonie (1971).

Any explanation of the behaviour of the lift coefficient in
terms of both c and Re would require further information
concerning the flow structure around the sphere. That is the
reason why additional investigation is currently being carried
out by means of numerical calculations, in order to discuss the
observed results with relevance to the changes which take place
in the velocity and pressure fields.

Appendix

Run n°1 Re c C
L

Run n° Re c C
L

Ba1 11.36 5.250 4.986 Bc13 55.28 1.325 0.847
Ba2 11.55 0.905 0.985 Ta2 55.40 3.285 0.949
Ba3 16.73 1.765 2.197 Dd5 55.89 2.635 0.590
Ba4 19.01 4.335 2.930 Tb9 57.08 2.180 0.726
Ba5 21.12 2.055 1.480 Bc14 57.34 1.910 1.506
Ba6 21.40 5.530 4.040 Bc15 57.69 1.145 0.790
Ba7 22.12 2.925 3.530 Dc6 57.71 1.415 0.860
Ba8 22.42 1.910 1.886 Tb10 57.84 1.355 0.638
Ba9 23.60 2.295 1.615 Ta3 59.12 3.285 1.080
Ba10 23.69 2.230 2.650 Tb11 59.81 1.135 0.945
Db1 24.69 3.080 2.529 Tb12 60.58 1.405 0.548
Ba11 24.94 1.350 1.220 Tb13 61.24 1.145 0.855
Ba12 25.45 1.000 1.196 Tb14 62.05 1.175 0.420
Bd1 26.36 3.850 3.819 Tb15 63.03 1.525 0.852
Ba13 27.41 1.590 1.330 Bc16 63.35 1.660 1.057
Ba14 28.65 1.465 1.070 Tb16 64.41 2.995 0.780
Ba15 28.84 1.350 1.179 Tb17 66.92 1.760 0.878
Bc1 29.40 1.895 1.166 Tb18 68.17 2.350 0.780
Bc2 31.82 1.305 0.925 Tb19 68.38 2.010 0.678
Bc3 32.78 1.500 1.483 Tb20 68.81 1.070 0.883
Tb1 33.43 3.495 2.278 Dc7 68.83 3.185 0.720
Bd2 35.27 3.460 2.808 Tb21 69.85 2.545 0.667
Da1 35.30 1.838 1.250 Tb22 70.28 1.780 0.823
Tb2 36.38 1.735 1.881 Tb23 70.58 2.005 0.948
Bd3 38.34 2.765 1.840 Dc8 71.33 2.890 0.988
Bc4 39.62 1.940 1.341 Tb24 71.86 2.125 0.841
Bc5 40.58 3.115 1.350 Tb25 71.94 1.940 0.765
Tb3 42.31 1.340 1.020 Dc9 72.00 1.970 1.262
Bc6 42.47 1.165 0.640 Tb26 74.45 2.700 1.072

Run n°1 Re c C
L

Run n° Re c C
L

Bc7 44.14 3.785 1.410 Tb27 75.83 2.295 0.790
Tb4 44.29 1.265 0.865 Dc10 77.53 1.720 0.880
Dc1 44.84 3.340 1.940 Tc1 79.64 3.005 0.619
Bc8 45.17 1.115 0.990 Ta4 79.67 2.100 0.697
Tb5 45.46 1.350 1.372 Tb28 79.73 1.475 0.865
Dc2 46.01 3.520 1.690 Tb29 86.63 2.415 0.895
Tb6 46.08 1.265 0.581 Dc11 87.15 1.895 0.800
Bc9 46.25 2.710 0.950 Tc2 90.45 2.795 0.777
Bb1 46.56 3.410 2.080 De1 90.57 4.110 1.150
Bb2 46.95 3.670 1.590 Tc3 91.04 2.320 0.716
Tb7 47.18 1.625 0.912 Tc4 91.94 2.770 0.667
Bc10 47.30 1.205 0.530 Tc5 92.28 2.155 0.718
Bb3 48.16 3.620 1.610 Tb30 92.33 1.605 0.767
Dc3 48.94 3.200 1.070 Tc6 93.88 2.835 0.726
Tb8 48.99 2.405 1.270 Dd1 102.83 4.765 0.720
Dc4 49.81 1.800 0.737 Dd2 104.21 4.305 0.790
Bb4 50.39 2.490 2.170 De2 108.60 3.860 0.960
Ta1 51.61 3.145 1.660 Tc7 116.15 1.615 0.607
Bc11 52.25 1.195 0.660 Dd3 116.86 2.825 0.700
Bc12 54.93 1.640 1.550 Tc8 122.18 1.370 0.791

Dd4 137.82 6.050 0.770

1See Table 1 for run references
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