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A four-sensor hot-wire probe system for three-component velocity measurement
K. S. Wittmer, W. J. Devenport, J. S. Zsoldos

Abstract A velocity measurement system based on a minia-
ture four-sensor hot-wire probe capable of simultaneous
three-component measurements throughout a wide range of
flow angles has been developed. The calibration technique
allows measurements to be made throughout the acceptance
cone of the probe without being restricted by the errors
associated with analytic angle response equations. This
technique is based upon look-up tables with values which tend
to vary slowly, allowing a simple interpolation scheme to be
used. Measurements made in a turbulent pipe flow verify the
accuracy of the technique.

1
Introduction
Multiple sensor hot-wire probes offer some desirable charac-
teristics for measuring moderately turbulent flows away from
walls. They give continuous, low-noise signals required for the
measurement of low turbulence levels and velocity spectra; and
can provide the type of statistical turbulence information
usually used by turbulence modellers. X-wire probes are
relatively easy to operate but produce large uncertainties in the
complete Reynolds stress tensor field because all three velocity
components cannot be measured simultaneously. Triple wire
probes are capable of simultaneous three-component measure-
ments, but their typical sensor configuration make them
sensitive to velocity gradient errors, particularly those
associated with streamwise vorticity (Devenport et al. 1992).
Four-sensor probes consisting of two orthogonal X-wire arrays
(Fig. 1) — normally associated with vorticity measurements
(Kovasznay 1954) — are capable of simultaneous three-
component velocity measurements from a relatively compact
measurement volume and appear to overcome some of the
gradient error problems associated with triple wire probes.
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Initially it might appear that there are several difficulties
associated with the use of a four-sensor probe for velocity
measurements. Standard hot-wire angle response equations
derived via Jorgensen’s method (Jorgensen 1971) yield a non-
linear set of equations which are inaccurate at large flow angles
due to effects such as prong interference. Most direct
calibration methods improve accuracy but usually require
sophisticated interpolation schemes. The calibration technique
for the four-sensor probe described here overcomes these
limitations. The complete hot-wire system is capable of rapid
and accurate, three-component, velocity, turbulence, and
spectral measurements.

2
Four-sensor probes and measurement system
Probes were manufactured by Auspex Corporation (type
AVOP-4-100). Eight stainless steel or nickel plated tungsten
tapered prongs (75 lm in diameter at their tips) position the
wires some 40 mm upstream of the main part of the probe
(Fig. 2) inside a measurement volume of approximately
0.5 mm3. The sensors are etched tungsten wire of 5 lm
diameter with an approximate length of 0.8 mm giving a length
to diameter ratio of about 160. Sensors are arranged as two
orthogonal X-wire arrays with each wire inclined at a nominal
45° angle to the probe axis. Figure 1 defines the coordinate
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Fig. 2. Auspex Corporation four-sensor probe (type AVOP-4-100) construction

Fig. 3. Measurement system
block diagram

1The bridge output voltages are corrected for small changes in ambient
temperature using the method of Bearman (1971).

system and sensor numbering convention. The probe aligned
velocity components U, V and W are directed along the x, y and
z axes respectively. One X-wire array is formed by sensors
1 and 3 (both parallel to the x—y plane), the other X-wire array
is formed by sensors 2 and 4 (both parallel to the x—z plane).
The subscript i is used to denote quantities associated with the
i-th sensor where i\124. Angles (hi) associated with the
sensors are acute angles measured from the x-axis.

A block diagram of the measurement system is shown in
Fig. 3. Hot-wire sensors are operated separately using Dantec
56C17/56C01 constant temperature anemometer units. The
anemometer bridges are optimized to give a frequency
response greater than 25 kHz. Output voltages from the
bridges are recorded by an IBM AT compatible computer using
an Analogic 12 bit HSDAS-12 A/D converter which contains
four separate converters. Hot-wire signals are buffered by four
]10 buck-and-gain amplifiers. The amplifiers contain calib-
rated RC-filters which limit their frequency response to 50 kHz,
providing high-frequency noise attenuation. The buck-and-
gain is used so that the anemometer voltage outputs span the
full range of the A/D converter over the velocity range of the
measurement. Voltage outputs from a digital thermometer and
pressure transducer are also sampled by the A/D converter.
The digitized raw voltage data is stored on optical disk. An 18-8
Laboratories PL2510 array processor is used to calculate
velocity estimates ‘‘on line’’. Calibration procedures outside of
the wind tunnel are accomplished by placing the probe in the
uniform potential jet of a TSI model 1125 calibrator. The probe
can be manually pitched and yawed to a known angle in this jet
with the use of two rotary stages.

3
Calibration technique
Calibration of a multiple sensor hot-wire probe is in essence
the determination of an empirical relationship between the
output voltages of the sensors and the components of the
velocity vector. Determining this three-dimensional function

purely by measurement is, in many circumstances, a prohibi-
tively time-consuming task considering the frequent recalibra-
tion that must be performed to account for fouling and aging
of the sensors. One therefore seeks a simplification of this
function to a manageable level without significantly compro-
mising the accuracy of the results.

The central assumption of the present scheme is that the
calibration can be split into two components. First, a tradi-
tional King’s law type calibration between sensor voltage
and an effective cooling velocity that accounts for the wire
properties and may be frequently repeated to account for their
drift due to fouling and aging.1 Second, a relatively sophisti-
cated angle calibration between the four effective velocities and
the three-components that accounts for sensor and prong
geometry effects that requires only occasional repetition.
Our calibration technique is inspired by the method of
Mathioudakis and Breugelmans (1985) which greatly extended
the useful range of flow angles which can be accurately
measured by a triple wire probe.

3.1
Angle calibration
The purpose of the angle calibration is to establish the
relationship

V\UiL]VjK]WkL\f(U
%&&1

, U
%&&2

, U
%&&3

, U
%&&4

) (1)

through measurement of a specific set of points and interpola-
tion between those points. Here V is the (instantaneous)
velocity vector and U

%&&i
are the effective velocities inferred

from the King’s law calibration (below). To maximize the
accuracy of the calibration and minimize the number of
measurements required to establish it, it is desirable to cast
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Fig. 4. Angle calibration points within the acceptance cone (indicated
by dashed line) used to determine f1 , f2, f3 with Q\25 m/s

f in a form in which the interpolation is carried out only on
quantities that vary slowly. We have chosen

V\f1(Ve/Qe , We/Qe) )Qe]Ve (2)

W\f2(Ve /Qe , We /Qe) )Qe]We (3)

Q\f3(Ve/Qe , We/Qe) )Qe]Qe (4)

where Q is the magnitude of the velocity vector. Obviously

U\JQ2[V2[W2. The new variables V
e
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e
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e
are rough

estimates of the velocity components and vector magnitude
obtained from the effective velocities using approximate
analytic functions so that the functions f

1
, f

2
, f

3
contain all the

implicit interpolation. By writing the calibration in this form,
we gain control over task facing the interpolation scheme
— the better the analytic functions used to obtain V

e
, W

e
, Q

e
,

the smaller the variations in f
1
, f

2
, f

3
that must be interpolated,

and the less the significance of the interpolated part. Note
that we have assumed that these functions are independent
of the velocity magnitude (i.e. Reynolds number). This is
not absolutely necessary but was found to be a very good
approximation, as is demonstrated below.

In the present work we obtained the analytic functions for
V

e
, W

e
, and Q

e
simply by assuming that the sensors respond

only to the velocity component normal to them. This choice is
not necessarily optimum — there are obviously more sophisti-
cated analytic approximations to the response of a hot-wire
— but it was found to be perfectly adequate for the present
purpose of yielding functions f

1
, f

2
, f

3
suitable for simple

interpolation. Using the geometry (in particular the wire angles
h
i
) and coordinate system of Fig. 1 we write
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where C
i
\sin2 h

i
and D

i
\sin h

i
cos h

i
. Note that we have

averaged the two U
e

relations obtained from Eqs. (5) and (7),
and (6) and (8), to minimize gradient errors resulting from
axial vorticity (see Appendix).

Sensor angles were determined both by direct measurement
(with the use of a tool-makers microscope) and by measuring
the ratio between the effective velocity with the sensor normal
to the flow and the probe axis aligned with the flow. The results

were in all cases nearly identical, but varied by as much as 5°
from the nominal sensor angle of 45°.

To determine the functions f
1
, f

2
, f

3
, the probe was placed in

the jet of the TSI calibrator to measure the cooling velocities as
the probe is pitched and yawed over all likely angle combina-
tions; usually ^45° in increments of 5° or less. At each angle,
velocity component estimates are compared with the actual
velocity components U, V, W inferred from the known flow
angles to determine f

1
, f

2
, f

3
from Eqs. (2)—(4).

To ensure that f
1
, f

2
, f

3
are single valued functions, points

outside the acceptance cone of the probe must be eliminated.
The acceptance cone is the region within which there is a single
valued mapping between (V

e
/Q

e
, W

e
/Q

e
) and (V/Q, W/Q). The

edge of the acceptance cone may therefore be identified by
a change in sign of the Jacobian

L(Ve/Qe , We/Qe)
L(V/Q, W/Q)

which is easily computed numerically from the calibration
data.

Figure 4 shows the acceptance cone of a typical probe and
the angle calibration points within it used to determine f

1
, f

2
, f

3
.

The acceptance cone has a roughly diamond shaped limit
indicating that larger flow angles can be measured if the flow
direction corresponds to a near pure pitch (h

z
) or yaw (h

y
)

(refer to Fig. 1 for coordinate system). The limit corresponds
approximately to the angle at which reverse flow occurs on
a sensor. The maximum flow angle which can be measured in
pure pitch or yaw for this particular probe is approximately
40°. However, regardless of the roll orientation of the probe,
flow angles less than 30° can always be measured. Contours
of f

1
, f

2
, f

3
are shown in Fig. 5 for flow angles within the

acceptance cone. These plots show that sophisticated interpo-
lation is not required because f

1
, f

2
, f

3
vary slowly over most

of the acceptance cone — an advantage of this method over
others in which look up tables are used (e.g. Browne et al. 1989,
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Fig. 5. Contours of f1, f2 , f3 throughout acceptance cone of probe
measured with Q\25 m/s. Symbols represent locations within the
acceptance cone of the mean flow for the pipe flow measurements and
are consistent with the legends in Figs. 7—9

Leuptow et al. 1988, Döbbeling et al. 1990). Contours of f
1

indicate that the V-component of velocity is estimated well
from Eq. (9) if the probe is in pure yaw, and likewise, contours
of f

2
indicate that the W-component of velocity is estimated

well from Eq. (10) if the probe is in pure pitch. Contours of f
2

have an appearance similar to f
1

if rotated 90° — as expected due
to the symmetry of the sensors. Away from pure pitch and
yaw, however, the errors are significant and the interpolated
functions are clearly needed for accurate measurement. The
function f

3
shows that Q is consistently over-predicted by the

linearized equations, and the corrections vary even more
slowly than f

1
and f

2
.

To permit rapid application of the angle calibration, ordered
look-up tables for f

1
, f

2
, f

3
were created by linearly interpolating

the data using triangulation (linear interpolation in the plane
defined by the three surrounding points). These tables,
representing 32]32 evenly spaced values of V

e
/Q

e
, W

e
/Q

e
over

the acceptance cone of the probe, were interpolated using
a bi-linear interpolation scheme when applying the calibration
to measurements.

To examine the combined effects of the triangulation and
bi-linear interpolation procedures and to verify the calibration
and measurement reduction software, velocity measurements
obtained from an angle calibration were reprocessed using the
angle calibration and compared to those inferred from the
pitch and yaw angle of the probe. Residual errors were typically
less than 0.05%Q over the acceptance cone.

A major advantage of this direct angle calibration method is
that accurate measurements can be made for non-ideal probe
geometries. For example, a probe whose sensors do not
lie precisely in the x—y and y—z planes (see Fig. 1) can be
calibrated just as easily. Furthermore, we have found through
repeated calibration of the probe over many years of
application of this technique that the angle calibration is
almost completely insensitive to sensor properties if the probe
tip geometry remains unaltered. As a result it is only necessary
to recalibrate occasionally over the life of the probe. The
calibration is also relatively insensitive to Reynolds number, as
is assumed in this formulation. This is illustrated in Fig. 6
where, for example, f

2
has been measured at jet velocities of

17.7 m/s and 12.5 m/s with the same probe represented in
Fig. 5 where the jet speed was 25 m/s. Comparing all three
speeds, differences of less than 1% exist even though the
velocity magnitude varies by a factor of two. Similar invariance
was observed for f

1
and f

3
.

3.2
Velocity calibration
Velocity calibrations are performed for two purposes: (a)
to provide the relationship between the four sensor output
voltages (E

i
) and the effective velocities needed to perform

the angle calibration, and (b) to update that relationship to
account for changes in the cooling properties of the sensors
during prolonged wind tunnel measurements.

Prior to angle calibration, velocity calibrations are per-
formed in the calibrator jet with the probe axis aligned with the
flow direction. The sensor output voltages are correlated with
the jet velocity using King’s law

E2
i\Ai]BiU

0.45
%&&i

(12)
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Fig. 6. Effects of Reynolds number on f2 . Top figure is for
Q\17.7 m/s, bottom is for Q\12.5 m/s. Compare with Fig. 5 for
Q\25 m/s

2For small misalignement angles use of the look-up tables is not
necessary and Eqs. (5)—(8) may be used since f

1
, f

2
, f

3
remain very close

to zero for small angles as evidenced by Fig. 5.

where U
%&&i

is obtained from the jet velocity using the reduction
of Eqs. (5)—(8) with V\W\0. This guarantees that the
functions f

1
, f

2
, f

3
are zero for zero pitch and yaw.

Subsequent velocity calibrations can also be performed, if
necessary, with a known misalignment between the probe axis
and flow direction. The only difference is that the effective
velocities are determined from the inversion of the angle
calibration for the values of U, V, W calculated from the flow
velocity and misalignment angle.2 This method is particularly
useful during extended wind tunnel measurements since it
allows the probe to be calibrated in the free stream without
performing a tedious alignment of the probe. To determine the
misalignment angle in this circumstance we used a 7-hole yaw
probe with a mount and angle calibration matched to that of
the hot-wire probe.

Note that the velocity calibration procedure assumes
implicitly that the angle calibration is independent of flow
velocity, as demonstrated above.

4
Measurements and verification
To verify the accuracy of the hot-wire system and calibration
techniques, measurements were made in a fully developed
turbulent pipe flow. This flow has the useful property that the
shear stress distribution can be determined from the pressure
drop along the pipe. Specifically, the total axial-radial shear
stress (q

xr
) varies linearly from 0 at the pipe centerline to

a maximum of q
w

at the pipe wall. The wall shear is given by the
pressure drop along the pipe as

qw\
R
2

dP
dx

(13)

The shear stress in the flow is the sum of laminar and turbulent
stresses i.e.

q\k
LUx
Lr

[ouxur (14)

The turbulent shear stress can be explicitly determined by
using the mean velocity profile to calculate the laminar stress.
Following Nikuradse (1932), the mean axial flow velocity
profile should be well represented by the 17th-power law:

Ux
U0

\CA1[
r
RB

1/7
(15)

for 1[r/R\0.9 at a Reynolds number based on the average
flow velocity through the pipe of 1]105 where U0 is the mean
velocity at the pipe centerline, R is the pipe radius, and C is
a constant.

The pipe flow apparatus documented previously by Shaffer
(1985) was used. The inside diameter of the pipe is 0.08 m
and it has a length of approximately 240 diameters after
flow conditioning honeycomb and screens. For the present
measurements, the centerline velocity at the exit plane of the
pipe was set of 25 m/s corresponding to a Reynolds number
based upon the pipe diameter and average velocity of about
1]105. The pressure drop was measured along the last 75

diameters to calculate a friction velocity (U*\Jqw/o of
0.96 m/s.

All measurements were made at the exit plane of the pipe
in radial profiles. Six orientations of the probe were used
to test the ability of the probe to measure all three velocity
components at various locations within the acceptance cone.
Two sets of profile measurements were made with the axis
of the probe roughly aligned with the axis of the pipe: the
difference between the two being a roll angle of 90°. The probe
was then pitched roughly 10° and measurements were made
for roll angles of 0 and 90°. Likewise, the final two sets of
measurements were made with the probe pitched at approxim-
ately 20°. The orientations of the probe relative to the mean
flow direction are shown on the angle calibration plots of
Fig. 5. Five of the six orientations are comfortably within the
acceptance cone bounds. However, the case of 20° pitch, 0° roll
(¢) is close to the edge of the acceptance cone due to the
non-ideal geometry of the probe.
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Fig. 7. Mean axial velocity and turbulent shear stress profiles
measured in a fully developed pipe flow using the direct angle
calibration technique. Legend lists probe angle with respect to pipe
axis (location of mean flow within acceptance cone shown in Fig. 5).
Solid line indicates theoretical profile

Fig. 8. Normal stress profiles measured in a fully developed pipe flow
using the direct angle calibration technique. Legend lists probe angle
with respect to pipe axis (location of mean flow within acceptance
cone shown in Fig. 5)

Measured velocity profiles are shown in Figs. 7 and 8. For all
six probe orientations, the mean axial velocity profiles (Fig. 7)
are very similar to each other and the 17th-power law. The
largest difference is only 2% U

=
at 1[r/R\0.0625 which

could be due to the uncertainty in the probe position.

Turbulent shear stress (uxur) profiles for the five probe
orientations well inside the acceptance cone lie within ^7%
of the theoretical profile for points as close to the wall as
1[r/R\0.125. In fact, it is encouraging that the probe is
measuring the shear stress to within 10% at 1[r/R\0.0625
(about three measurement volumes away from the wall)
considering the large axial velocity gradient. With the probe
at 20° pitch, 0° roll, however, the measured turbulent shear
stresses are approximately 17% high indicating some inaccur-
acy of the calibration or its interpolation at the limits of the
acceptance cone. The axial turbulent normal stress (u2x) profiles
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Fig. 9. Turbulent shear stress profiles measured in a fully developed
pipe flow without using the direct angle calibration technique.
Legend lists probe angle with respect to pipe axis

(Fig. 8) are within about 5% of each other for all probe
orientations. The radial and tangential normal stresses
measured for the 0 and 10° pitch orientations are almost
identical. However, the profiles measured with the probe at 20°
pitch vary from the others — up to 20% for the extreme case of
20° pitch, 0° roll, where the mean flow is close to the edge of the
acceptance cone of the probe.

As an example of the importance of the direct angle
calibration, Fig. 9 shows the uxur profiles calculated using only
the linearized equations (Eqs. (9)—(11)). As would be expected,
increasing the misalignment between the probe axis and
the mean flow, increases the error significantly. Also, these

equations estimate non-zero values up to 23%U2* for the uruh
and uxuh components.

Other, more circumstantial, evidence that this hot-wire
system provides accurate measurements of turbulence stresses
in a complex three-dimensional flow is contained in the work
of Devenport et al. (1996). They measured in detail the
turbulence stress field in the laminar vortex core of a tip vortex.
Predictions of this stress field based upon the wandering
motions of the vortex agreed very closely with the hot-wire
data.

5
Conclusions
A velocity measurement system based on a miniature
four-sensor hot-wire probe capable of simultaneous three-
component measurements throughout a wide range of flow
angles has been developed. The calibration technique allows
measurements to be made throughout the acceptance cone
of the probe without being restricted by the errors associated
with analytic angle response equations. Calibration of the
probe is accomplished in two parts: a velocity calibration
which accounts for changing sensor properties, and an angle
calibration which accounts for probe geometry. The angle
calibration is a combination of analytic equations and look-up
tables whose values tend to vary slowly allowing the use of

a simple interpolation scheme. The formulation of the angle
calibration makes clear the tradeoff between the complexity of
the analytic model and the sophistication of the interpolation.
The angle calibration is found to be nearly independent of
velocity magnitude and cooling properties of the sensors. In
principal, the calibration technique allows the probe to be used
for measurements with up to a 30° angle between the probe
axis and the flow direction. Measurements of turbulent shear
and normal stresses in a fully developed pipe flow are accurate
with the probe pitched up to 20°.

Appendix
The following is an analysis similar to that of Vukoslavc9 ević
and Wallace (1981), and Cutler and Bradshaw (1991), which
was adapted to determine the significance of errors produced
by velocity gradients for this particular four-sensor probe.
Specifically, the errors resulting from use of Eqs. (9)—(11)
where the velocity field is assumed constant across the
measurement volume will be analyzed. This analysis therefore
does not consider the look-up tables.

If the velocity field about a point located at the center of the
measurement volume (U, V, W) is expanded as a first order
Taylor series, the velocity field experienced by the center of the
i-th sensor (Ui , Vi , Wi) is:

U1\U[Dz
LU
Lz

, V1\V[Dz
LV
Lz

, W1\W[Dz
LW
Lz

(16)

U2\U[Dy
LU
Ly

, V2\V[Dy
LV
Ly

, W2\W[Dy
LW
Ly

(17)

U3\U]Dz
LU
Lz

, V3\V]Dz
LV
Lz

, W3\W]Dz
LW
Lz

(18)

U4\U]Dy
LU
Ly

, V4\V]Dy
LV
Ly

, W4\W]Dy
LW
Ly

(19)

where 2Dy is the distance between sensors 2 and 4, and 2Dz
is between sensors 1 and 3. Substituting Eqs. (16)—(19)
into (5)—(8) and using the same assumptions used to obtain
Eqs. (9)—(11), we find the errors due to the velocity gradients
are:

U[Ue

\

Dz
LV
Lz

[cos (h1[h3)]cos(h1]h3)][Dz
LU
Lz

sin(h3[h1)

2sin(h1]h3)

]

Dy
LW
Ly

[cos (h2[h4)]cos(h2]h4)][Dy
LU
Ly

sin(h4[h2)

2sin(h2]h4)
(20)

V[Ve

\

Dz
LU
Lz

[cos (h1[h3)[cos(h1]h3)]]Dz
LV
Lz

sin(h3[h1)

sin(h1]h3)

(21)
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W[We

\

Dy
LU
Ly

[cos (h2[h4)[cos(h2]h4)]]Dy
LW
Ly

sin(h4[h2)

sin(h2]h4)

(22)

For simplicity, consider the case of an ideal probe with h
i
\45°,

D
y
\D

z
. Equations (20)—(22) reduce to:

U[Ue\[
1
2
DyA

LV
Lz

]
LW
Ly B (23)

V[Ve\[Dy
LU
Lz

(24)

W[We\[Dy
LU
Ly

. (25)

These equations illustrate the basic relationships between
the velocity errors and the local velocity gradients and are
similar to those derived by Cutler and Bradshaw (1991). The
averaging of the two U estimates results in the streamwise
velocity gradient error (Eq. (23)) being proportional stream-
wise strain rate for the case of an ideal probe instead of the
streamwise vorticity. This averaging can be essential in some
situations (e.g. trailing vortex measurements).
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