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Shape of a shock wave front diffracting on a perforated wall
H. Onodera

Abstract The shape of a shock wave front diffracting on
a perforated wall is determined by comparing numerical data
and experimental findings. Experiments were conducted in
a 60 mm]150 mm cross sectional area shock tube equipped
with a double-exposure holographic interferometer. The
numerical simulation was conducted using a TVD upwind
finite difference scheme. First, a discharge coefficient for
the mass flow through the perforations was determined by
comparing the numerical results with those obtained using
a simplified quasi-one-dimensional analysis. This value agreed
well with the experimentally obtained value. Finally, the shape
of a backward inclined incident shock wave over a perforated
wall was successfully determined by employing this discharge
coefficient and the numerical result.

List of symbols
A two-dimensional perforated area
a speed of sound
L distance between the first slit and the shock front
(m) mass flux
Ms incident shock wave Mach number
P intersection point of the incident shock wave and

the perforated wall
s interval between slits
t time
u component of the flow velocity in the x-direction
v component of the flow velocity in the y-direction
x x-direction
y y-direction
Dx interval of one computational mesh in the x-

direction

Dy interval of one computational mesh in the y-
direction

c specific heats ratio
e perforation ratio
f flow discharge coefficient
o density
s glancing incidence angle

Indices
0 initial condition
2 flow condition behind the incident shock wave
4 flow condition inside the perforation
qs quasi-one-dimensional analysis
re reservoir condition
st stagnation condition
max maximum value obtained in numerical simulation

1
Introduction
It is reported that noise or vibration which appears in
pneumatic machines or pipe line systems are caused by shock
waves propagation (Okutsu 1984), or are due to shock wave
emerging from the pipe open end. The emerging shock wave,
even when it is weak, may cause a noise problem similar to
a sonic boom. Similar phenomena are found in automobile
engines. Weak shock waves generated in exhaust manifolds of
internal combustion engines cause a metallic noise from the
silencers (Matsumura and Onodera 1991). In the case of rail-
way systems, compression waves generated by a high speed
train entering a tunnel can coalesce into a shock wave and
create a boom at the tunnel exit (Aoki et al. 1991; Kage et al.
1992).

From an industrial point of view, it is important to
understand the movement of shock waves in pipe line systems.
Once this is understood, the noise induced in the pipe line
systems, or shock induced vibrations, could be controlled.

It has been reported that porous materials are effective in
attenuating shock waves and, therefore, shock wave propaga-
tion in porous media or along a perforated wall has been the
subject of many studies, e.g., Szumowski (1971); Lee et al.
(1976); Frolov and Gelfand (1991). Shock wave propagation
over a perforated wall is a complicated phenomenon and
therefore, it is difficult to clearly identify the details of the
flow mechanism responsible for attenuating the shock wave
and thereby regulating the flow behind it.

As a first attempt a quasi-one-dimensional flow model
was used. The attenuation of a shock wave propagating in a
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Fig. 1a–c. Comparison between experimental and numerical
simulation. a Interferogram; b numerical simulation; c density
distribution behind the incident shock wave

perforated pipe was analyzed and subsequently, the discharge
coefficient (defined as the ratio between the real discharge and
the theoretically predicted value) was empirically obtained
(Szumowski 1971; Deckker and Koyama 1983). This discharge
coefficient was employed as a parameter for fitting the quasi-
one-dimensional results to experimentally obtained data.
However, in reality shock wave propagation and the flow
field induced in a perforated pipe are not one-dimensional.
Therefore, the predictions based on a quasi-one-dimensional
model show discrepancies when compared with experimental
results.

For predicting the shape of a shock wave diffracting around
a corner, the CCW (Chester, Chisnell and Whitham) theory,
suggested by Whitham (1957), is employed. However, the
shape of a diffracting shock wave predicted by the CCW theory,
does not agree with experimental findings. De Bore (1963)
analyzed the local curvature of shock fronts disturbed by the
wall boundary layer developed in a shock tube. He employed
the small perturbation theory assuming that the shock front,
on the side wall, is disturbed due to a local change in the wall
curvature caused by the side wall boundary layer displacement
thickness. However, to the best of author’s knowledge, there is
no applicable method to predict the shape of a shock wave
diffracting over a perforated wall.

The shape of a diffracting shock wave is controlled by the
mass outflow velocity from perforations and by the main flow
velocity. Therefore, when using the simple quasi-one-dimen-
sional analysis it is necessary to employ an adequate discharge
coefficient. By using an appropriate discharge coefficient, one
can obtain mass outflow velocity through perforations from
analysis.

In the present paper, a TVD scheme is employed for
describing the two-dimentional flow field developed behind
a diffracting shock wave. In addition, a physically reliable
discharge coefficient (Onodera and Takayama 1994), which
was obtained from quantitative comparison between numerical
results and quasi-one-dimensional analysis, is used for deter-
mining the shape of the diffracting shock wave front.

2
Experimental facility
Experiments were conducted in a 60 mm]150 mm shock tube
of the Shock Wave Research Center, Institute of Fluid Science,
Tohoku University. A detailed discription of this facility is
available in Onodera and Takayama (1990a).

Mylar diaphragms of 100, 188 and 250 lm thickness were
used. The test gas was air (c\1.4) at initial pressures within
the range from 60 to 100 kPa, and for driver gases, nitrogen or
helium were used. Incident shock wave Mach numbers (Ms)
thus obtained were 1.54, 1.85 and 2.17, respectively. The scatter
in the shock wave Mach numbers was less than ^1%. The
perforated wall was made of a 60 mm wide and 110 mm long
steel plate on which 36 slits of 1 mm width and 7 mm deep were
machined at 2.5 mm intervals. The perforation ratio, i.e. the
ratio of the rigid wall area to the perforated area, was 0.4.

For flow visualization, a double exposure holographic
interferometer was used. A Q-switched ruby laser (Apollo
Lasers Inc., 22HD, 694.3 nm wave length, 2 J/pulse and 25 ns
pulse duration) was used as a light source. The laser was
triggered by an output signal from a pressure transducer

through a delay unit (Sugawara RE-306). The velocity of
the incident shock wave was measured using two pressure
transducers (Kistler 606L) placed 250 mm apart, just ahead of
the shock tube test section.
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3
Numerical simulation
For simulating the shock wave propagation over the perforated
wall, a TVD finite difference scheme (Yee 1989) was used in
solving the two-dimensional unsteady Euler equations. The
boundary conditions for the computational domain (shown in
Fig. 1b) are: on the solid boundary, a slip condition is used
while at the center line (the top of Fig. 1b), a free boundary
condition is employed. The same type of boundary conditions
is applied to all solid walls at the slitted region. At the solid wall
surfaces, mirror conditions are imposed on the flow velocity
component perpendicular to the wall, and slip conditions are
used for the flow velocity component parallel to the wall. At
the entrance to the computational domain, conditions given
by the Rankine—Hugoniot shock relation for the given Ms
were imposed. Nine grids were allocated for each of the solid
surfaces and six for the perforation in the slitted region.
A rectangular grid was used for the present computations, and
the entire flow field was covered by 551]251 grid points.
Computations were conducted using the super-computer (NEC
SX-2N) of the Computer Center of Tohoku University.

4
Determination of the discharge coefficient
As will be shown in Sect. 5, the incident shock wave shape
is simulated numerically and compared with experimental
findings. It is curved due to its interaction with the perforated
wall. For the numerical evaluation of its shape it is necessary to
know the value of the discharge coefficient through perforations,
and the way in which this is done is described subsequently.

Figure 1a shows an interferogram taken 94 ls after the
incident shock wave has reached the first slit. A numerical
simulation of this case, showing isopycnics, is given in Fig. 1b.
In two-dimensional flows, interferometric fringes correspond
to numerically obtained isopycnics; therefore, experimental
isopycnics can be compared directly with numerically evalu-
ated isopycnics. The density difference between neighboring
computational isopycnics is set to be identical to that observed
in the interferogram.

Shock wave diffraction at the entrance to the perforation,
shock wave transmission into the perforation, and shock
reflection from the perforations bottom can be seen in Fig. 1a.
The reflected waves finally emerge into the flow induced
behind the incident shock wave and generate secondary
disturbances (SD) (Onodera and Takayama 1990a). Unlike the
experimental arrangement, in the numerical simulation shown
in Fig. 1b, perforations penetrate through the plates thus re-
sulting in flow through the perforations. Therefore, it is reason-
able to compare numerically obtained results (Fig. 1b) with
predictions based on the quasi-one-dimensional flow assump-
tion. In both cases there is flow through the perforations. For
more details, see Onodera and Takayama (1990a, b).

Due to the numerical simulation shown in Fig. 1b, the
flow passes through the perforations, and there are no shock
reflections, only transmitted waves. In such a case no
secondary disturbances exist. It should be noted that when
studying the shape of the incident shock wave, while it
propagates over a perforated wall, a comparison between
experimental results (Fig. 1a) and the numerical simulation

shown in Fig. 1b is justified. This is so since, as can be seen
from Fig. 1a, the secondary disturbance does not reach the
incident shock wave front. At a later time, the secondary
disturbance may catch-up with the incident shock wave front.
But these reflected secondary shock waves are weakened
due to their interaction with the expansion waves emanating
from the upstream facing corner of each perforation. The
differences in visualized and computed curvature of the
incident shock wave are therefore not more than 1%
(Onodera 1991). Using these arguments it is allowed to compare
the experimental and numerical results, although the per-
foration geometry in the two cases is somewhat different.

In both Figs. 1a and b, the isopycnic distribution, the shape of
the diffracting incident shock front (which is inclined backward
due to the presence of expansion waves from the perforations),
reflected shock waves from the perforation edges, and vortices
are clearly visible. It is also apparent that the experimental and
computed flow patterns agree reasonably well with each other.
Figure 1c shows the density distribution in the y-direction, just
behind the incident shock wave. Numerical results agree well
with interferometrically obtained data. The proposed physical
model and its numerical solution presented here are obviously
effective in predicting the considered flow field.

Figure 2 shows the nondimensionalized pressure distri-
bution in the considered flow field 154 ls after the incident
shock wave reached the first slit. While the incident shock wave
travels along the perforated wall, the region of reduced
pressure expands owing to expansion waves emanating from
the slits. It is apparent from these results that the maximum
pressure ratio obtained behind the incident shock wave is
about 2.7. The pressure level in the region extending behind
the incident shock wave and the transmitted wave is no longer
the same; it substantially drops to about 0.8 at regions inside
the perforation zone. The gas flowing around and into the slit is
not fully expanded inside each slit, not as assumed in the quasi-
one-dimensional analysis; therefore, the pressure behind
the transmitted shock wave is not uniform. This is one of
the reasons for the discrepancy found between the results ob-
tained while using the quasi-one-dimensional analysis and
experimental findings.

In a previous study (e.g. Szumowski 1971), the reservoir
condition behind the incident shock wave was kept at the
stagnation condition, P

3%
{P

45
; i.e., P

3%
/P0\3.42 for Ms\1.54;

where P0 , P
3%

and P
45

denote the initial pressure, reservoir
condition, and stagnation condition behind the incident shock
wave, respectively. However, the present numerical results
suggest that the pressure jump across the incident shock wave
is at most 2.7. This means that the effective reservoir pressure,
which forces the flow through the slits, is almost the same as
the static pressure jump across the incident shock wave, which
is 2.6 for Ms\1.54. The reason for this slight discrepancy
between the pressure ratio of 2.7 and 2.6 is the interaction of
the incident shock wave with the perforations which results
in a shock reflection close to the perforation corners and
a two-dimensional flow in that region.

It is evident from the above argument that the effective
reservoir pressure was overestimated in the former studies. It
is reasonable to use the static pressure i.e., 2.6 for Ms\1.54
as the effective reservoir pressure, and not the stagnation
pressure of 3.42.
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Fig. 2. Pressure distribution in the flow domain (154 ls)

Fig. 3. Outflow mass flux from perforations

The nondimensional mass flux distribution from the per-
forations computed for a time of 154 ls after the incident
shock wave reached the first slit is shown in Fig. 3. When the
reservoir conditions exceed the critical pressure ratio of 1.89,
the nondimensional mass flux (m) is given by

(m)\o0a0A(2/(c]1))(c`1)/2(c~1) (1)

where A denotes the perforated area. In Eq. (1) the density o0 ,
speed of sound a0, and the perforation area A were nondimen-
sionalized by o

=
, a

=
and A

=
; A

=
is the 2-D cell area, i.e., the

space between two neighboring grid points, respectively. When
taking the numerical value for representing the actual flux,
then the flow discharge coefficient is determined as the ratio
between the numerically obtained maximum mass flux, i.e.,
(m)

.!9
\6.45, see Fig. 3, and the flux obtained from a quasi-

one-dimensional flow calculation (for a pressure ratio of 2.6),
using Eq. (1), i.e., (m)

24
\11.87. This results in a discharge

coefficient of f\(m)
.!9

/(m)
24
\0.54. This value agrees very

well with the empirically obtained discharge coefficient of
f\0.55 obtained for the same perforation ratio (Onodera and
Takayama 1990b).

The value of the discharge coefficient decreases as the main
flow velocity decreases. In a former study, the experimentally
obtained discharge coefficient varied from 0.35 to 0.2, whereas
the Mach number decreased from 5.0 to 1.5 (Honda et al. 1974).
Normally, the quasi-one-dimensional analysis deals with
a choked flow at places where the critical pressure is reached.
However, in reality the flow is not choked at places where
the calculated values reaches the critical pressure due to
unsteadiness of the flow field (Onodera and Takayama 1994).
Therefore, for Mach numbers around and over the critical
pressure values, the discharge coefficient decreases so as to
match the empirically obtained value while using the quasi-
one-dimensional flow model.

The present result of f\0.54 was obtained for the case where
the perforation ratio is 0.4 and the incident shock wave Mach
number is 1.54. However, from an engineering point of view,
when a flow discharges through an orifice perpendicular to the
main flow, a constant discharge coefficient of 0.54 should be
used since f is practically insensitive to Ms (at least for the
range of 1.5OMsO5).

5
Curvature of the diffracting shock wave
No reflected shock wave is observed from the perforated wall
even when the incident shock wave collides obliquely with it
(see Fig. 1a and b). A schematic illustration of this flow field is
given in Fig. 4. When the frame of reference is attached to
point P, which is the intersection of the incident shock wave
with the perforated wall and the starting point of the boundary
layer, then the boundary layer displacement thickness will
increase quickly and become thicker than that developed over
a flat plate under similar conditions. The reason for this fast
increase in width is the existence of a flow discharge through
the perforations (Schlichting 1968). The boundary layer is
defined as the region where the velocity of the main flow
component decreases owing to flow suction through the
perforations. Therefore, the incident shock wave is temporarily
perpendicular to the boundary layer edge. As a result, the
incident shock wave encounters this ‘‘effective wall’’, and no
wave reflection is observed.

Computational results for velocity vectors and isopycnics
are shown in Fig. 5. Except for the limited bottom area of the
incident shock wave, where the disturbed flow influences the
wave, the flow field is quite uniform. Figure 6 shows the flow
angle immediately behind the incident shock wave measured
relative to the y-direction, so that 90° denotes the stream line
perpendicular to the incident shock wave, and y/Dy\120
stands for point P on the perforated wall surface, while y and
Dy denote the distance in the y-direction and the interval of
one computational mesh in the y-direction, respectively.

A streamline outside of the boundary layer, but close to its
edge, must be parallel to the boundary layer edge, and the
incident shock wave must be perpendicular to this streamline.
This is valid only in the vicinity of point P. However as is
evident from Fig. 6, the streamlines and the diffracted, curved,
incident shock wave are almost perpendicular to each other for
y/Dy[140. On the other hand for y/D, y\140 the flow angles
between streamlines and the incident shock wave are smaller
than 90°. Therefore, even at the region where the shock wave is
inclined backward, except for the bottom where the wave front
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Fig. 4. Schematic of the considered flow field (shock fixed coordinate)

Fig. 5. Flow vectors and isopycnics in the investigated flow field

Fig. 6. Flow direction just behind the incident shock wave

Fig. 7. Diffraction of shock wave around the corner

Fig. 8. The glancing incidence angle vs. Ms

is strongly influenced by non-uniformity of the flow, the
incident shock wave locally satisfies the normal shock
relations.

Skews (1967) and Bazhenova et al. (1979) empirically
showed the self-similarity pattern of shock wave diffraction
around a corner. Similarly to their experiments, in the present
case expansion waves from perforations continuously affect
the wave front. Based on experimental results obtained for
incident shock waves propagating at different Mach numbers
it is apparent that the shape of the incident shock wave is
self-similar, starting from the moment just after it hits the first
slit. This self-similarity holds for a long time. This reaffirms the
statement made earlier, namely that the flow disturbances
generated along the perforated wall do not affect the shape
of the incident shock wave. Even when and if disturbances
catch-up with the incident shock wave, their effect in altering
the shock wave shape (geometry) is negligibly small, less than
1% as was mentioned in the previous section (Onodera 1991).
Therefore, the self-similarity is still valid. This result is
probably caused by the relatively fine structure of the perfora-

tion, i.e. a relatively low value for the ratio of perforation
periodicity and wall length. When the slit opening is made
significantly wider, the resulting wave pattern will be different
because disturbances emanating from each perforation will
have a stronger effect on the considered flow field.

The curved region of the incident shock wave terminates at
the point where the expansion wave, emerging from the first
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Fig. 9a—c. Variation of the flow Mach number in the slits (vertical
flow) with height

slit, catches up with the incident shock wave. The place at
which a curvature in the incident shock wave is first noticed
was defined in terms of the angle s (glancing incidence, see
Fig. 7). Based on geometrical relations Skews (1967) suggested
the following expression for s;

s\arctan
(Ms2[1)((c[1)Ms2]2)

(c]1)Ms4
(2)

In the present case, the angle between the straight line
connecting this limit to the first slit and the perforated wall
corresponds to the glancing incidence s. In Fig. 8, the present
experimental results are compared with those obtained while
using Eq. (2). It is apparent that good agreement exists
between the two.

In Fig. 9 the dependency of the downward velocity com-
ponent (expressed in a non-dimensional form, i.e., as M4),
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Fig. 10. Comparison between approximated downward velocity and
computation results

Fig. 11a–c. Comparison between analytical and experimental shock
wave shapes. a Ms\1.54; b Ms\1.85; c Ms\2.15

just behind the incident shock wave, on distance (measured
along the y-axis) is shown. The value of the vertical velocity
component was averaged over the perforation width. Except of
a region in close proximity to the perforated wall (y/Dy\120),
M4 decreases smoothly until it reduces to zero at a certain
height corresponding to the glancing incidence s, for a given
Ms.

The upper limit of the region where the flow is strongly
disturbed behind the incident shock wave corresponds to
the area influenced by the expansion wave, which emerges
from the second perforation behind the incident shock wave.
Therefore, the strongly disturbed region is confined to
a limited area behind the incident shock wave. The shape of
the curved incident shock wave is nearly self-similar when it
propagates over uniformly distributed perforations.

If the velocity distribution between point P and point
B (upper limit of the curved region of the incident shock wave)
in Fig. 7 is a function of height only, i.e., v4\a4M4{f(y) where
a4 denotes the speed of sound inside the perforation, and the
influence of the mass out-flow through the perforations on the
main flow is negligibly small, then the streamlines inclination
angle just behind the shock wave is given by

h\arctan(f e o4v4/o 2u2), (3)

where o is density. Assuming that o2\o4 then,

h\arctan(fe f(y)/u2), (4)

where f(y) is a function of height y only. As can be seen from
Fig. 6, the streamlines are almost perpendicular to the curved
incident shock wave. Therefore, when h is determined from
Eq. (4), the inclination of the incident shock wave is expressed
as (90[h) degree for a given height y. Consequently, since h is
the angle with which the incident shock wave inclines locally at
a given height, the shape of the incident shock wave is obtained
as an envelope to these tangents, and at point B it becomes
zero.

Approximating the downward flow velocity distribution
shown in Fig. 9 by a quadratic function and inserting this
expression into Eq. (4) provides the shape of the incident
shock wave. An example is shown, along with numerical
results, in Fig. 10.

The obtained approximated shape of the shock wave
is compared with experimental results in Fig. 11. In this

figure the results are presented in a dimensional form, not
normalized like a Whitham (1957). This presentation was
chosen in order to ease detecting the influence of the
disturbed region at the foot of the shock wave. Good agreement
was found between the two, except for an area in close proximity
to the perforated wall where flow non-uniformity caused by
perforations strongly influences the shape of the shock wave.

Consequently, once the discharge coefficient of a perforated
wall is determined, actual shock wave properties can be
deduced easily. This could be very helpful in many engineering
applications.

6
Summary of results
Shock wave propagation over a perforated wall was studied by
means of optical flow visualization and numerical simulation
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using a TVD scheme. The results were compared with a quasi-
one-dimensional flow analysis. By incorporating the numerically
obtained discharge coefficient (and using the static pressure
behind the incident shock wave instead of the stagnation
pressure as the effective reservoir condition) into a quasi-one-
dimensional analysis, the shape of incident shock wave was
predicted. The obtained results can be summarized as follows:

(1) The results obtained from a TVD numerical analysis
agree very well with interferometric findings.

(2) A discharge coefficient of 0.54 was obtained by compar-
ing the quasi-one-dimensional analysis with numerical results.
This value agrees well with the experimentally obtained values.
From an engineering point of view this value can be applied to
a wide range of incident shock wave Mach numbers.

(3) The flow direction just behind the curved incident shock
wave is almost perpendicular to the shock wave front, except
for the strongly disturbed region at the foot of the incident
shock wave.

(4) The shape of the curved incident shock wave, which
inclined backward, was well predicted by employing the above
mentioned discharge coefficient in the analysis.
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