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The reduction of spatial aliasing by long hot-wire anemometer probes

J. H. Citriniti, W. K. George

Abstract Experiment and numerical analysis are presented to
demonstrate that a hot-wire anemometer probe reduces spatial
aliasing of turbulent velocity fluctuations because of the
filtering property of the probe sensing element. The experi-
ment focuses on the one-dimensional turbulent velocity
spectrum and utilizes a long sensing length hot-wire probe to
exaggerate the effect of the sensing element on the turbulent
field. The numerical analysis utilizes a model of the hot-wire
probe from Wyngaard (1968) along with isotropic turbulence
relations to obtain an equation for the hot-wire response in
a turbulent velocity field. The model can be used to determine
the effect of hot-wire length on the one and three-dimensional
turbulent spectra.

The experimental study demonstrates that the finite length,
hot-wire probe filters out energy in the high wave number
region of the one-dimensional spectrum thereby verifying
its ability to reduce spatial aliasing. Interestingly, the study
also shows that energy in the low wave numbers of the one-
dimensional spectrum is attenuated. The numerical study of
the hot-wire probe demonstrates that this low wave-number
attenuation is purely an artifact of the one-dimensional
spectrum and not an effect of the hot-wire probe.

List of symbols

o Kolmogorov constant dimensionless
i Kronecker delta dimensionless
& Isotropic dissipation [m?s’]
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E(k) Spectrum function [m?/s?]

Fli(k))  One-dimensional, longitudinal, k;-spectrum. Refer-
red to as longitudinal, k;-spectrum [m’/s?]

Fl (ky) One-dimensional, longitudinal, k,-spectrum. Refer-

red to as longitudinal, k,-spectrum [m?/s?]
k Wave-number vector, k(ky, k,, k3) [1/m]
k Magnitude of wave-number vector,
k=(ki+ki+k3)", [1/m]

@; (k) Three-dimensional spectrum tensor [m*/s?]

Ry Reynolds number based on integral scale, ¥ dimen-
sionless

S(f) Power spectral density of velocity signal output by
hot wire probe [m?/s]

u(x) Velocity vector [m/s]

i(k) Fourier coefficient of transformed velocity vector
[m/s]

" Superscript denoting a measured quantity, i.e.,
that output by the hot-wire probe or its analytical
model

1

Introduction

Temporal aliasing of time signals has long been recognized and
understood by experimentalists. In brief, aliasing occurs when
information at higher frequencies is incorrectly placed in lower
frequencies because the sampling rate is not high enough.
Aliasing can be avoided if the sampling rate statistics satisfy
the Nyquist criterion (Otnes and Enochson 1972), namely
f:>2fn, where f; is the sampling rate and fy is the highest
frequency present in the data. If frequencies greater than
(1/2) f; exist in the data they must be removed by filtering to
avoid aliasing.

A less recognized, and often overlooked, counterpart to
temporal aliasing is produced by insufficient resolution of
the spatial structure in a random field, i.e., spatial aliasing.
A demonstration of spatial aliasing was presented by Glauser
and George (1992) in an experimental study of the large scale
structures in a turbulent, axisymmetric mixing layer. In their
experiment, the two-point velocity correlation tensor deter-
mined at many positions in the mixing layer was decomposed
into azimuthal Fourier modes. The velocity field was measured
using hot-wire anemometers and the distribution of measuring
positions in the azimuthal direction was varied to study the
effects of spatial resolution on the decomposition. They
found that the number of spatial measuring positions dramati-
cally influenced the energy distribution within the azimuthal
Fourier modes. Glauser and George were able to attribute
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the difference between Fourier coefficients, calculated with
different azimuthal spacing, to insufficient spatial resolution
and a failure to satisfy the Nyquist criterion in space.

In the same paper, Glauser and George (1992) suggested that
spatial aliasing could be reduced by using hot-wire probes with
exceptionally long sensing elements. They claim that these
long hot-wires are advantageous because their sensing ele-
ments act as a spatial filters that remove the high wave (or
mode) number fluctuations. They suggested that the wire, in
effect, acts as a spatial low-pass filter with a cut-off wavelength
of A.=24,. This reduces spatial aliasing since it eliminates
information in spatial scales with wavelengths /., less than
twice the wavelength of the wire, 4,,, i.e., those that cannot be
resolved with a limited number of probes and whose informa-
tion would consequently be aliased. This fact has been
exploited in the experiment of Citriniti (1996) who used long
hot-wires to reduce spatial aliasing of azimuthal modes in
a round turbulent jet experiment.

The idea of removing high frequency fluctuations by
averaging uniformly through sampling interval is not new, but
has been applied only to time signals, see Kristensen (1971).
There the Fourier transform of the signal being filtered is
convolved with the transform of a uniform window. The result
is that the spectrum of the sampled signal is related to that of
the original signal by

sin(nfAt) T

TfAt ()

sm<f>:s<f>[

where At is the length of the sampling interval. Since space,
unlike time, is three-dimensional, it is not immediately obvious
if this technique can be applied to spatial averaging or even
which spatial Fourier components of energy are removed by
a single, long averaging element.

There have been numerous papers on the effect of spa-
tial resolution on the measurement of small scales, but
here the concern is with the large scales. In previous ana-
lyses spatial filtering was considered undesirable because it
filtered structures which had information relevant to the
experiment. Here, it is deliberately introduced to reduce
information in these same scales before it is aliased. This
paper, then, attempts to determine, both by experiment and
theory, whether the long hot-wire probe can indeed reduce
spatial aliasing.

2

Experiment

To investigate whether the long hot-wire probe could filter
short wavelength scales in a turbulent field, an experiment was
initiated which involved the measurement of a turbulent
velocity field with (a) an extraordinarily long sensing length
hot-wire probe and (b) three standard length hot-wire probes
(see Fig. 1). The idea was to measure the effect of the probe
sensing length on the turbulence by determining the turbulent
velocity spectrum with the long wire and comparing it with the
turbulent spectra obtained with the three short wires. Since
the short wires measure the turbulent field to a much finer
temporal and spatial scale, they are used to measure the true
turbulent field, i.e., they provide baseline spectra with which to
compare the long wire spectrum.

/ Long wire
- - 11 mm

~

Fig. 1. Probe alignment in 4 wire experiment

3 short wires

2.1

Flow field

The turbulent velocity field used in this experiment was
generated at the exit of an isothermal, round air-jet by
attaching a wire mesh to the exit nozzle. The exit diameter of
the jet' was 9.8 cm and the wire mesh was constructed with 16
threads per inch of 0.0254 cm stainless steel wire that produced
a flow blockage of approximately 25%. The velocity of the fluid
immediately downstream of the wire mesh was 16.9 m/s
corresponding to a Reynolds number based on mesh thickness
of 28000. Since the velocity profile leaving the jet exit is a top
hat, the flow field generated by the wire mesh at the center of
the jet exit is characterized as uniform, decaying turbulence
and was found to have a turbulence intensity of 7.3%.

2.2
Experimental hardware
The three standard length wires had an I/d =200 and the long
wire had an I[/d=2000. The probes were positioned approxim-
ately 10 cm downstream of the mesh. The long wire was situated
directly above the short wires approximately 1 mm away and
since the flow field generated by the jet is uniform, each of the
probes experiences nearly the same turbulent field. The 1 mm
separation distance ensured that the probes were far enough
apart so that no electrical cross contamination was experi-
enced, see Perry (1982). The hot-wires were made of unplated,
12.7 pm tungsten wire (Sigmund-Cohn, Mt. Vernon, NY).
The sampling rate in this experiment was 18 kHz and the
corner frequency of the phase matched, 8th order, anti-alias
Bessel filters was 6 kHz for all probes. For each probe, 25
blocks of data with 2048 samples/block were recorded for
a spectral bandwidth of 8.8 Hz. The individual blocks were
separated by at least one integral scale so that each makes an
independent contribution to the statistical calculations, see
Tan-atichat and George (1985). The anemometers used in this
experiment were made at SUNY Buffalo and are described in
Citriniti et al. (1994).
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Results of experiment

Figure 2 shows the one-dimensional spectra, F},, as measured
by the four probes. The data set with the filled box shows the
turbulent velocity spectrum measured by the long sensing

!Described in Citriniti (1996)
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Fig. 2. Frequency spectrum of turbulence in 4 wire experiment

length hot-wire probe. The solid lines are the spectra obtained
from the three short wires. Note that a fully developed tur-
bulent field has been set up as demonstrated by the large
f7° range.

As Fig. 2 shows, the spectral energy contained in the high
frequencies of the long sensing length probe is 50% less than
that of the short sensing length probes in the high frequency
region. This effect is attributed to the filtering property of the
long wire and demonstrates the ability of the probe to filter the
short wavelength spatial scales in the flow.> Therefore, since the
probe can filter the small scale fluctuations, it can be used to
filter these scales out of the flow before the energy in them is
aliased.

The long wire captures the energy containing portion of the
spectrum ( f & 100 Hz). This is important because it shows
that the long wire does not attenuate the turbulence in the
frequency range associated with a majority of the kinetic
energy. Surprisingly, however, the energy in the low frequen-
cies of the turbulent spectrum has been reduced by about 20%.
This result, at first glance, appears to contradict the claims of
Glauser and George (1992) who argue the energy attenuation
by the long hot-wire probe should diminish as the frequency
decreases. As will be shown in the next section, the reduced
energy in the low frequencies of the long-wire spectrum in
Fig. 2 is not caused by the long wire but by the use of the
one-dimensional spectrum to present the results.

3

Theoretical analysis

To demonstrate that the low frequency roll-off in the spec-
trum of the long wire of Fig. 2 is a consequence of the

2The probe can only filter spatial scales but the consequences of this
appears in the frequency spectrum via Taylor’s hypothesis, see
Wyngaard (1968)

one-dimensional spectrum and not an effect of the probe,
a theoretical model of the long hot-wire was developed.

3.1
The hot-wire as a spatial filter
The hot-wire anemometer records a voltage signal that is
proportional to the weighted-average of the fluid velocity along
the sensing element of the probe. The velocity vector measured
by a single hot-wire probe of length I can then be approximated
as
xM+1/2

j u(xy",x,, x357) dx, (2)

xM—1/2

u”(x")=-

where u™ is the velocity vector measured by the probe, u is the
true velocity vector and x" = (x{",x;", x3') is the position of the
center of the hot-wire probe (see Fig. 3). In Eq. (2) the probe is
oriented parallel to the x, axis.

It is important to note the assumptions inherent in Eq. (2).
First, note that Eq. (2) is just the convolution of the velocity
vector with the wire sampling window which in this case is
a top hat. Other wire sampling windows could be used, such
as parabolic or exponential distributions, but they are not
considered in this analysis. Second, it is implicitly assumed
that the wire responds uniformly to velocity perturbations
along its length, i.e., no non-linear effects caused by large
velocity gradients in the fluid are included in this analysis. This
discussion then obviously excludes flows with strong mean
shear or high turbulence intensities where severe velocity
gradients could exist locally along the probe sensing element.
However, it should be noted that this is an implied assumption
for any proper implementation of the hot-wire anemometer
probe, since operating them in such conditions invalidates the
transducer calibration and therefore the voltage to velocity
conversion.

Representing the integral of Eq. (2) in Fourier space and
manipulating yields (Wyngaard 1968),

o0 /2
um(xm):j j jﬁ(k) exp (ik - x) B j exp (ik,x,) dxz}dk
— =172
(3)

where k= (ky, k, ks;) is the wave number vector and 4 are the
Fourier coefficients of the true velocity vector. It is assumed
that the turbulence is homogeneous so that the flow field can be
represented using Fourier transforms in the sense of generaliz-
ed functions (Lighthill 1956).

The solution to the integral within the brackets of Eq. (3) is
straightforward and, after evaluating the limits using the Euler

X3

Hot wire
X2

X1

Fig. 3. Hot-wire anemometer probe orientation for analytical analysis
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formula for sin x, gives,

w(x™) =[ [ [d(k)exp(ik-x) [M] dk (4)
e k112
Thus, the velocity measured by the probe is a product of the
true velocity and an attenuation factor (shown in the brackets).
This factor can be thought of as a spatial filter that has been
imposed by the finite length of the probe and its magnitude
decreases from unity as its argument, in this case k,1/2,
increases. What this means in Eq. (4) is that the apparent
contribution to the velocity vector of any Fourier coefficient is
no longer (k) but rather

o[22

and thus the measured velocity vector contains less informa-
tion in the higher wave numbers than is truly present in the
field. This result is identical to the time filter described earlier,
see Eq. (1), except that i (k) is a vector argument instead of
a scalar.

3.2

Velocity statistics

Typically, it is not the velocity itself which is of interest, but
rather the two-point correlation and its Fourier transform,
the spectrum. The one-dimensional form of the longitudinal
k,-spectrum can be defined by

Flll(kl) :f j Dy, (ks ks, ks) dkz dks (5)

where @, is the streamwise form of the three-dimensional
spectrum tensor,” @;. Using generalized functions, one can
derive the corresponding longitudinal k;-spectrum as mea-
sured by the hot-wire, see Appendix A,

sin (k,1/2)

0 2
Fi" (k) =] Jw Py, (k) [ k12 J dk, dk, (6)
which models the effects of finite length hot-wire probes on
turbulent velocity spectra. This model shows that the one-
dimensional spectrum is indeed low-pass filtered by the probe
and energy is removed from wave-numbers above the corner
frequency, k, =~ 1/, at least in the direction aligned with the

probe.

3.3

Numerical solution method

A numerical solution to Eq. (6) can be formulated once a model
for the three dimensional spectrum tensor, ®;, is provided. If
the turbulent field is assumed isotropic, the spectrum tensor
can be written as (Batchelor 1953)

k kf
@, (K) =iﬁkl <1 ‘P) 7

3The notation used follows that of Tennekes and Lumley (1972) with
the superscript, 7 on F;; representing the direction normal to the plane
of integration
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Fig. 4. Non-dimensional, longitudinal spectra, FL (ki) and FI7"(ky)

where k is the magnitude of the wavenumber vector k and E (k)
is the spectrum function.

Closure of the equation requires a model for the spectrum
function, E(k). Pao (1965) developed a model for E(k) that
contains the exponential roll off characteristic of the high wave
number part of the spectrum. A model which is useful in the
low wave number region of the spectrum was developed by
Von Karman (1948) and Helland et al. (1977) combined these
two to create a spectrum function that models both large and
small wave number fluctuations.

The Helland et al. (1977) spectrum function can be non-
dimensional by the isotropic dissipation, ¢, and the integral
scale in the flow, %, to give,*

— o s E 4 E 27]-17/6 _30( E 43
)=o) <E> [1+<E>} exp[ 2R1/<E>
(8)

where k, =k, is the non-dimensional wave number in the k;
direction, R, =u?/v is the turbulent Reynolds number and
k=ki/k, where the over-bar denotes non-dimensional quantit-
ies. The Kolmogorov constant, o, was chosen to be 1.6.

The longitudinal k;-spectrum can be non-dimensionalized in
a similar manner to yield,

(k
4n

2

o—§
o
o
2

FL(k) = (1—k?) dkdo (9)

where 0 is a parameter created by the non-dimensionalization.
The first integral in Eq. (9) can be integrated to obtain

E(k)
§

o

Fl (k)= (1—k?*) dk (10)

N =
»l\

“The parameter .# is not actually the integral scale in the flow but
rather a function of it, but for the quantitative aspects of this study it is
taken as the integral scale



and the corresponding equation for the measured spec-
trum is

Rrdy={ 15N ey [sz(z’ } dk do

o o 4nk (1)

where z=k;I cos 0/(2k) and I=1/.% is the non-dimensional
wire length. Equations (10) and (11) were solved with the use of
Eq. (8) using a Gauss—Legendre quadrature method.
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Results

The original, longitudinal k;-spectrum, corresponding to

Eq. (10), and the measured spectrum, given by Eq. (11), are
shown in Fig. 4. As expected, there is less energy in the mea-
sured one-dimensional spectrum at the high wave numbers
than is present in the original turbulent field. This is a direct
result of the attenuation factor in Eq. (11) and is the numeri-
cal counterpart to the high frequency filtering performed by
the long hot-wire in the experimental aspect of this study.
However, another interesting feature in Fig. 4 is the behavior of
the measured spectrum in the low wave number region. The
difference between the original and measured spectra at the
low wave numbers is essentially the same as that obtained by
the experimental part of this analysis, see Sect. 2.

At low wave numbers the true one-dimensional spectrum
should be recovered by the long hot-wire because the model for
the spatial attentuation factor (see Eq. (11)) approaches unity
as the wave number approaches zero. Figure 4 suggests that
this is not the case. To explain this low frequency (and low
wave-number) effect, the three-dimensional spectrum must be
utilized.

4
Wave-number and spatial aliasing in turbulent spectra

4.1
Three-dimensional spectrum
For isotropic turbulence, surfaces of constant energy for the
streamwise, three-dimensional spectrum tensor, @y, (k), are
shaped like toroids. A shell of constant energy in the measured
three-dimensional spectrum tensor, @7;(k), is shown as the
gray surface in Fig. 5. The measured three-dimensional
spectrum tensor is determined in the same manner as the
measured one-dimensional spectrum tensor, see Sect. 3.2. The
light areas on the plane slicing through the shell represents
energy in the original, three-dimensional spectrum tensor, @;;.

When the slicing plane is k,=0 there is no light emanating
from the plane indicating that the measured and original
three-dimensional spectra are equivalent at that wave number.
As the plane moves down the x; axis (the direction aligned with
the hot-wire probe in our model, see Fig. 3) the probe filtering
begins to attenuate the measured three-dimensional spectrum,
thus more light is emitted from the slicing plane. As the plane
moves further down the k;, axis more and more light is emitted
indicating greater attenuation by the probe.

Figure 5 illustrates several important points:

1. The hot-wire probe attenuates energy in the three-dimen-
sional spectrum in the direction aligned with the probe
sensing element.

2. Information in the low wave numbers of the three dimen-
sional spectrum is properly recovered by the transducer.

3. The probe attenuation increases as the wave number gets
larger (relative to the wire length).

4.2

Probe attenuation in one-dimensional spectrum

Point number 2 above states that there is no energy attenuation
by the hot wire probe at the low wave numbers of the three-
dimensional spectrum. The question then is; why does the
measured one-dimensional spectrum appear to show probe
attenuation in the same frequency and wave-number range, see
Figs. 2 and 42 The answer to this question lies in the definition
of the one-dimensional spectrum. This point is discussed in
Chap. 8 of Tennekes and Lumley (1972) and is the essence of
wave-number aliasing.

Recall that the original, longitudinal k,-spectrum, F}, (k,), is
defined by the integral in Eq. (5) and the spectrum obtained
from a transducer in the same turbulent field by Eq. (6). These
equations demonstrate that F, is simply the integral of the
three-dimensional spectrum tensor over planes perpendicular
to the k, direction. In Fig. 6 the light area on the slicing plane is
a visual representation of this spectrum, at each wave number.
The area bounded by the gray shell lying on the cutting
plane in this figure must then represent the longitudinal k;-
spectrum as measured by the transducer, F,}"(k;). In the first
part of the figure the cutting plane is at k; =0 and at this
wave number the measured, longitudinal k;-spectrum is
smaller than the original spectrum as indicated by the light
areas on the cutting plane, i.e., F}|"(0) <F},(0). This is a
direct result of the hot-wire probe filtering in the k, direction,
i.e., the direction aligned with the probe. Thus, even at k; =0
there is a difference between the measured and original
longitudinal k;-spectra.

This fact explains the difference between the original and
measured spectra in the low frequencies of the experimental
part of this paper, see Sect. 2 and Fig. 2, and in the one-
dimensional spectra of the numerical work, see Sect. 3.4. and
Fig. 4. In essence, wave-number aliasing, an unavoidable
consequence of the one-dimensional spectrum, has created
a region in the low frequencies (and low wave-numbers) in
which the energy in the spectrum is reduced. It is important to
realize that this is not a result of the transducer, but rather
a manifestation of aliasing in the calculation of the one-
dimensional spectrum.

43

Effect of wire length

In a different presentation of probe filtering, Fig. 7 shows the
three-dimensional spectrum where the effect of the wire length
has been added. In this figure, the gray surface is a constant-
energy contour of the original three-dimensional spectrum
tensor, @;;. The blue shading on the surface represents wave
number combinations in which the energy in the measured
three-dimensional spectrum tensor, @}, equals that in the
original spectrum. For a very short sensing length (e.g., a probe
length to integral scale ratio of 0.01) the measured and original
three-dimensional spectra are identical, hence the blue shading
nearly covers the entire gray shell when I/.# =0.01. As the wire
length normalized by the integral scale increases (I/.Z gets
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larger) the attenuation of the three-dimensional spectrum
increases along the x, axis and consequently the amount of
blue shading decreases in that direction. As the wire length is
increased further a large portion of the spectrum is attenuated.
However, note that the blue shading is always present at k, =0.
This indicates that the original three-dimensional spectrum is
always recovered at the smallest wave numbers, independent of
the probe sensing length. In other words, the statistics of the
turbulence at low wave numbers are properly recovered by the
long hot-wire probe.

5

Conclusions

The analyses presented in this work have shown that the long
hot-wire anemometer probe can be used to reduce spatial
aliasing by using the spatial filtering property of the probe to
remove the small scale turbulent fluctuations which contribute
to spatial aliasing. The first part of the paper demonstrated this
filtering property experimentally by using a long hot-wire
probe to exaggerate the effect of the probe on the turbulent
field.

A limitation of the presentation technique, i.e., the one-
dimensional spectrum, suggested that the probe may affect the
large scale turbulent structure in some way. The numerical
analysis of Sect. 3 showed that this affect was a result of
wave-number aliasing in the one-dimensional spectrum and
therefore independent of the hot-wire probe. In this respect,
the one-dimensional spectrum was found to be a misleading
investigative device. A more useful measure of the hot-wire
probes effect on the turbulence was accomplished using the
three-dimensional spectrum, which is free from effects of
wave-number aliasing.

The results of the numerical analysis showed that the
filtering of spatial scales by the hot-wire probe occurred in the
direction aligned with the probe sensor and the amount of
attenuation increased with probe sensor length. An estimate of
the probe attenuation can be obtained using the analytical
model in Eq. (4) (see Citriniti and George 1996). Finally, the
analyses presented in this paper are not limited to hot-wire
anemometers but are applicable to any measuring device
which integrates thermodynamic effects over space, e.g., shear
stress sensors, pressure transducers, see Lueptow (1995), or
LDA, see Buchhave et al. (1979).

<

Fig. 5. Three-dimensional spectrum for a fixed wire length of 2 times
the integral scale in the flow. The gray surface is the measured,
isotropic three-dimensional spectrum tensor and the blue shading
on the cutting plane represents the energy in the original, isotropic
spectrum tensor at a single wavenumber. The cutting plane represents
F,

Fig. 6. Three-dimensional spectrum for fixed wire length. See

Fig. 5 for extended caption. Cutting plane represents F,

Fig.7. Three-dimensional spectrum for various wire lengths. The gray
surface is a contour of the original, isotropic three-dimensional
spectrum. The blue shading represents points of equivalent energy in
the measured, isotropic three-dimensional spectrum

Appendix A: Measured one-dimensional spectrum
The one-dimensional spectrum, Fl-} (k) can be defined in terms
of the three dimensional spectrum tensor, ®;(k),

F,]1 (k)= j j @;(k) dk, dk;

— 00 — 0

(A.1)
and the corresponding measured one-dimensional spectrum is

Ey= [ [ @) dk,dk, (A2)
For homogeneous turbulence, Monin and Yaglom (1975)
have shown that non-overlapping, Fourier coefficients in the

three-dimensional spectrum are uncorrelated so that

®;(k)6(k—k") =t (k)i*(k’) dk dk’ (A3)
and analogously,
®F (k)5 (k—k') =u"(k)u"*(k") dk dk’ (A.4)

The analysis of Sect. 3.1 has shown that the Fourier
coefficients of the measured velocity field are attenuated by the
probe, i.e.,

(A.5)

00— 60 [sin(kzl/z)]

k2 l/2
and substituting this into Eq. (A.4) yields,
P (k)o(k—k')=

. sin (k,1/2) L sin (k,1/2) ,

where the probe is again oriented in the x, direction. The
bracketed terms can be removed from the ensemble average to
obtain,

d(k)a*(k') dk dk’
%(—J

where the underbrace represents the unfiltered three-dimen-
sional spectrum tensor and substituting Eq. (A.3) produces,

sin (k,1/2) :|2

(A7)

qig(k)é(k_k,):[sin(kzl/Z)T

kzl/z

A8
k,1/2 (4.8)

@5 (k) = ®;(k) [
Finally, the equation for the measured one-dimensional
spectrum, provided in Sect. 3.2, is determined through

substitution into Eq. (A.2)

|:sin (k,1/2)

A9
k172 (A.9)

0 0 2
)= | | @k ] dk, dk,.
— 00 —
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