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the evolution of laminar vortex rings 
A, Weigand, M. Gharib 

Abstract Using Laser Doppler Anemometry (LDA) and Digital 
Particle Image Velocimetry (DPIV), the physical properties of 
laminar vortex rings are investigated in the Reynolds-number 
range 830 <~Re <. 1650. The measured initial circulations of the 
vortex rings are found to agree well with corrected versions of 
the vorticity-flux (slug-flow) model proposed by Didden and 
Pullin. The DPIV and LDA data show excellent agreement 
regarding local velocities and vortex-ring circulations. The 
DPIV data depict the distribution of the vorticity and 
circulation in the core regions, where the resulting vorticity 
distributions are found to be self-similar Gaussian profiles. The 
propagation velocity of the vortex rings is well approximated 
by an analytical model of Saffman for large core sizes. In 
the asymptotic limit t ~  oo, the trajectories are in excellent 
agreement with the exact Stokes-dipole solution of Cantwell 
and Rott. 

1 
Introduction 
Vortex rings are one of the simplest forms of three-dimen- 
sional vortex flows and have been subject to many studies 
in the past. Shariff and Leonard (1992) provide a com- 
prehensive review on the formation, evolution, and structure of 
vortex rings. However, the unsteady nature of vortex-rings 
makes it difficult to map the velocity and vorticity fields 
by means of single-point measurement techniques (e.g., hot- 
wire or Laser Doppler Anemometry). In this regard, the scope 
of available experimental data is limited and insufficient to 
resolve questions such as the distribution of vorticity and 
circulation in the core region and the decay of the propagation 
speed of vortex rings. 

Our interest in vortex rings grew mainly out of the need to 
establish a flow standard for investigations of vortex-ring/ 
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boundary interactions such as the interaction with solid walls 
(Weigand 1993) and free surfaces (Gharib et al. 1992; Gharib 
and Weigand 1996). The present work focuses on the mea- 
surement of the circulation, vorticity distribution in the core 
region, and spatio-temporal evolution of laminar vortex rings 
in a Reynolds-number range of 830 ~< Re ~ 1650 (The Reynolds 
number is defined by the ratio of the circulation to the 
kinematic viscosity). Six different flow cases were investiga- 
ted using flow visualization, Laser Doppler Anemometry 
(LDA), and the whole field velocity-measurement techni- 
que Digital Particle Image Velocimetry (DPIV). These com- 
bined studies made it possible to compare the obtained results 
with various analytical models and previous investigations 
where only flow visualization or single-point measurement 
techniques have been used. 

Didden (1979), Glezer and Coles (1990), and Nitsche and 
Krasny (1994) provide valuable information on the formation 
process of laminar vortex rings. In our studies, we examine 
correction formulas for the initial circulation suggested by the 
experimental results of Didden and the similarity arguments of 
Pullin (1979). The resulting velocity and vorticity fields of 
the different flow cases are compared to single-point LDA 
measurements and to models of vorticity distributions 
suggested by Widnall et al. (1974) and Maxworthy (1977). 

Reynolds-number effects on the evolution of the trajectory 
of vortex rings have been experimentally studied by Max- 
worthy (1972) and Sallet and Widmayer (1974). The exact 
analytical solution for the asymptotic drift velocity of vortex 
rings by Cantwell and Rott (1988) and the numerical calcula- 
tions of Stanaway et al. (1988) have renewed the importance 
of Saffman's (1970) analytical models for the trajectory 
of thin- and thick-cored vortex rings. In the present study, 
we pay special attention to Saffman's models and their accu- 
racy in predicting the trajectory and the asymptotic decay of 
vortex rings. 

2 
Experimental set-up and procedures 
Figure 1 shows a general schematic of the experimental setup. 
Experiments were conducted in a water tank using a mechan- 
ical vortex-ring generator. Vortex rings of diameter D, 
circulation F, and propagation velocity Uv are generated by 
a piston that pushes fluid out of a sharp-edged cylindrical 
nozzle into the surrounding. The x-axis coincides with the 
center-line of the vortex-ring generator, and the nozzle-exit 
plane is located in the plane x = 0. 
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Fig. 1. General schematic of experimental setup and Laser Doppler 
Anemometry (LDA) 

The cylindrical nozzle has an inner orifice diameter of 
Do = 3.0 cm, and its outer contour is wedge-shaped with a tip 
angle of a = 20 ~ The 20~ extends 2.0 cm upstream of 
the nozzle-exit plane. A computer-controlled micro-stepping 
motor  drives a linear traverse mechanism and controls the 
motion profile of the piston, while an inductive Linear Variable 
Displacement Transducer (LVDT) monitors the actual piston 
displacement. The mechanical design limits the maximum 
stroke of the piston to (L/Do)max= 0.87 and the maximum 
acceleration and deceleration to [a [m,x "~ 450 cm/s 2. 

The computer control provides precise timing and synchro- 
nization of different events (time resolution better than 
10 _3 s). These events include vortex-ring generation, dye 
injection for flow visualization, and initialization of measure- 
ment processes such as Laser Doppler Anemometry (LDA) and 
Digital Particle Image Velocimetry (DPIV). 

Various flow-visualization techniques, all using dye as 
a fluid marker, were applied to make the vortex ring visible. 
For example, the initial v0rtex-ring fluid volume that is 
displaced by the piston is marked by filling the cylinder volume 
of the generator with dye. The initial roll up of the vortex sheet 
is visualized by releasing a small amount of dye out of a thin 
circumferential slot at the tip of the nozzle. 

As Fig. 1 shows, single-point LDA measurements with 
titanium-dioxide (TiO2) particles as seeding material (average 
diameter of 0.5 pm) were primarily conducted to determine 
the temporal evolution of center-flow velocities u 0 = u0 (t) at 
various distances x M downstream of the nozzle-exit plane. 

Figure 2a shows a schematic of the experimental setup 
for DPIV measurements. The flow is seeded with neutrally 
buoyant, silver-coated glass spheres (average diameter of 
14 +_ 5 I~m) and illuminated by a sheet of laser light with 
a thickness of approximately 0.1 cm. The video camera is 
positioned normal to the measurement plane and records an 
image sequence of particle fields with a spatial resolution of 
768 • 480 pixels. As Figs. 2a and b show, the exposure times 
te, 1, te, 2, and the time difference At between two successive 
exposures are synchronized and controlled by a camera 
controller and shutter in order to prevent streaking particle 
images and to limit the maximum displacement of particles. In 

Fig. 2a, b. Digital Particle Image Velocimetry (DPIV). a Experimental 
setup and processing system, b Illumination control 

the DPIV measurements presented here, the exposure times 
and the time difference between exposures were set to re,1 = 
re,2=4.10 -3 s and At=8 x 10 -3 s, respectively. Using a win- 
dow size of 32 x 32 pixels and a step size for the moving 
average of 8 x 8 pixels (75% window overlap), the processing 
results in a field measurement of 96 x 60 velocity vectors with 
a temporal resolution of 15 velocity fields per second. With 
a typical field of view of 11 x 8 cm, the spatial resolution is 
0.46 x 0.54 cm. In the present results, the maximum velocities 
are in the order of magnitude of 10 cm/s limiting the particle 
displacement to approximately 6 pixels. Since the location of 
the cross-correlation peak can be resolved with a sub-pixel 
accuracy of approximately 0.01 pixel (Willert and Gharib 
1991), the maximum uncertainty based on the local velocity 
and vorticity magnitude is +1% and _+3%, respectively. 

3 
Vortex-ring properties and circulation measurements 

3.1 
Overview and Initial conditions 
Six different vortex rings were investigated in a Reynolds- 
number range of 830 <.Re~ 1650. The Reynolds number is 
defined by the ratio of the circulation F to the kinematic 
viscosity v, where the circulation F = F25 was obtained from 
LDA measurements at a downstream position of x*=  2.5. 
Throughout the remainder of this paper, the temporal origin 
t = 0 corresponds to the initiation of the piston motion, while 
length scales that are normalized by the nozzle diameter Do are 
marked by an asterisk (e.g., x*=x/Do). 



Table 1. Specification of nominal 
piston motion Reynolds number Re 830 950 1080 1150 1260 1650 

Time [s]: 

�9 Accel., Decel. 0.10 0.10 0.10 0.10 0.10 0.10 
�9 Constant velocity 0.25 0.21 0.18 0.15 0.10 0.05 
�9 Total 0.45 0.41 0.38 0.35 0.30 0.25 

Velocity [cm/s]: 

�9 Maximum velocity U 0 . . . .  5.8 6.6 7.4 8.1 10.2 13.5 
�9 Average velocity U0 4.5 4.9 5.4 5.8 6.8 8.1 

Acceleration/deceleration [cm/s 2 ] : 

�9 [a,,p [ = [ado [ = constant 58.4 65.4 73.7 81.3 101.6 134.6 
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Table 1 specifies the t rapezoidal  pis ton-veloci ty  profiles that  
were selected as nomina l  initial condit ions.  In all cases, the 
p is ton-s t roke  to nozzle-diameter  rat io is Lo /D  o = 0.68 and the 
accelerat ion and decelerat ion per iods  are tup = tao = 0.1 s. As the 
typical  example in Fig. 3 shows, the measured  pis ton mot ion  is 
in good agreement  with the nomina l  velocity profile. 

In Fig. 4, the initial  rol l -up of a vor tex-r ing with a Reynolds 
number  of R e  = 1080 is shown. After the pis ton comes to rest, 
Figs. 4-III and 4-IV depict  the format ion  of an opposi te-s ign 
secondary  vortex ring (stop vortex) that  propagates  into the 
cyl inder  volume.  Similar to the results of Didden (1979), Fig. 5 
indicates that  the visual  t rajectories  of the p r imary  spiral  
centers are spat ial ly independen t  of the Reynolds number .  The 
non-d imens iona l  vor tex-r ing d iameter  D* (defined by the 
distance between the spiral  centers) ini t ial ly increases to 
1.05 and expands to a max imum value of 1.25 at x* ~ 0.16. 
Subsequent to the expansion,  the diameter  decreases to its fully 
developed value of D* ~ 1 ( D=2 .9 7 +0 .0 3  cm) at x* ~ 0.6. 
The location of  the max imum at x* ~ 0.16 indicates that the 
contraction of the diameter  starts during the deceleration period 
of the piston, i.e., before the piston comes to rest at x* ~ 0.18. 

Fig. 3. Evolution of the nominal and measured piston-velocity profile 
for Re = 1080 

3.2 
Results 

Veloc i ty ,  v o r t i c i t y  a n d  c i r c u l a t i o n  
Similar to Glezer and Coles (1990) and as indica ted  in Fig. 1, 
a first es t imate of the vor tex-r ing circulat ion was ob ta ined  by  
conduct ing  s ingle-point  LDA measurements  of the center-flow 
velocity at the downs t ream posi t ions XM*= 1 and x~ = 2.5.1 

The circulation of a vortex ring at the position x M can be estimated 
by evaluating the closed-line integral of the velocity field along 
a rectangular control contour S that is located in the upper half-plane 
y > 0 and includes the center-line x. Since the velocity field of a vortex 
ring decays proportional to r 3 (Batchelor 1967), and the length of the 
contour increases only proportional to r, the closed-line integral, if 
evaluated at r ~ ,  reduces to an integral along the center line x. Fig. 4. Initial vortex-sheet roll-up of a vortex ring with Re = 1080 



Fig. 5. Spatial evolution of the vortex-ring diameter 

Assuming a constant propagation velocity of the vortex ring at 
the downstream position x M (Taylor hypothesis), the integra- 
tion of the velocity along the center line is transformed into an 
integration over time and yields 

i FM= UV, M UM(t) dt  (1) 
0 

Provided that the Taylor hypothesis applies, Eq. (1) gives the 
circulation F M with the local propagation velocity UV, M and the 
center-flow velocity UM(t) measured at the position XM. 

The local propagation velocities of the vortex rings were 
obtained from visual trajectory and DPIV measurements. In all 
flow cases, the integration of velocity fluctuations averaged out 
to zero and resulted in a good initial and asymptotic behavior 
of the circulations F~ and F2 5. The asymptotic values of F~ and 

F2. 5 are listed in Table 2, Sect. 3.3 for comparison with results 
of DPIV measurements. 

The LDA-velocity and circulation measurements were 
complemented by comprehensive DPIV mapping of the 
velocity-vector fields in the plane z = 0. As a typical example, 
Figs. 6a and b show a single realization of the measured 
velocity-vector field and the corresponding vorticity contours 
of a vortex ring with Reynolds number Re = 1150. The azi- 
muthal vorticity component ~J~ = cgv/Ox-cgu/@ was calculated 
by using a second order finite-difference scheme. 

Figures 7a and 7b show spatial cross sections of the u- and 
v-velocity components extracted from the DPIV data of the 
six flow cases. In Fig. 7a, the velocity components along the 
axis y * =  0 (center-line) are shown. Due to the symmetry of 
the velocity field, the v-component is in all flow cases small 
compared to the u-component and in the range of +0.1 cm/s. 
For the flow cases Re = 830 and Re = 1650, Fig. 7a also shows 
the velocity profiles that result from the Taylor transformation 
of the LDA-data. The transformed LDA-velocity profiles agree 
well with the DPIV data over a relatively large section centered at 
x* = 2.5, i.e., the position where the propagation velocity of the 
vortex rings was measured. Regarding the Taylor hypothesis and 
the assumption of a constant propagation velocity, the effect of 
the decay of the propagation velocity is more apparent at lower 
Reynolds numbers (i.e., lower propagation velocities) which 
leads to the under- and overestimation of the transformed 
u-velocity components at x* < 2.1 and x* > 2.9, respectively. 

Figure 7b shows the velocity components along the line that 
connects the core centers (i.e., the peak vorticities) of the 

Fig. 6a, b. DPIV measurements of the flow field of a vortex ring in the plane z = 0 with Re = 1150 at x*= 2.5. a Velocity-vector field; b vorticity 
contours with peak vorticities indicated in the core centers, first contour: ~'~1 =+1.0 s- ~ step size: A~o =_+ 1.0 s- 
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Fig. 7a-d. Vortex-ring properties obtained from DPIV measurements, a Velocity profiles at y * = 0 and Taylor transformed LDA-velocity profiles 
(0, A); b velocity profiles at x *= 2.5; c vorticity profiles at x ~= 2.5; d radial distribution of core circulation at x*= 2.5 

vortex rings at x* ~ 2.5. Again, due to the symmetry of the 
velocity field, the resulting v-velocity components are small 
(___0.3 cm/s). The u-velocity profiles of the higher Reynolds 
number cases are characterized by a typical U-shaped velocity 
distribution in the inner region of the vortex ring. In order 
to determine the circulation from the LDA data, the local 
propagation velocity of the vortex rings was estimated from the 
u-velocity profiles by forming the mean value of the velocity 
minimum and maximum (Galilean transformation). 

In Fig. 7c, the vorticity distributions along the cross section 
x* .~ 2.5 are shown. In good agreement with the vortex-ring 
diameters measured by means of flow visualization, the 
distance between the vorticity peaks is 2.8_+ 0.1 cm and 
independent of the Reynolds number. The magnitudes of the 
peak vorticities of the upper (y > 0) and lower core (y < 0) 
agree well and deviate less than +_5% from their correspond- 
ing mean value. 

Figure 7d shows the distribution of the upper- and lower- 
core circulations, where the local circulation was calculated 
along a closed circular path of radius r centered at the loca- 
tion of the peak vorticity. In each flow case, the radial deve- 
lopment of the upper and lower circulations agrees well with 
a maximum deviation of 5 ~  

In addition to the circular path integration, the circulations 
were also determined on a rectangular control contour. The 
coordinates of the diagonal corners of the control contour were 
chosen to be (xT, yT)=  (1,0) and (x;, y ; ) = ( 4 ,  +_1.25). The 
resulting magnitudes of the upper- and lower-core circulations 
are in good agreement and deviate less than 3% from each 
other. This agreement is also indicated by a small residual 
circulation AF that is evaluated for the entire flow field 
on a rectangular contour with diagonal corners (x~*, y~*) = 

Yr _ _  (1, --1.25) and (x;, Y3 ) -  (4, +1.25). In all flow cases, AF does 
not exceed more than 3% of the corresponding magnitude of 



the vortex-ring circulation. The mean asymptotic circulations 
resulting from the circular path integration, and the circula- 
tions that were evaluated on a rectangular control contour are 
listed in Table 2, Sect. 3.3. 

Estimate of  the core size 
From the DPIV data presented in Fig. 7, the core size of the 
vortex rings can he estimated in several different ways. In 
Fig. 7b, the distance between the minima and maxima of 
the u-velocity profiles indicates core diameters between 
0.35 ~ cr*~ 0.45. However, the vorticity profiles and the radial 
distribution of circulations presented in Figs. 7c and d indicate 
both larger core diameters in the range of 0.6 ~ x * ~  0.8. 
A comparison of the velocity and vorticity profiles shows that 
the vorticity is non-zero at locations where the gradient 
c~u/@ = 0. This suggests that the term Ov/Ox contributes to the 
magnitude of the vorticity, and that the extracted u-velocity 
profiles do not exactly satisfy the symmetry condition 
?~v/~x = O. 

Since the velocity and vorticity profiles are determined along 
a certain spatial cross section, any variation of the core 
diameter over the core region is neglected. Therefore, in terms 
of the assumption of a circular core region, the integral 
measure resulting from the radial asymptotic behavior of the 
circulation is regarded here as the more accurate estimate for 
an average core diameter. The results are listed in Table 2, 
Sect. 3.3 and indicate a reduction of the core size with 
increasing Reynolds number (from a*=0.8,  Re= 830 to 
~r*=0.6, Re= 1650). 

Vorticity distr ibution in the core region 
Figure 8 shows a scatter diagram of the vorticity data that were 
extracted along the cross section x* ~ 2.5. The y-coordinate 
and the vorticity distribution of the six flow cases (upper and 
lower cores) are normalized by the corresponding core radii 
a and peak vorticities COo: 

.~=y/a, a=O.5a*Do and u3=co/co0, c%=co(y*),  (2a) 

where 090>0 for y ~ > 0  and vice versa. The inner (y*<[y*D 
and outer core regions (y*>  ]y0*[) of the vortex rings 
are mapped to the half planes fi~ > 0 and Yl < 0 by using 
a transformation with the normalized vorticity peaks &0 = 1 
centered at .~ = 0: 

y * > 0 :  yl=y--yo and y * < 0 :  y l = Y o - y  (2b) 

As is evident in Fig. 8, the vorticity distributions are nearly 
symmetric about fi~ --0. In the inner regions of the vortex rings 
at )71 <-0 .6 ,  vorticity diffusion between the opposite-sign 
vortices leads to a small asymmetric broadening of the vorticity 
distribution; due to their relatively large core size, this effect 
is predominantly visible in the lower Reynolds number flow 
cases. The majority of the data collapses onto a self-similar 
distribution that is well approximated by a Gaussian vorticity 
profile of a Lamb Oseen vortex (e.g., Saffman 1992). The 
Lamb Oseen vortex is an exact solution of the two-dimen- 
sional Navier Stokes equations (diffusion equation) and yields 
a vorticity distribution of 

eKe( )  3a) 
c~ 

where F 0 is the initial circulation, t the time, v the kinematic 
viscosity, and r the radial coordinate of the core region. Using 
Eqs. (2) to normalize Eq. (3a) and applying the boundary 
condition (5 = 1 at yl = 0 gives 

tb = exp (--t/2fi21 j with q 2 = (  a ) 2 -  rca2r176176 
co (3b) 

Since the initial condition of the Lamb Oseen vortex is 
defined by a Dirac 6-function of the circulation F 0 at time t = 0, 
it is experimentally difficult, if not impossible, to determine the 
accurate temporal origin. As Eq. (3b) indicates, the applied 
normalization has the advantage that it eliminates the explicit 
variable time t or, more accurately, the product vt. Therefore, 
the Gaussian vorticity distribution is fully determined by 
the time dependent factor q that represents the ratio of the 
actual core radius a to the core radius a0. The latter is defined 
by a~ = 4vt= Fo/(nO~o) and designated as "equivalent core 
radius". 2 

The exponential factors of the Gaussian vorticity distribu- 
tions defined by q2 = na2c%/Fo result from the DPIV data at the 
cross section x*=  2.5 and are listed in Table 2, Sect. 3.3. Using 
the circulations evaluated on a rectangular control contour 
yields a mean value of v/2 = 4.7 _+ 0.7. As Fig. 8 indicates, the 
minimum and maximum values of q2 lead to a good agreement 
with the measured vorticity profiles. The cut-off behavior 
at [yl[= 1 can be determined by the ratio of the circula- 
t ions/7 = F,/F~:, where Fa and E~ are evaluated within the 
boundaries [)71 [ ~< 1 and [,91 [ ~ ,  respectively. In the case 
of a Gaussian profile, the cut-off ratio is given by H- -  
1 -exp(- t /2)  with a value of H = 0.99 for t/2 ~ 4.6. There- 
fore, the experimental mean value of t/2= 4.7 leads to an 
approximation in terms of the circulation F~ of better 
than 99%. 

The data in Fig. 8 are also compared to other analytical 
expressions of vorticity distributions such as &--(y21-1)2; 
[)~ [ ~< 1 (Widnall et al. 1974) and & =sech2fi~ (Maxworthy 
1977). In contrast to the Lamb-Oseen vortex, the latter two 
expressions lead to relatively wide-spread distributions 
that overestimate the circulation of the vortex ring (e.g., 
the integration of the distribution (5 = sech2fix in the interval 
[ ~ [ ~  1 results in F,=O.656na2e2o and yields errors of up to 
300%). Additionally, the integration of the sech2-distribution 
in the interval [y~ ]~  o0 results in E,~ = 2 In 2na2~o and, as Fig. 8 
indicates, leads to a poor cut-off ratio of F /=  0.47. 3 

2 The definition of ao characterizes a Rankine vortex with uniform 
distribution of the maximum vorticity of a Lamb-Oseen vortex in the 
core region, i.e. o~=o~o=const, for r<~ao and co=0 for r>ao. The 
circulation of this vortex is equal to the initial circulation F o = na2r . 
Therefore, the factor t/a = na2~o/Fo in Eq. (3b) can be regarded as 
a measure for the slenderness of the Gaussian vorticity profile. 

3 It is not clear from Maxworthy (1977) which length scale was used to 
normalize his radial coordinate r~ in the sech2-distribution. In order to 
be consistent with the present results, we used the core radius a for the 
normalization. Note: As one referee suggested, a sech / (3)71 )-distribu- 
tion leads to a good agreement with the data; however, the additional 
factor would imply three times smaller core radii which is not 
consistent with the results of the present measurements. 
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Fig. 8. Normalized vorticity data in comparison to analytical vorticity 
distributions proposed by Widnall et al. (1974) and Maxworthy (1977) 

3.3 
Discussion of the circulation measurements 
The results of the circulat ion measurements  are summar ized  in 
Table 2 and Fig. 9. A first es t imate of the initial  vor tex-r ing 
circulat ion F0 can be ob ta ined  f rom the p i s ton-mot ion  profiles 
by integrat ing the vort ic i ty  flux across the nozzle-exit  plane 
(vorticity-flux or slug-flow model) .  The der ivat ion of the 
model  for t rapezoidal  p is ton-veloci ty  profiles is given in the 
Appendix,  and  the result ing circulat ions are l isted in Table 2. 

Similar to the results of Didden (1979) and Glezer and Coles 
(1990), a compar i son  of the circulat ions ob ta ined  f rom the 
vort ici ty-flux model  (F0) and LDA measurements  (F  1) shows 

Fig. 9. Comparison of the circulations obtained from DPIV and LDA 
measurements at x*= 2.5 

that  the vort ici ty-f lux model  underes t imates  the ini t ial  
circulat ions by  up to 60%. The major  reason for this dis- 
agreement  is due to the boundary- l aye r  app rox ima t ion  in the 
model  that  assumes ?p/c~r = 0; therefore,  the mode l  neglects 
the balance between radial  negative pressure  gradients  and  
centrifugal forces dur ing  the rol l -up of the vortex sheet. 
Consequently,  the outer  edge velocity of the b o u n d a r y  layer is 
substant ia l ly  larger  than the pis ton veloci ty which causes the 
model  to underes t imate  the vort ic i ty  flux and the circulat ion.  
In the case of short  s t roke pis ton mot ions  (here: Lo/Do = 0.68), 
this effect s t rongly dominates  other  effects that  are not  
accounted for by the model  (e.g., en t ra inment  of oppos i te  sign 
vort ici ty f rom the b o u n d a r y  layer at the outer  edge of  the 
nozzle and blockage effects due to the b o u n d a r y  layer growth 
in the nozzle). 

Table 2. Properties of the 
investigated vortex rings with 
[F ] = [cm2/s]. The wave numbers 
n~, n 2, and n 3 of the bending 
instabilities result from the pres- 
ent experiments, the theory of 
Widnall et al. (1974), and the 
second instability mode of Saff- 
man (1978), respectively 

Reynolds number Re 830 950 1080 1150 1260 1650 

Vorticity-flux model: 

�9 Velocity-Program Factor P 1.16 1.18 1.20 1.21 1.25 1.30 
�9 Circulation F0 5.3 5.9 6.6 7.2 8.6 10.7 
�9 Circulation F0. , from Eq. (4a) 8.6 9.6 10.6 11.5 13.9 17.2 
�9 Circulation F0. c from Eq. (4c) 8.7 9.6 10.7 11.6 13.5 16.4 

LDA: 

�9 Circulation F t 9.0 10.1 11.0 11.9 12.9 17.0 
�9 Circulation F2. 5 8.3 9.5 10.8 11.5 12.6 16.5 

DPIV: 

�9 Circulation F2.5 (circular) 7.5 8.7 9.7 11.0 13.1 16.4 
�9 Circulation F2.s (rectangular) 8.3 9.4 10.7 11.7 13.3 16.7 
�9 Core diameter ~ [cm] 2.4 2.4 2.3 2.2 2.1 1.8 
�9 Factor ~/z of Gaussian distrib. 4.6 4.6 4.2 4.7 5.4 4.0 

Bending instabilities: 

�9 Onset at x [cm], t [s] - - 40, 32 38, 22 34, 14 
�9 Wave number n - 5, 5, 4 6, 5, 6 7, 6, 7 



Didden (1979) and Pullin (1979) 4 provide correction 
formulas for the circulation F o. Based on the vorticity-flux 
model and LDA measurements, Didden gives an empirical 
correction with 

( ) and  7000 ~ Lo 1 
--~~ = 1"14 +0"32 D00 D00 V 

(4a) 

where F0.c is the corrected circulation. In the present flow 
cases with constant piston-stroke to nozzle-diameter ratios 
(Lo/Do = 0.68), Eq. (4a) yields F0. c = CF o with a correction factor 
of C= 1.61. As Table 2 indicates, the results of Didden's 
empirical formula lead to a good agreement with the circu- 
lations Fx obtained from LDA measurements (the maximum 
deviation between Fo, c and F 1 is less than 8%). 

Pullin's correction is based on the self-similar roll-up of 
a two-dimensional vortex sheet and yields for a tube geometry 
with impulsive piston motion 

F~ 1"41(L~oo) -2/3 ( ~ o )  ~ ' =  with <<4.7 (4b) 
c0 

In a first order approximation, using the actual stroke 
to nozzle-diameter ratio of the trapezoidal piston motion 
(Lo/Do = 0.68), Eq. (4b) yields a factor of C = 1.82. The latter is 
13% larger than the result of Didden's correction formula and 
overestimates the corrected circulations with respect to F 1 by 
up to 20%. 

However, the result of Pullin's correction formula can be 
improved by defining an equivalent stroke to nozzle-diameter 
ratio that corresponds_to an impulsive piston displacement 
with average velocity U0 and generates the same amount of 
circulation as the trapezoidal velocity profile. According to the 
vorticity-flux model and the definition of the velocity-program 
factor P (Appendix, Eq. (A.5)), the equivalent piston-stroke to 
nozzle-diameter ratio results to Le/Do = P(Lo/Do). Replacing 
Lo/D o with Le/D o in Eq. (4b), Pullin's correction formula for 
a tube geometry with equivalent impulsive piston motion 
yields 

F~176  \ Do w i t h ( P - ~ ) < < 4 . 7  (4c) 

The program factors P of the trapezoidal velocity profiles 
are listed in Table 2. Equation (4c) gives correction factors 
in a range of 1.53 ~< C~< 1.64 that increase with decreasing 
Reynolds number, i.e., with decreasing trapezoidal shape of the 
piston-velocity profile. This result leads to a good agreement 
with Didden's correction (C= 1.61) and a deviation of less than 
4% from the measured circulations F~ (see Table 2). 

Figure 9 shows a comparison of the circulations obtained 
from LDA and DPIV measurements at the downstream 
position x*= 2.5. The resulting circulations from the DPIV 
data are normalized by the corresponding results of the LDA 
measurements. Using a rectangular control contour leads 
to a good agreement with the results of the LDA measure- 
ments over the entire Reynolds-number range. Between 
830 <~Re <~ 1080, the asymptotic values of the circulations that 
were evaluated on a circular control contour are consistently 

In Pullin (1979), Eq. (9) has been misprinted. The exponent should 
read +2/3 instead of -2/3. 

10% smaller than the circulations obtained from the LDA 
measurements, while for Re >/1150, good agreement is achi- 
eved with a maximum deviation of 5% at Re = 1260. A possible 
reason for the consistent disagreement in the lower Reynolds 
number flow cases might be due to the non-concentrated 
vorticity distributions, where, with increasing radius, the 
circular control contour partially penetrates into the oppo- 
site-sign vorticity region. 

4 
Vortex-ring trajectory measurements 
In this section, results of visual measurements of vortex-ring 
trajectories are presented and compared to various analytical 
models. The trajectories were measured by using a calibrated 
video system with a field of view that covers a dowstream 
distance of 30 cm from the nozzle-exit plane (i.e., approxim- 
ately 10 ring diameters). The video images were digitized with 
a resolution of 768 x 480 pixels which results in a spatial 
wavelength resolution of 0.08 cm in the downstream direction. 
The trajectory data are based on 10 independent realizations 
per flow case and were found to be repeatable within +4% of 
the presented mean values. 

Based on the analytical solution of Thomson (in Helmholtz 
1867) and Hicks (1885) (see, e.g., Lamb 1932), Tung and Ting 
(1967) and Saffman (1970) derived an analytical model for 
the unsteady, viscous motion of vortex rings that yields the 
following relation for the evolution of the propagation velocity: 

with z = " (5) 
D 

where D designates the diameter, F the circulation, t the time 
and v the kinematic viscosity. The major assumptions in 
that model are that the relative core size is small and that 
the vortex-ring diameter is constant. The latter follows from 
Saffman, who shows that the vorticity distribution in the core 
region asymptotes a Gaussian profile. Therefore, the rate of 
change of the circulation is negligible for viscous time scales 
z2<< 1 which, in combination with the condition of a constant 
impulse (Ioc FD2), results in a constant vortex-ring diameter. 
Using the normalized variables Uv*=2nUvD/F for the 
propagation velocity and t*= vt/(4D 2) for time, Eq. (5) yields 

1 
U~,(t*) = - ~  log t*-0.558 + O[r log r] (6) 

Figure 10a shows a comparison of the experimental data 
with Saffman's normalized relation (Eq. (6)). The diameter 
Do and the circulation F~ are used for the normalization of the 
data, where F~ was obtained from LDA measurements at the 
downstream position x*= 1. 

In the range 4.10-4~<t*~<2 �9 10 -3 (1.4s-G<t~<7.2 s), the 
evolution of the vortex-ring propagation velocities is well 
approximated by the theory. During the formation process 
between 0 ~< t*< 4.10-4 (0 s < t < 1.4 s), the theoretical as- 
sumption of a constant ring diameter is clearly not satisfied. 



Fig. 10a, b. Evolution of the propagation velocity, a Comparison with 
analytical models of Saffman (1970); b comparison with numerical 
data of Stanaway et al. (1988) and the exact solution of Cantwell and 
Rott (1988) in the asymptotic case t~  ~o 

The non-concentrated spiral distribution of vorticity in the 
core region as well as the initial expansion of the vortex-ring 
diameter tend to decrease the initial propagation velocity, 
while the subsequent diameter contraction (see Fig. 5) causes 
an acceleration of the vortex ring. For t * > 2 . 1 0  -3 ( t>7.2 s), 
one can conjecture that viscous diffusion leads to an increase 
of the core size beyond the measured values of 0.6--.< a*-..< 0.8 
and causes vorticity cancellation between the core regions of 
opposite-sign vorticity. This process might lead to a "non- 
negligible" decrease of the circulation and, consequently, to 
a faster decay of the propagation velocity. 

In addition to Eq. (5), Saffman (1970) provides a second 
relation for the evolution of the propagation velocity which 
does not include the assumption of small core sizes and allows 
the viscous length scale to be in the order of magnitude of the 

diameter of the vortex ring, i.e., r 2 ~1. Saffman's analysis is 
based on dimensional arguments and is briefly repeated here. 

The propagation velocity Uv can be assumed to be pro- 
portional to the specific impulse Is = I/p divided by the fluid 
volume VocR 3 of the vortex ring, i.e., 

I, (7) U v = ~  

where k designates the proportionality constant of the impulse. 
The viscous decay of the circulation can be formulated as 

d vUv 
dt (UvR) = - k '  --R (8) 

using the relation Foc UvR and a second proportionality 
constant k' for the viscous decay. Since the impulse Ioc FR 2 is 
invariant, Eq. (8) can be integrated by using Eq. (7) yielding 

and Uv=~ (R2o+k'vt) -3/2 (9a, b) Ra = R2 + k' vt 

In contrast to Eq. (5), where the diameter of the vortex ring 
was assumed to be constant, Eq. (9a) describes the growth of 
the vortex ring with initial radius R0 due to viscous decay. 
Using the impulse I, = FoD~ and the normalization procedure 
applied to Eq. (6), the non-dimensional form of Eqs. (9a, b) 
yields 

, 167r 
D*2=(l+16k't*), and Uv=-~-( l+16k ' t*)  -3/z (10a, b) 

Figure 10a shows Eq. (10b) fitted to the velocity data by 
adjusting the two independent constants k and k'. The data is 
bound by the constants k = 13.6 and k' = 7.5 (upper bound) and 
k = 14.5 and k' = 10.6 (lower bound). The best fit, achieved with 
k = 14.4 and k ' =  7.8, results in an excellent agreement of 
Eq. (10b) over the entire range of the experimental data. 

The resulting range of the proportionality constant of the 
impulse (13.6 ~< k .G< 14.5) is within the valid range bounded by 
a potential (lower bound) and a spherical Hill's vortex ring 
(upper bound). The specific impulse of a potential vortex ring 
with small core size and constant vorticity distribution in the 
core region (Rankine vortex) is Ip= 7z/4FD 2. Its propagation 
velocity can only be evaluated assuming a small, finite core size 
a*<< 1 yielding Uv, p=F/(27tD) log(I/a*).  The proportionality 
constant of the impulse results to kp = 4z2/log(1/a*), and the 
limit a * ~ 0  gives the lower bound of k with ke--*0. The specific 

3 
impulse of a spherical Hill's vortex ring is IH= n/4DuUv, H, 
where D H designates the diameter of the sphere. Considering 
that the diameter of a spherical vortex ring is D =  1/2D H, the 
upper bound for k results in kH= 16~z ~ 50.3. 

A comparison of the experimental values of k with the range 
of 0 < k ~ 50.3 suggests that the investigated vortex rings are 
more similar to a potential ring with small core size than 
to a spherical Hill's vortex ring. This agrees well with the 
observation that the cross-sectional shape of the vortex rings is 
not circular, but elliptical. The core diameter of an "equivalent 
potential vortex ring" can be evaluated by using the relation 
k=kp=4n2/log(1/a *) yielding a* ~ 0.1. The latter might be an 
indication for the partially good approximation that results 
from Saffman's relation for vortex rings of small core sizes 
(Eq. (6)). However, the resulting potential core diameter does 
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not agree with the equivalent core diameters a* = 2aolDo .~ 0.3 
that are obtained from the Gaussian vorticity distributions in 
Sect. 3.2 and also represent a Rankine vortex. 

The range of the proportionality constant for the viscous 
decay (7.5 ~< k'~< 10.6) indicates a relatively small temporal 
increase of the vortex-ring diameter. For example, using 
k'=7.8 from the best data fit, Eq. (10a) yields a diameter 
increase of D*= 1.06 at t*= 10 -3 (t=3.6 s) and D*= 1.5 at 
t*= 10 2 (t = 36.0 s). These results are in good agreement with 
the observation that the growth of the vortex rings is relatively 
weak. 

Figure 10b shows a lo~log plot of the experimental 
data (represented by Eq. (10b) with k = 14.4 and k '=  7.8) in 
comparison to numerical results of Stanaway et al. (1988) and 
the exact asymptotic solution of Cantwell and Rott (1988) for 
t -+ oO. 

As part of their numerical study, Stanaway et al. investigated 
the behavior of vortex rings in the asymptotic limit t--*0 using 
Gaussian vorticity distributions with small Reynolds numbers 
(Re-*O) and small core diameters (a*~0) as initial conditions. 
In comparison to Saffman's relation for small core sizes 
(Eq. (6)) which can be assumed to be well-suited for the 
preceding initial conditions, the numerical results suggest 
a slightly faster decay of the propagation velocity and a relaxed 
error estimate of O(z 2 log r) instead of O(z log r). As is evident 
in Fig. 10b, the computed propagation velocities (initial 
conditions Re=200, a*=0.35 and Re=800, a*=0.12) are 
initially in good agreement with Eq. (6). However, for 
t*> 2.10 -3 ( t> 7.2 s), they are in better agreement with the 
present experimental results. 

In the asymptotic limit t~oo,  Philips (1956) derived 
a solution of the Stokes equation that is valid for the final decay 
of any vorticity distribution in an unbounded fluid being at 
rest at infinity. This solution has been verified by Kambe and 
O shima (1975), who experimentally observed the final decay of 
the propagation velocity of vortex rings to be UvoC t -3/2. In their 
numerical study, Stanaway et al. (1988) used a Stokes dipole in 
combination with a variety of initial conditions in order to 
determine the proportionality constant of the asymptotic 
decay. The constant was found to be in excellent agreement 
with the exact analytical solution of Cantwell and Rott (1988) 
who give the following relation for the asymptotic velocity of 
vortex rings: 

I 7 
U v = C - ( v t )  -3/2 with C -  -3.7038-  10 -3 

p 240 rc 3/221/2 

As Eq. (11) indicates, the evolution of the drift velocity of 
the Stokes dipole depends only on the initial specific impulse 
I s = I/p and the kinematic viscosity. In the asymptotic limit 
t ~ ,  Saffman's relation for large core sizes (Eq. (10b)) yields 
Eq. (11) with the constant C defined by the proportionality 
constants k and k': 

1 
C = k k '3/2 

The lower bound of the experimental data (k = 14.5, 
k '=  10.6) results in C=2.0.10 -3, while the upper bound 
(k = 13.6, k' = 7.5) gives C = 3.6- 10 - 3. The results show that the 

investigated vortex rings decay like a Stokes dipole where the 
constant C= 3.6- 10 -3 resulting from the upper bound is in 
good agreement with the theoretical value of C ~ 3.7.10 -3. 

However, the majority of the data represented by the best fit 
values k = 14.4 and k' = 7.8 suggests a smaller experimental 
constant for the asymptotic decay resulting in C= 3.2.10 -3. 
Therefore, one can conjecture that the vortex rings might reach 
their asymptotic limit earlier than predicted by the exact 
solution. 

A possible reason for this difference in the proportionality 
constant might be the choice of the origin t = 0 that is defined 
in the experiments as the start of the piston motion. From the 
Gaussian vorficity distribution, a virtual origin of time can be 
estimated that corresponds to the theoretical initial condition 
of a Lamb-Oseen vortex (Dirac &function of the circulation 
at time t '=  0). The time difference between the virtual and 
experimental origin is defined by the equivalent core radius 
of Eq. (3b) and results in A t=  t ' - t - =  a2/(4tl2V)-t. Using the 
experimental data at the downstream position x*= 2.5 yields 
a temporal shift of A t * ~  10 4 (At= 1.5 +0.5 s). However, it is 
evident from Fig. 10b that the time difference at large times, 
e.g., t*~  10 -1 ( t~  102 s) is A t * ~  10 -2. Therefore, the difference 
between the virtual and experimental origin is much too small 
to account for the resulting time difference in the asymptotic 
limit. 

One can conjecture that the smaller experimental constant of 
the majority of the data might be a result of non-linear and 
Reynolds-number dependent effects during the evolution of 
the vortex rings. For example, even a mild loss of vorticity into 
the wake of the vortex ring accumulates over large times and 
results in a faster reduction of the circulation and a decay- 
ing impulse of the vortex ring; therefore, the onset of the 
asymptotic stage characterized by the Stokes dipole solution 
might be reached earlier. In this regard, the formation of 
a wake can be caused by weak bending instabilities that were 
observed to form during the late evolution of the higher 
Reynolds number flow cases. The wave numbers of the 
instabilities are listed in Table 2 and were found to be in 
reasonable agreement with the theoretical results of Widnall 
et al. (1974) and the second-mode instability of Saffman (1978). 

5 
Conclusions 
During the formation process of the laminar vortex rings, 

(11) the roll-up geometry was observed to be independent of the 
Reynolds number within the investigated range of 830 ~< 
Re <~ 1650. Regarding the initial conditions of the vortex rings, 
the application of the corrected vorticity-flux (slug-flow) model 
using Didden's (1979) empirical formula and a modified 
version of Pullin's (1979) model leads to a good agreement with 
circulations obtained from LDA-measurements at a down- 
stream position of x*= 1. 

The results of the LDA and DPIV measurements at x*=2.5 
show good agreement in terms of local velocities and vortex- 

(12) ring circulations. The DPIV data of the six flow cases reveal 
that the vorticity distribution in the core region is self-similar 
and well-approximated by a Gaussian vorticity profile. An 
estimate of the core size is obtained from the radial asymptotic 
behavior of the circulation in the core region. The results 
indicate that the spatially averaged core diameters decrease 



weakly with increasing Reynolds number and are in a range of 
0.6 ~<o*~0.8. 

The visual trajectories of the vortex rings are in excellent 
agreement with analytical models of Saffman (1970), numerical 
calculations of Stanaway et al. (1988), and the exact analytical 
solution of Gantwell and Rott (1988) for the asymptotic drift 
velocity at t-* oo. Assuming small core sizes and constant ring 
diameters, Saffman's model on the propagation velocity of 
vortex rings was found to deviate from the experimental data 
during the initial formation period and at relatively large times. 
However, a second model of Saffman which is based on 
dimensional arguments does not include the assumption of 
small core sizes and leads to an excellent agreement with the 
experimental data. The temporal evolution of the propagation 
speed is described by U*= 16~/k (1 + 16k't*)-3a, with the 
experimental constants k = 14.4 and k ' =  7.8 obtained from the 
best data fit. In the asymptotic limit t--.oo, the extrapolation 
of the data predicts that the velocity of the vortex rings 
approaches the drift velocity of a Stokes dipole. The exact 
solution of Cantwell and Rott (1988) yields an asymptotic drift 
velocity of U*= ~/4C t *-3/2 with the proportionality constant 
C= 3.7038.10 -3, while the present experimental data result in 
a smaller constant with C=  1/(kk '3/2) =3.2 .10 -3. 

Appendix: The vorticity-flux (slug-flow) model 
The vorticity-flux model is based on the assumption, that the 
change of the circulation F 0 in the upper half plane y > 0, z = 0 
is equal to the vorticity flux across the nozzle-exit plane at 
x=O: 

. 8u  d 1 
dF0_ddt dtAS~ y = ~ u ~  (A.1) 

where co designates the azimuthal vorticity component, u the 
velocity component in the x-direction, dA = dx. dy the area 
element, ~ the boundary-layer thickness, and u e the outer-edge 
velocity of the boundary layer. 

Assuming that the outer-edge velocity ur is equal to the 
piston velocity Uo(t), Eq. (A.1) yields 

t0 1 
Fo = ! ~ U2(t) dt (A.2) 

In the case of trapezoidal piston-velocity profiles that were 
used in the experiments to generate the vortex rings, the 
integration of Eq. (A.2) results in 

Eo=~l Uoto[tup+3t,~+t*o]2 , 

with t * -  , G*p+t~+t~o=l, (A.3) 

where t,p designates the acceleration time, t,~ the period of 
constant velocity Uo, t~o the deceleration time, and to the total 
time of the piston motion. 

Following Didden (1979), a velocity-program factor P can 
be defined that characterizes the shape of the actual piston- 
velocity profile by normalizing F0 with the circulation F0 .... that 
results from a square function of the piston-velocity average 

U0. For a trapezoidal velocity profile, the circulation F0 .... and 
the velocity program factor are 

1 -  2 1 , , , 2 
F0 .... = ~  Uoto=~ U~to[Gp+2t,t+tdo] (A.4) 

and 

P=ro .... =3 --~ ~ / J (a.5) 
For example, it follows from Eq. (A.5), that the velocity- 

program factor of a square function (t~= 1) results in P = 1 and 
of any triangular piston motion ( t~ -0 )  in P=4/3 .  
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