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New insights into particle image velocimetry data using fuzzy-logic-based

correlation/particle tracking processing

M. P. Wernet

Abstract Digital particle image velocimetry (DPIV) data
processing has been developed to the point where DPIV
image data are processed via auto- or cross-correlation
techniques in near real time and the results are displayed
on screen as they are processed. Correlation techniques are
highly desirable, since they provide velocity measurements
on a regular grid, which are readily comparable to CFD
predictions of the flow field. In high-speed flows, particle
lag effects are always of concern; however, the correlation
operation does not provide any means for minimization or
elimination of systematic errors in the recorded particle
image data. In this paper, we present a combined correla-
tion processing/particle tracking technique providing
“super-resolution” velocity measurements. Fuzzy-logic
principles are employed to maximize the information
recovery in the correlation operation and to determine the
correct particle pairings in the tracking operation. The
combined correlation/particle tracking technique is ap-
plied to DPIV data obtained in the diffuser region of a high-
speed centrifugal compressor producing velocity vector
maps with an average density of 6 vectors/mm?. Inspection
of the particle tracking results revealed large particles that
were not following the flow. Using preknowledge of the
flow field, the biased velocity estimates arising from large
particles in the flow were removed, thereby improving the
accuracy of the measurements.

1

Introduction

Particle image velocimetry (PIV) is a planar velocity
measurement technique wherein a pulsed laser light sheet
is used to illuminate a flow field seeded with tracer par-
ticles small enough to accurately follow the flow. The light
sheet is pulsed at two very closely spaced instants in time,
and the positions of the particles are recorded by a camera.
The recorded images of the particle positions are then
processed to determine the flow velocity over the illumi-
nated plane. PIV has gone through several changes over
the last 10 years, most of them driven by CCD camera and
computer technology. Originally implemented as a pho-
tographic technique, PIV has evolved into a digital tech-
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nique (DPIV), where image data are acquired and
processed in near real time. The ability to acquire single-
exposure image frame pairs has driven the trend whereby
nearly all DPIV data are processed via correlation pro-
cessing. In correlation processing, spatially averaged esti-
mates of the flow velocity across a uniform grid are
obtained (Willert and Gharib 1991). Computer processing
speeds have supported this trend since software-based
correlation processing has proved to be a reasonable
approach for DPIV data processing.

Particle tracking velocimetry (PTV) has been a longtime
rival of correlation processing. As the name implies, the
PTV technique requires tracking of the individual particle
images in order to estimate the flow velocity. PTV is
normally restricted to low seed particle concentration
flows so that the individual particle trajectories can be
unambiguously tracked. The velocity vectors obtained
using PTV are randomly distributed based on the seed
particle locations within the flow. Combined correlation
processing/particle tracking techniques have been dem-
onstrated by Keane et al. (1995) and by Wernet (1995). In
Keane et al. (1995), double exposure imagery of a liquid
flow were processed via autocorrelation, followed by par-
ticle tracking. The particle tracking results were noisy,
requiring filtering and spatial averaging before being
compared with the correlation results. Wernet (1995)
presented a combined correlation tracking technique uti-
lizing fuzzy logic for correlation peak validation and for
the particle tracking operation. Single-exposure image
data of an underexpanded supersonic nozzle flow were
processed via cross-correlation, followed by particle
tracking. The normal shock in the flow was readily ob-
servable in the tracking results along with the repeated
acceleration/deceleration in the flow downstream of the
shock. The tracking results covered a wider dynamic
range than the spatially averaged correlation results.

The combined technique enabled particle tracking to be
applied in high-speed particle concentration image data
(~10 particles/mm?), which were previously processed
exclusively using correlation techniques. The particle
tracking stage produces “super-resolution” velocity mea-
surements that accurately record velocity gradients and/or
shocks so that structures in the flow that may have been
smeared by the spatially averaged correlation operation
are now resolved down to the fidelity of the particle flow
dynamics.

DPIV data-processing techniques employing recursive
correlation have also been used to achieve “super-reso-
lution” velocity measurements (Hart 1998); however,



variations in seed particle density across the image and
local velocity gradients impedes the applicability of the
recursive technique. In this recursive approach, subregion
image shifting is applied in each successive pass, using the
estimated displacement from the previous pass to enable
successively smaller subregions. The recursive correlation
technique is purported to obtain velocity measurements
with a spatial resolution on the order of the particle size. It
is not possible to obtain independent velocity estimates on
the scale of the individual particles. The limiting spatial
resolution for obtaining independent velocity estimates
from DPIV image data is physically bounded by either the
average separation of the particles in the fluid or the par-
ticle displacement between exposures, whichever is small-
er. Velocity estimates more closely spaced than the smaller
of the average particle separation or the particle displace-
ments between exposures are interpolated data. Therefore,
the combined correlation processing/particle tracking ap-
proach, wherein the individual particle displacements are
determined, yields the highest spatial resolution indepen-
dent velocity measurements from seeded flow fields.

Velocity biasing is a common ailment of all particulate-
based velocity-measurement techniques. Even if the flow
tracers perfectly follow the fluid fluctuations, the mea-
surements can be biased. Velocity bias in LDV measure-
ments arises from the flow turbulence, which affects the
arrival rate of particles through the probe volume. More
particles are convected through the probe volume per unit
time during periods of high flow velocity than during
periods of low flow velocity. Hence, the ensemble-averaged
velocity estimates are biased towards higher velocities
(McLaughlin and Tiederman 1973). The velocity bias is
roughly proportional to the square of the turbulence in-
tensity. Several processing strategies were proposed for
correcting the velocity bias, but they were only imple-
mented in cases of high flow turbulence, due to the larger
bias introduced under these conditions.

The LDV velocity bias is one example of a measurement
bias that can occur when measuring fluid velocities in
particulate seeded flows. All particulate seeding techniques
are sensitive to particle biases of various types. LDV and
DPIV are both sensitive to the particle lag that can occur
when large particles do not accurately follow the flow. In
DPIV correlation processing, large particles are the dom-
inant contributors to the size and shape of the correlation
peak; therefore the resulting correlation peak is biased
towards the flow properties of the large particles. There are
many other factors that affect the size and shape of the
correlation peak: shear, flow turbulence and particle dy-
namics are all potential contributors. Keane and Adrian
(1990) showed that velocity gradients across the interro-
gation subregion resulted in a reduction in the amplitude
and a broadening of the displacement peak. In addition to
the bias caused by these non-uniformities in the flow
across the interrogation region, they also showed that
there exists a statistical bias in DPIV velocity estimates.
The statistical bias stems from the fact that lower-velocity
particles are more likely to remain in the plane of the light
sheet and be captured during the two image exposures
than higher-velocity particles, resulting in a bias towards
lower velocities. The effect of the statistical bias can be

minimized in cases of high seed particle concentration,
where the statistical influence of the loss of particle pairs is
reduced. The spatial averaging that occurs in correlation
processing yields a correlation peak that is an amalgam of
all of these factors, and although the contributions of these
various effects can be described, they cannot be removed
from the velocity estimates.

In particle tracking, the process of determining the
correct particle pairings is very tedious, but easily accom-
plished by manual identification and pairing by a human
operator. Attempts to automate the particle pairing process
are difficult to implement efficiently and prone to error.
Neural nets can be used to perform the particle tracking,
but require training for each type of flow field to be mea-
sured (Cenedese et al. 1992). Alternatively, fuzzy-logic
principles can be used to perform the particle tracking. The
control of complex processes has been aided by the de-
velopment of fuzzy control systems, which have been used
to control traffic flow, appliances, and even subways for
optimal energy efficiency and passenger comfort. Fuzzy
logic employs a tolerance for imprecision to achieve system
control. An exact model for the system inputs and outputs
is not required. Fuzzy inference control utilizes member-
ship functions and a rule base developed by the user to
process information. The physical mechanisms underlying
the process are impertinent to the controller. The process
of identifying and tracking particles in a flow is a good
candidate for fuzzy control, since the procedure is not clear
cut, but involves some gray area decisions.

The power of the particle tracking technique is realized
not only in its ability to produce high spatial resolution
velocity measurements but also in its ability to separate
and identify the individual particle behaviors. All of the
flow non-uniformities, small-scale structures and particle
lag effects can be investigated using particle tracking,
which is not possible using correlation processing. The
particle tracking results can be spatially averaged to pro-
duce a uniform grid of velocity estimates, similar to those
obtained using correlation processing. However, before
the spatial averages are computed, corrections to the in-
dividual velocity estimates can be made, i.e., biases can be
corrected or removed. Particle tracking is not traditionally
used, since it is unable to compete with correlation pro-
cessing in highly seeded flows. However, with the adap-
tation of correlation and particle tracking into a combined
technique, particle tracking is a viable option. The com-
bined correlation/particle tracking technique has been
implemented in a software package by Wernet (1999),
which is now available from NASA Glenn Research Center.

This paper will discuss the basic principles used in the
combined correlation/particle tracking processing used in
the PIVPROC software developed at NASA Glenn. The
implementation of a fuzzy processor to obtain the correct
particle pairings from a pair of single-exposure PIV im-
ages will be discussed. DPIV image data obtained in the
diffuser region of a high-speed centrifugal compressor will
be used to examine the particle dynamics. Even though
attempts are made to ensure that the flow is seeded with
nearly monodispersed seed particles, the particle tracking
results reveal that large particles are present that are not
accurately following the flow, which leads to a velocity bias
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towards lower velocities in the correlation processed data.
Averaging the particle tracking data over a uniform grid of
points (using the identical grid and subregion size used in
the correlation processing operation), confirms that the
data obtained from particle tracking contains nearly
identical information to that obtained by direct correlation
processing, including the biases. Systematic errors can be
manifested in many ways that are not always easily dis-
cernible. However, in the compressor measurements pre-
sented here, large particle bias is readily identified in the
flow exiting the impeller. Knowledge of the true flow field
properties enables the determination of a filtering strategy
by which large, slow-moving particles can be removed
from the particle tracking results, yielding spatially aver-
aged velocity vector maps of a more superior quality than
are possible by using straight correlation processing. The
bias corrected instantaneous velocity vector map shows
that the particle lag velocity bias levels are most significant
where the large particle concentration in the flow is high
and ranges from 7 to 11%. Application of the bias cor-
rection prior to computing the time average of a 50-frame
series of velocity vector maps shows a uniform bias
throughout the flow of approximately 4%.

2

Correlation processing vs particle tracking

The purpose of this paper is not to reiterate what is already
known about correlation processing of DPIV image data.
Here we will only be concerned with direct digitally ac-
quired pairs of single-exposure image data. Single-expo-
sure image data enables cross-correlation data processing
to be utilized, which provides the maximum dynamic
range and highest signal to noise from DPIV image data.
Single-exposure image frame pairs are also readily ame-
nable to particle tracking processing. In either processing
technique, the accuracy of the velocity vector estimates is
determined by the accuracy to which the spatial position
of the correlation peak or individual particle centroids can
be determined, as will be discussed next.

In correlation processing, the DPIV image frame is di-
vided up into a grid of small interrogation regions, and the
cross correlations of the subregions from the first and
second exposure are computed. The output correlation
plane contains a correlation peak corresponding to the
average displacement of the particles across the subregion.
The particle displacements are restricted to be one-quarter
of the subregion size for correlation processing (Keane
and Adrian 1990). Each subregion must contain at least
five to ten particles for a good correlation result. Hence,
the seed particle concentration in the recorded images will
ultimately limit the selected correlation subregion size and
the concomitant velocity vector grid density. Flow features
smaller than the correlation subregion size will be low-
pass filtered, due to the spatial averaging nature of the
technique. Larger-sized subregions containing more par-
ticles will yield higher reliability, but even more spatially
smoothed velocity vector maps. For a subregion size of
64 X 64 pixels, a maximum displacement of 16 pixels can
be achieved. The correlation peak locations are nominally
estimated to an accuracy of 0.1-0.2 pixels, yielding a full-
scale accuracy of 0.6% (Westerweel 1997).

Particle tracking yields the individual particle dis-
placements between exposures. The first step in the par-
ticle tracking operation is the determination of the
individual particle centroids in the two single-exposure
image frames. A search region around each initial expo-
sure particle is used to identify candidate second exposure
particles. These candidate particle displacements are then
analyzed in the tracking operation to determine the correct
particle pairings. The accuracy in the individual particle
displacement estimates is given by V2 times the uncer-
tainty in the particle centroid estimates. For particle im-
ages spanning on the order of 1-2 pixels, the particle
centroid estimates can be determined to nominally
0.2 pixels (Wernet and Pline 1993). For single-pixel par-
ticles, the error reaches the maximum value of 0.5 pixels.
Assuming a mean particle centroid estimate accuracy of
0.35 pixels and a particle displacement search region size
of 16 pixels, a nominal single particle displacement accu-
racy of 3% of full scale is achieved. Hence, the individual
particle displacements are not as accurate as the spatially
averaged estimates obtained from the correlation opera-
tion. However, if the particle tracking results were used to
compute a spatially averaged velocity vector map, with the
same sized subregions that are used in the correlation
operation, then comparable accuracy velocity estimates
would be obtained. Assuming the image contains sufficient
seed particle concentration for there to be ten particles per
correlation subregion, then if particle tracking were used,
ten individual particle displacements could be averaged
together to obtain a spatially averaged velocity estimate.
Hence, the PTV technique is capable of providing spatially
averaged velocity vector maps on regular grids with
accuracies on the order of 1% of full scale.

In addition to the measurement precision errors dis-
cussed above, the spatially averaged velocity estimates
contain other noise sources: flow turbulence o7y, velocity
gradients across the subregion ovyg, systematic errors op
resulting from particle bias effects and particle dropout
errors gpp producing a loss of correlation. For correlation
processing, the error in the estimated velocity, assuming
negligible timing error, is given by:

2 _ 2 2 2 2
OAX—Correl = Ocp T 011 T+ Oyg + 0 + 0pp (1)

where o¢p is the error in estimating the correlation peak
position. When computing the cross correlation, these
additional error terms are all combined into the correla-
tion peak, causing a broadening and reduction in ampli-
tude of the peak. Once combined, these error sources
cannot be deconvolved. The error in estimating the cor-
relation peak position increases linearly with the width of
the correlation peak (Wernet and Pline 1993), therefore as
these error sources broaden the correlation peak, the
uncertainty in the velocity estimates increases.

The results obtained from the particle tracking opera-
tion can be compared with the correlation results by
computing the spatially averaged velocity field. The sub-
region for computing the spatial average of the particle
tracking results is assumed to be the same size as the
correlation processing subregion. The particle drop out
error term is now replaced by a term representing the
spurious vectors detected in the tracking process, ggy. The



error in the spatially averaged particle tracking estimated
velocity is given by:

2
o2 _ 20py
AX—Track — N

+U%1 +G€/G+O—}23+G§V (2)

where gpr is the error in estimating a single particle
position, and N is the number of particles per subregion.
The measurement precision error is inversely related to
the number of vectors in the subregion. The other error
sources are typically larger than the measurement preci-
sion error. Computing the spatial average of the particle
tracking results is a two-step process, first the particle
tracking is performed and then the spatial average is
computed. Hence, the error sources are not pre-con-
volved into the final velocity estimate; instead, they are
still separate entities. The need for error correction is first
determined by inspection of the particle tracking results.
If the error sources can be identified and separated from
the flow information, then the data quality can be
improved.

Any preknowledge about the flow field can be applied
via a filtering process before computing the spatial aver-
age. Preknowledge may include maximum and minimum
velocities, seed particle size distribution, bias errors and
spurious vectors. Spurious vectors typically result from the
particle tracking operation due to loss of particles or in-
correct matching, and can be considered a noise source.
Spurious vectors can be removed or minimized either
through the use of a robust particle tracking estimator, or
through post-processing filtering. The presence of bias
errors must be determined by inspection of the data. Er-
rors arising from velocity gradients across the subregion,
once considered the bane of correlation processing can
now be corrected. Before computing the spatial average, or
in the process of computing the spatial average, checks can
be made for the existence and magnitude of velocity gra-
dients across the subregion. The size and shape of the
averaging subregion can be modified to minimize the ve-
locity gradient effect, thereby improving the spatial reso-
lution of the estimated velocity field. Although the
measurement precision may not be as high as correlation
processing, the power of the combined correlation/particle
tracking technique is realized via the prefiltering capabil-
ities afforded before the computation of the spatially av-
eraged velocity field, producing velocity field estimates of
higher accuracy (free of systematic errors) than possible
using correlation techniques.

3

Fuzzy logic

The control of complex processes has been aided by the
development of fuzzy control systems. Fuzzy logic em-
ploys a tolerance for imprecision to achieve system control
(Zadeh 1965). An exact model for the system inputs and
outputs is not required. Fuzzy inference control utilizes
membership functions and a rule base developed by the
user to process information. The physical mechanisms
underlying the process are irrelevant to the controller. The
process of identifying and tracking particles in a flow is a
good candidate for fuzzy control, since the procedure is
not clear cut, but involves some gray area decisions.

Fuzzy-logic principles have been used in the three
separate DPIV data-processing scenarios: to directly track
particles in low to moderate seed particle concentration
flows, to validate correlation peaks in correlation pro-
cessing, and to perform particle tracking in the combined
correlation processing/particle tracking approach for high
seed particle concentration flows. Each of these applica-
tions will be discussed in the following sections. First, the
use of fuzzy logic to track particles in a low seed particle
concentration case will be described. This application
provides a foundation for the use of fuzzy logic in DPIV/
PTV data processing. In the fuzzy-logic particle tracking
technique, local particle displacement information is used
to identify candidate particle tracks. The fuzzy inference
processor is used to determine the most probable particle
trajectories based on common-sense rules that an observer
would use to identify particle tracks. Next, fuzzy-logic
principles are used to improve the data validity in normal
correlation processing. Finally, the use of fuzzy logic in the
combined correlation/particle tracking processing is
demonstrated.

3.1

Fuzzy-logic processor applied to PTV

The DPIV experiment is set up such that two single-
exposure image frames are acquired. The particle cent-
roids on frame #1 are used as starting points for possible
particle displacements. The user specifies a search region
radius, R;, typically 10-20 pixels, to search for frame #2
particles. Each frame #2 particle within a radius R, from
the initial particle centroid is a candidate displacement
vector. All possible displacements of the initial particle to
the second particle locations within the search region are
recorded and stored as lists of candidate displacement
vectors for each initial particle. The number of candidate
velocity vectors is given by pnR2, where p is the average
particle concentration across the image. Hence, for high
data density areas or for large search regions, many initial
particles may be competing for the same second exposure
particle centroids. At this stage in the processing, the
vector field is very convoluted and noisy, as indicated by
the competing vectors shown in Fig. 1. The fuzzy inference
processor operates on these lists of candidate displace-
ment vectors to determine the most likely displacement
vector for each initial particle centroid location.

The list of vectors for each initial particle is compared
with all other initial particle displacement vector lists to
determine whether there is any commonality. If two sep-
arate initial particles do claim the same second exposure
particle, then all possible vector pairings between the
candidate lists for each of these initial particles are com-
pared. The main assumption is that, if two initial particles
are close enough to interact (claim the same second par-
ticle), then the pair of vectors that look the most similar
(in direction and magnitude) must be the correct pair of
displacement vectors for the two separate initial particles.
This assumption also holds for tertiary and higher
interactions.

There are four inputs to the fuzzy PTV processor for
each vector pair: distance between the vector midpoints in
pixels (Sep); average vector magnitude (Mag); difference
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Fig. 1. Particle centroids from a small region of images #1 and #2
have been combined on the same plane. All possible candidate
velocity vectors from two of the initial exposure centroids have
been drawn to the surrounding second exposure centroids to
illustrate the interactions between candidate vectors

in vector magnitudes (MagDif); and the sum of the squares
of the differences of the x and y components of the two
velocity vectors (Delta). The first (Sep) and third (MagDif)
measures, when combined, act as a velocity gradient
measure. The last measure operates in the opposite man-
ner to the dot product. This measure is small when the
vectors are similar in magnitude and direction, and large
when they are different. Each input measure is assigned to
a fuzzy set, where the degree of membership for each el-
ement in the set varies between 0 and 1. Standard 25-50%
overlapping triangular input membership functions are
used. The degrees of membership for each input are pro-
cessed through a rule base of “IF ... THEN” blocks. The
rule base defines an output fuzzy set. For a given vector
pair, up to 16 rules may fire, depending on the number of
unique combinations of membership values. In lieu of the
more common centroiding technique, the fuzzy PTV
processor output is computed via the singleton technique
with a weighted average, which is computationally simpler
and more efficient (Brubaker and Sheerer 1992).

The fuzzy PTV rule base is shown in matrix format in
Table 1. Each input measure has three elements in its
fuzzy set: {Small, Med, Large}. The input measures are

computed for each vector pair analyzed. The fuzzy pro-
cessor output from the rule base is the fuzzy set of con-
fidence (Conf_Out) in the vector pair. The set of
confidence singletons and their associated numerical
weights are: {Very High = 1.0; High = 0.8; Med = 0.5;
Low = 0.1; None = 0}. For example, in Table 1, Sep =
Small, Mag = Med, MagDif = Small, and Delta = Med
yields the output membership Conf_Out = Med.

The membership functions assign a numeric weight, or

degree of membership, for all elements in each input
measure’s respective fuzzy set. The number of non-zero
memberships depends on the amount of overlap of the
membership functions. The midpoints of the membership
functions are: Sep_Mid = R; Mag_Mid = R/2; Mag-
Dif Mid = 5 pixels; Delta_Mid = 5 pixels, where R, is the
search region size in pixels, which is nominally 20 pixels.
Figure 2 shows a sample set of membership functions for
three sets: Small, Medium and Large. An input measure of
7.5 pixels is observed to be a member of the set Small to
degree ygman = 0.25 and also a member of the set Medium
to degree [tedium = 0.75.

All unique combinations of the degrees of membership
for the fuzzy sets for each input measure are combined via
a fuzzy “AND”, which is the minimum value of the four
membership values. The actual confidence level in the
vector pair is computed by taking the product of the fired
rule output value (Conf_Out) and the fuzzy “AND” of the
degree of memberships. A sum of these products is com-
puted over all of the fired rules. The total is normalized by
the sum of the minimum degree of membership values for
each rule fired. The output of the fuzzy processor repre-
sents the crisp estimate of the confidence in the velocity
vector pair, ranging from 0 (low confidence) to 1 (high
confidence).

A simplified example is shown in Fig. 3 where two ex-
posure #1 particles are competing for two exposure #2
particles. All possible vectors are drawn and their prop-
erties are listed in Table 2. From the vectors in Fig. 3, only
two candidate vector pairs are possible: V,V; and V,V,.
The other two pairings V;V; and V,V, are not possible,

Table 1. Rule base for fuzzy PTV processor. Each unique combination of inputs defines an element of Conf_Out (the output set),

which are the values in the body of the table

MagDif Small MagDif Med MagDif Large

Mag Small Mag Med  Mag Large  Mag Small Mag Med Mag Large  Mag Small Mag Med Mag Large
Sep Small
Delta Small High High High High Med Med Med Med Low
Delta Med High Med Low Med Med Med Low Low Low
Delta Large Med Low Low Low Low Low Low Low Low
Sep Med
Delta Small High Med Med Med Med Low Med Low Low
Delta Med Med Med Low Med Med Low Low Low Low
Delta Large Low Low Low Low Low Low Low Low Low
Sep Large
Delta Small Med Med Low Med Low Low Low Low Low
Delta Med Low Low Low Low Low Low Low Low Low
Delta Large Low Low Low Low Low Low Low Low None
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Fig. 3. Two pairs of interacting vectors with separate initial
points. Dashed line indicates incorrect vectors, solid line denotes
correct vectors

since the two separate initial particles are competing for
the same second exposure particle, which would produce
physically impossible vector pairs. The two possible
combinations, and their respective input measures (all
units in pixels) to the membership functions are given in
Table 3.

Looking at the first case, V,V; has the fuzzy set mem-
berships:

SeP {:uSmall - 092) HMed = 008> :uLarge - 0})
Mag {ﬂSmall =0.15, HMed = 0.08, ﬂLarge = 0})
Mangf {:uSmall = 0.50, HMed = 0.00, :uLarge = 0}’
Delta {MSmall = 0.00, fipmeq = 0.00, Hrarge = 1} .

Table 2. Sample data for the interacting vectors shown in Fig. 3

X; Y; V [pixels] 0°
Vi 100 100 8.5 45
V, 100 100 11 30
V3 105 100 6 81
Vy 105 100 7.1 51

Table 3. Fuzzy processor input measures and outputs for sample
vector pair combinations

Sep Mag MagDif Delta Confidence
V,Vs 1.7 8.5 5 71.6 0.17
A 4.3 7.8 14 2.5 0.65

With these fuzzy sets, the following four rules are fired,
which are all possible combinations of the fuzzy mem-
berships for each input set:

- IF(Sep = Small AND Mag = Small AND
MagDif = Small AND Delta = Large) THEN
- Conf_Out; = Med
- p_out; = MIN(usep = Small, fip,g = Small,
IMagpif = Small, fipe, = Large) = 0.15
- END IF
- IF(Sep = Small AND Mag = Med AND MagDif = Small
AND Delta = Large) THEN
- Conf_Out, = Low
- p_out, = MIN(usep = Small, piyag = Med,
HUMagDif = Small, HUpelta = Large) =05
- END IF
- IF(Sep = Med AND Mag = Small AND MagDif = Small
AND Delta = Large) THEN
- Conf_Out; = Low
- p_outs = MIN(usep = Med, pinag = Small,
Imagpif = Small, fipe, = Large) = 0.08
- END IF
- IF(Sep = Med AND Mag = Med AND MagDif = Small
AND Delta = Large) THEN
- Conf_Out, = Low
- p_outy = MIN(usep = Med, fiyag = Med,
UMagpit = Small, pipeis = Large) = 0.08
- END IF

where the MIN( ) function is the the fuzzy “AND” oper-
ation. The fuzzy processor output confidence for this
vector pair is given by:
S Conf_Out; - u_out;
N
%, poout

Confidence =

(3)

Confidence

~0.5x0.15+0.1 x 0.5+ 0.1 x 0.08 4 0.1 x 0.08
a 0.15+ 0.5+ 0.08 + 0.08
=0.17 (4)

where Ny is the number of rules fired, and the numerical
weights assigned to the Conf Out set elements have been
defined above. The fuzzy processor output confidence
levels for the two-vector pairings are shown in Table 3, of
which the V;V, pair has the higher confidence level. This is
a very simplified case; in most instances each exposure #1
particle will have interactions with several other exposure
#1 particles. Initially, all of the vectors are assigned a
confidence level of 0. The computed confidence level for
the vector pair is compared against the current confidence
level for each vector in the pair, and the maximum con-
fidence value is stored for each vector. When all the in-
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teracting vector pairs have been analyzed, the list of can-
didate vectors for each initial point will have confidence
levels relative to one another. The vector in the list with
the highest confidence level is assumed to be the most
probable vector for the current initial point, and moved to
the top of the list.

A second pass through the data is performed to analyze
non-interacting velocity vectors lists. A non-interacting
vector is defined as a vector with multiple candidate vec-
tors for a single initial point, but does not share a common
second-particle centroid with any other vector. The overall
flow field pattern is used to determine the correctness of
these outlying velocity vectors. The fuzzy processor is used
to compare each vector in the list with all of the other
previously analyzed velocity vectors in the flow field.
Again, the vector with the highest confidence value in the
list is assumed to be the correct vector.

A final pass through the data is performed in which the
highest confidence velocity vectors for each initial particle
centroid are compared. All the confidence levels are reset
to 0. Each remaining valid vector is compared with all
other valid vectors in the flow field. The resulting confi-
dence level for each vector is then compared with a fixed
threshold level. Only vectors with confidence levels above
the set threshold level are considered valid.

The fuzzy weights in the rule base and membership
functions are generic and applicable to a wide class of flow
fields. For the direct particle tracking, all the particle dis-
placements are initially considered; hence there is a lot of
interaction between the adjacent particle images. For low
seed particle density flows, the number of interacting
vectors is processed in a reasonable amount of time.
However, as the total number of particles Np in the image
increases, the computational load on the fuzzy processor
grows dramatically ~ Np(pnR?)?, due to the increased
interaction between neighboring particles. The tracking
operation is still successful, but is no longer computa-
tionally efficient. The combined correlation/particle
tracking operation described below turns out to be a more
efficient approach for highly seeded flows. The correlation
vector map provides an efficient reference for determining
the individual particle displacements, instead of deter-
mining the particle displacement from just the random
particle positions between exposures.

3.2

Fuzzy-logic correlation peak detection

The correlation processing technique requires identifica-
tion of the correlation peak on the correlation plane cor-
responding to the average displacement of particles across
the subregion. Noise on the images and particle dropout
contribute to spurious peaks on the correlation plane,
leading to misidentification of the true correlation peak.
The subsequent velocity vector maps contain spurious
vectors where the displacement peaks have been improp-
erly identified. Typically, these spurious vectors are re-
placed in a post-processing step by a weighted average of
the neighboring vectors, thereby decreasing the indepen-
dence of the measurements. In the PIVPROC program,
fuzzy-logic techniques are used to determine the true
correlation displacement peak even when it is not the

maximum peak on the correlation plane, hence maximiz-
ing the information recovery from the correlation opera-
tion and minimizing the number of spurious velocity
vectors.

The particle tracking fuzzy inference engine has been
used in the PIVPROC program to detect the correct auto-
and cross-correlation plane displacement peaks. Ideally,
when the image data are of high quality and high seed
density, the highest amplitude peak on the correlation
plane represents the average displacement of particles
across the subregion being processed. An example of a
high signal-to-noise case is shown in Fig. 4. However,
particle out-of-plane motion, velocity gradients, image
noise, and low particle concentration are all contributing
sources for a noise peak to be misidentified as the average
particle displacement across the subregion. In these cases,
the peak corresponding to the average motion of the
particles across the subregion between exposures is not the
highest amplitude peak, and possibly not even the second
highest amplitude peak on the correlation plane. Figure 5
shows a pair of noisy input subregions and the resulting
correlation plane output. Vectors have been drawn on the
correlation plane, indicating the possible displacement
vectors that could be derived from this correlation result.
The correct average particle displacement for the subre-
gions is the same as the case shown in Fig. 4, down and to
the right. However, as is observed on the correlation plane,
the brightest peak is not the one corresponding to the
average displacement across the subregion. The brightest
peak is up and to the right, yielding an incorrect estimate
of the local flow velocity.

In the actual DPIV processing, each correlation plane is
scanned for the five highest amplitude peaks, which are
then stored. After all subregions in the image have been
processed, the fuzzy inference operation is applied. The
five highest amplitude peaks detected on each subregion
correlation plane are treated as candidate velocity vectors
for that subregion. The fuzzy-logic processor uses flow
continuity to determine the appropriate correlation peak.

Input Subregions

Curput Correlation
Plane

Cross-
Cormrelation

T-m:’

Fig. 4. Two single-exposure input subregions and the corre-
sponding output cross-correlation plane. The location of the
single bright correlation peak from the origin is the average
displacement across the subregion
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Fig. 5. Noisy input subregions result in spurious peaks on the
correlation plane. The brightest peak is not always the correct
displacement peak

The stored correlation peaks from each subregion are
compared on a pairwise basis with the results from the
surrounding four subregions. The displacement peaks re-
sulting in velocity vectors with the most similar qualities
are given the highest confidence weighting. Spurious vec-
tors will not correlate across the surrounding subregions
and will thereby be discriminated. The displacement with
the highest confidence weighting for each processed sub-
region is taken as the correct correlation displacement
peak. Hence, the fuzzy inference technique is very similar
to the weighted average replacement technique, except that
the surrounding velocity vectors are used to identify the
correct displacement peak from the correlation informa-
tion, instead of merely replacing the spurious vector.
Flows with sharp accelerations/decelerations (including
shocks) have been processed using the fuzzy correlation
peak detection technique with no adverse affects (Wernet
1995, 1999). The positions of the shocks were accurately
determined and the fuzzy processor did not reduce our
ability to resolve the flow structures.

A comparison of actual flow field image data processed
with and without the fuzzy peak detection is shown in
Fig. 6. The main flow direction is down and to the right.
The vectors with hollow heads represent displacements
that were correctly identified by both processing tech-
niques. The original spurious vectors are shown with open
line vector heads. The vectors with solid filled heads rep-
resent displacements that were initially incorrectly iden-
tified, but have been subsequently correctly identified by
the fuzzy processor.

3.3

Correlation processing combined with fuzzy-logic

particle tracking

The availability of a high-quality velocity vector map ob-
tained from the cross-correlation operation offers the
opportunity to perform particle tracking on length scales
smaller than the correlation subregion size. Instead of
using the interaction of nearest neighbors to determine the
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Fig. 6. A vector field containing spurious vectors, which have
been correctly identified using the fuzzy processor. The main flow
direction is down and to the right. The vectors with hollow heads
represent displacements that were correctly identified by both
processing techniques. The original spurious vectors are shown
with open line vector heads. The vectors with solid filled heads
represent displacements that were initially incorrectly identified,
but have been subsequently correctly identified by the fuzzy
processor

correct particle pairings, the correlation velocity vector
map can be used as a guide for the particle tracking. Using
the same pair of single-exposure image frames used to
compute the cross-correlation vector map, the first expo-
sure image is scanned for particle centroids. All second
exposure particles located within a user-specified search
region around each first exposure particle are detected and
stored. Next, the fuzzy inference engine is employed to
determine which detected particle pairings are correct. The
first-exposure particles and their associated list of candi-
date second-exposure particles are now individually ex-
amined. The four nearest neighboring velocity vectors
from the cross-correlation vector map to the initial particle
location are found and used to compute a local spatially
averaged velocity vector, called a “benchmark vector”. The
benchmark vector is then used in a pairwise fuzzy com-
parison with all of the candidate vectors in the list for this
initial particle. The candidate vector in the list most sim-
ilar to the benchmark vector is assigned the highest con-
fidence weighting. Benchmark vectors are computed for all
remaining initial particle locations and used to identify the
most probable velocity vector for each initial particle.
Proceeding in this manner, the correct particle pairs for all
of the initial exposure particles are determined. In prac-
tice, the particle tracking operation has a success rate
(properly matched particle pairs) of approximately
30-60%.

The PTV data are randomly distributed according to the
seed particle distribution within the flow at the time the
image data are acquired. The PTV data can be converted to
a regular grid of points by computing spatial averages.
Computing spatial averages of the PTV data on subregions
of the same size and spacing used in the correlation op-
eration, a direct comparison between the correlation and
particle tracking results can be made. For each subregion,
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both the vector tail and head coordinates are verified to be
within the current subregion before they are included in
the average estimate. This ensures that the same set of
particle images used in each subregion to obtain the
correlation results is identical to the set of tracked parti-
cles used to compute the spatially averaged tracking result.

4

Discussion

The data shown in the following figures is from the ap-
plication of DPIV to the diffuser region of a high-speed
centrifugal compressor. For a more thorough discussion of
the centrifugal compressor facility, the DPIV installation
and the measurement results obtained from the facility,
see Wernet (1998). The impeller tip speed is 490 m/s at
21,000 rpm. Previous measurements of the flow exiting the
impeller using LDV were in general agreement with CFD
predictions of the flow (Skoch et al. 1997). Hence, the flow
exiting the impeller is well characterized, with a large
circumferential velocity component and a small radial
component. The nominal flow velocity at the impeller exit
is 375 m/s due to the 50° backsweep of the impeller vanes
from radial at the exit. As the flow migrates out across the
vaneless space into the diffuser passage, the radial com-
ponent is reduced as the flow turns to match the diffuser
vane surface angle.

A 1,000 x 1,000 pixel cross-correlation CCD camera
with 9-um pixels was used to acquire the image data.
Optimally imaged particles are obtained from the 0.16
magnification optical system by setting the recording
camera lens to f/5.6 so that the diffracted images of the
seed particles span 1-2 pixels on the CCD camera sensor
(Wernet and Pline 1993). The time between laser pulses is
1.8 us and the imaged field of view is approximately
65 X 65 mm. A once-per-rev signal generated from the
impeller shaft is used to trigger the laser firing in order to
capture DPIV image pairs at a particular circumferential
orientation of the impeller. The compressor flow field is
globally seeded with alumina particles which have a size
distribution mean diameter and standard deviation of
0.7 £ 0.2 um. The particles are dispersed in a pH-stabi-
lized ethanol dispersion which is atomized in the plenum
section of the compressor facility (Wernet and Wernet
1994). The ethanol evaporates, leaving the dry alumina
seed particles in the flow stream. Using the particle dy-
namics results of Melling (1997), these alumina particles
should exhibit a frequency response of 3 kHz. The light
sheet is inserted into the flow using a periscope-type
probe. The location of the illuminated plane is at 12% span
(0% being at the diffuser hub and 100% being at the casing
wall). For the measurements shown here, the light sheet
propagates upstream through the diffuser passage. The
diffuser vanes are overdrawn in the raw DPIV image and
drawn in the processed vector plots.

4.1

Instantaneous vector maps

The centrifugal compressor data were selected since the
flow has previously been characterized and due to the
readily observable particle dynamic effects. A sample raw
DPIV image file is shown in Fig. 7, illustrating the seed
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Fig. 7. Section of raw PIV image file overdrawn on a schematic
layout of the compressor facility. The impeller is seen on the right
along with the impeller blade position. The illuminated plane
shown here is at 12% span. The light sheet is propagating from
the bottom to the top of the figure

particle concentration variation across the image. A high
concentration of seed particles is observed at the top of the
image, which corresponds to the through-flow fluid exiting
the impeller. The impeller blades are 2 mm thick at the top
and 17 mm thick at the base. At this deep immersion in
the blade passage, the impeller blades are near their
maximum thickness (15 mm), and evidence of the viscous
blade wake is observed in the region just downstream from
the impeller blade. The viscous blade wake region has a
markedly lower seed particle concentration. Just below the
blade is the through-flow fluid packet (again moderate
seed particle concentration) from the previous blade pas-
sage, and at the bottom of the image we see the remnants
of the viscous blade wake from the previous blade, which
is now out of the field of view. Again, this lower blade wake
fluid has a low concentration of seed particles.

The correlation results obtained by using a 64 x 64
pixel subregion size with 75% overlap are shown in Fig. 8a.
The velocity vectors represent the angle and magnitude of
the measured velocity. In addition, the velocity vectors are
color coded by their magnitude, in order to accentuate the
changes in the flow. The velocity vector map reveals no
evidence of the underlying large variations in seed particle
concentration as observed in the raw image file shown in
Fig. 7. The viscous blade wake region is characterized by
a lower-velocity magnitude and more radial flow angle



than the higher speed flow observed above and below the
blade.

The particle tracking operation uses the correlation
processed data shown in Fig. 8a as an input. The tracking
operation is tolerant of some spurious vectors in the
correlation vector map; however, if too many spurious
vectors are located in a concentrated region, then the
tracking operation may not perform optimally in that re-
gion. The first stage in the particle tracking operation is
the particle centroid detection. A global image threshold
level of 13 gray levels was used to detect over 6,400 par-
ticles in each image. The results of the tracking operation
are shown in Fig. 8b, where over 4,000 velocity vectors
have been tracked, yielding a tracking success rate of over
60%. The spatial resolution of the velocity measurements
was 6 vectors/mm” across the illuminated region of the
flow, and spatial resolutions as high as 8 vectors/mm?
were realized in some regions. The complete particle de-
tection and particle tracking operation completes in less
time than required to complete the correlation operation.
The particle tracking vector map clearly indicates the
underlying seed particle concentration in the image. A
high concentration of vectors is observed in the topmost
portion of the image, where the through-flow fluid exits
the impeller. A small blank region in the high-speed flow
at the top of the image is caused by an excessively high
particle concentration, which precludes the software from
resolving the individual particle images due to the use of a
global threshold level for particle centroid detection. The
viscous blade wake region has a lower concentration of
vectors, as predicted by the low seed particle concentration
in the raw image file. The more sharply turning velocity
vectors are readily observed in this region. At the bottom
of the image, we observe the most sparsely seeded region
of the flow.

The randomly sampled particle tracking data were then
processed to compute a spatially averaged velocity field,
corresponding to 64 X 64 pixel subregions with 75%
overlap. Figure 8c shows the spatially averaged velocity
field, which agrees very closely with the 64 x 64 pixel
subregion correlation processed data shown in Fig. 8a.
The small blank region at the top of Fig. 8b results in a low
velocity region in the spatially averaged vector map in
Fig. 8c. Otherwise, the good agreement between the spa-
tially averaged results and the correlation results confirms
that the particle tracking operation is recovering essen-
tially the same information as the correlation operation.

At this point, we can see that the particle tracking op-
eration has revealed information on the underlying seed
particle concentration, a fact that is usually masked by
correlation processing. A closer inspection of the particle
tracking data in Fig. 8b reveals that there are a significant
number of low-magnitude velocity vectors that have a
large radial flow angle. The flow should exit the impeller
and turn to follow the diffuser vane surface. These vectors
represent large particles that are exiting the impeller with a
large radial velocity component and not following the flow.
These particles must be larger than the mean particle size
of 0.7 um diameter, and are obviously biasing the spatially
averaged velocity estimates. As discussed above, the par-
ticle images recorded on the CCD array result entirely

from diffraction, therefore, no determination of the true
particle size can be made from the raw DPIV image data.
However, since the individual particles have been tracked,
the velocity bias caused by these low-velocity particles can
easily be filtered out.

The criteria used to discriminate the biased vectors will
ultimately determine the quality of the data. Two filtering
techniques were investigated: hard velocity cutoff and an
automated spurious vector removal technique. Preferably,
an automated statistical technique could be applied which
would rely on the local flow properties to remove spurious
or biased velocity vectors. The automated procedure for
removing outliers used here is based on Chauvenet’s cri-
terion (Taylor 1982), in which the probability of occur-
rence of a given point deviating from the mean is
computed. The main assumption here is that the parent
velocity distribution is Gaussian. For each subregion, the
mean and standard deviation are computed. Then the
number of standard deviations that each measurement in
the subregion lies from the mean is computed. The
probability that a given measurement could deviate from
the mean by this many standard deviations is computed
from the Normal Error Integral and multiplied by the
number of points in the distribution. If the computed
probability is less than a preset level, then the point is
removed. This technique has been used with good success
for spurious vector removal when computing the time-
averaged mean velocity from a series of correlation-pro-
cessed DPIV measurements. When applied to the collec-
tion of particle tracking measurements in each spatially
averaged subregion, the automated procedure did not
perform as well as a simple velocity cutoff filter.

Application of a hard velocity cutoff filter was justified,
based on inspection of the particle tracking measurements
and what was known about the flow exiting the com-
pressor. The mean impeller exit velocity was known to be
375 m/s due to the rotational speed of the impeller, yet
velocities less than 225 m/s were observed with flow angles
markedly different from the mean flow. Velocity fluctua-
tions due to flow turbulence in the impeller exit region are
not expected to exceed 15% (which will be verified via the
time-average measurements below), yet these low-velocity
vectors deviated from the mean by nearly 45%. The low
velocity coupled with the large radial flow angle identified
these measurements as originating from large particles
that were not accurately following the flow. A low-velocity
cutoff limit of 225 m/s was thus imposed on the data.

Figure 9a shows the 294 velocity vectors with magni-
tudes of 225 m/s and below that have been removed from
Fig. 8b. The recomputed spatially averaged velocity vector
map from the filtered data is shown in Fig. 9b. The velocity
vector map is now more uniform and shows smaller re-
gions of low-velocity flow than the biased velocity vector
maps shown in Fig. 8a and c. The average percentage
change in the velocity vector magnitudes in the filtered vs
unfiltered spatially averaged particle tracking data is
shown as a color surface plot in Fig. 10a. Most of the
vector map is little or unaffected, as indicated by the 0%
change. The velocity bias is most significant in regions
where the low-velocity vector populations were highest, as
shown in Fig. 9a. In these regions, the average change in
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Fig. 8a-c. Processed vector fields: a cross-correlation vector map using 64 x 64 pixel subregions with 75% overlap; b particle tracking
result using correlation map in a as a guide, over 4,000 vectors have been tracked; ¢ spatial average of particle tracking results using
same grid spacing and subregion size used in the correlation operation in a

Fig. 9. a Vector map showing the spatial distribution of the velocity vectors with magnitude <225 m/s that have been removed from
Fig. 8b; b Spatial average of the filtered particle tracking data. The velocity magnitudes are now larger than they were in the spatial

average of the unfiltered tracking data shown in Fig. 8¢

the velocity ranges from 7 to 11%. These rather significant
increases in the mean velocity demonstrate the detrimental
effect that a relatively small population of low-velocity
particles can have on the velocity vector maps.

Since the individual particle velocities have been mea-
sured prior to computing the spatially averaged velocity
vector maps, we can also calculate the rms velocity at each
subregion. The rms variation in the unfiltered, spatially

averaged velocity data from Fig. 8c is plotted in Fig. 10b.
The rms variations are shown as a color-coded surface
plot and the values range from 12 to 30%. Figure 10c
shows the rms velocities for the low-velocity cutoff filtered
data from Fig. 9b, where the magnitude of the variations
has been significantly reduced. The most significant
reductions are observed corresponding to the spatial
regions containing the largest populations of low-velocity
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Fig. 10. a Change in velocity between the filtered and unfiltered spatially averaged velocity vector maps shown in Figs. 8c and 9b
respectively; b Rms variation in the unfiltered spatially averaged particle tracking result. The largest variations are observed where the
low-velocity vector concentrations are highest; ¢ Rms variation in the filtered, spatially averaged velocity vector map. The variations
caused by the low-velocity particles have been reduced, yielding a lower magnitude, more uniform rms map

Fig. 11a-c. Time-average vector fields using 50 frames: a spatially averaged PTV data using 64 x 64 pixel subregions with 75%
overlap, no filtering; b time average as in a, 225 m/s low-velocity cutoff filter applied to PTV data; the high-velocity regions have
increased in size; ¢ percentage change in filtered relative to unfiltered data in Fig. 11a and b, illustrating an almost constant 4%

increase in the velocity across the entire measurement region

magnitude vectors that were filtered out before computing
the spatial average.

4.2

Time-averaged vector maps

The discussion above concerned large particle bias cor-
rection with regard to a single instantaneous velocity
vector map. Time-average measurements of the compres-

sor flow are required to reduce the measurement uncer-
tainty and to ensure that high-quality velocity vector maps
are obtained for comparison with CFD predictions.
Therefore, DPIV image data were collected in 100-frame
image sequences, from which 50 velocity vector maps
could be obtained by processing the frame pairs. The
once-per-rev synchronization electronics ensured that the
impeller was in the same location each time an image pair
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was acquired. These 50 velocity vector maps were then
used to compute the time-averaged velocity vector map of
the compressor flow.

A sequence of 50 frame pairs was acquired at the same
compressor span and operating conditions used to acquire
the instantaneous velocity vector map discussed above.
The 50 frame pairs were processed via the same
correlation/particle tracking procedure. Spatially averaged
vector maps were generated from the PTV vector maps.
The 50 spatially averaged PTV maps were then used to
compute the time-average flow field and the relative
standard deviation of the time-average flow. Figure 11a
shows the time-average flow of the spatially averaged PTV
data. The nominal flow features are similar to the instan-
taneous velocity fields shown in Fig. 8a and c. The com-
puted relative standard deviations for this time-average
flow range from 5% up to 13%. Assuming the DPIV
measurement error is on the order of 1% and that there are
no other significant error sources in the measurements
(for now the large particle bias error will be ignored), the
relative standard deviation is an approximate indicator of
the flow turbulence intensity. These measurements con-
firm the flow turbulence intensity in the diffuser region of
the centrifugal compressor does not exceed 15%, and
validates the rationale for applying the low-velocity cutoff
filter to the data. In Fig. 11b, the 225 m/s low-velocity
cutoff filter has been applied to the PTV data prior to
computing the spatial and time averages. The filtered flow
field shows larger regions of high-velocity fluid than the
unfiltered data in Fig. 11a. The spatial extent of the low-
velocity viscous blade wake region has also been notice-
ably reduced. The ratio of the filtered to unfiltered data,
illustrating the percentage change in the flow between the
two cases, is shown in Fig. 11c. Recall that the percentage
change in the filtered to unfiltered instantaneous velocity
data shown in Fig. 10a showed isolated regions of signif-
icant increases in velocity, which were coupled with the
local distribution of large particles in the flow. In contrast,
the ratio of the filtered to unfiltered time-averaged data
shown in Fig. 11c is very uniform. There is a region of
large percentage change observed in the lower right region
of the flow, which is caused by either generally low overall
particle concentrations in this region or an excessive
concentration of low-velocity particles. The change in the
flow magnitude is approximately constant at 4% across the
measured region. The uniformity arises from the statistical
averaging over the 50 frames. Over the course of the 50
frames, large particles will have been evenly distributed
throughout the flow field; hence, their effect will be present
throughout the measurement area. The effect of the large
particles in the time-average flow (4%) is not as large as
the effect observed in the instantaneous case (7-11%).
However, at 4%, the effect on the mean flow is significant
and correction is warranted.

5

Conclusions

Direct correlation processing of DPIV image data masks
the underlying seed particle uniformity in the flow and is
susceptible to velocity bias from particles not accurately
following the flow. The combined correlation/particle

tracking operation has demonstrated that “super-resolu-
tion” velocity measurements are possible which can reveal
small-scale structures in the flow. Over 4,000 velocity
vectors were measured with an average density of 6 vec-
tors/mm”. The time required to perform the particle
tracking operation is approximately the same as that re-
quired to perform correlation processing of the image. The
particle tracking results were then spatially averaged on a
regular grid using subregions of identical size and spacing
as used in the correlation operation. The spatially averaged
tracking results agreed very closely with the correlation
results, indicating that the particle tracking operation is
extracting the same information from the DPIV images as
the correlation operation.

Particle lag effects are always of concern in high-speed
flows. When possible, seed particles are selected that will
accurately follow the flow. In the present study, refractory
seed particles with a high specific gravity were required to
endure the high flow temperatures. Although efforts were
made to ensure that the particles were small enough to
follow the flow and dispersed so that they did not ag-
glomerate, some large particles were observed in the par-
ticle tracking results. These large, low-velocity particles,
which were biasing both the correlation and spatially av-
eraged tracking results, were easily removed from the
particle tracking data using a low-velocity cutoff filter. Not
all of the flow regions were biased. In regions where the
large particle concentrations were high, the velocity bias
was determined to be on the order of 7-11% of the velocity
vector magnitude for the instantaneous velocity vector
maps. The spatially averaged, filtered tracking results
yielded a vector map with larger regions of high-velocity
flow. In addition, inspection of the rms velocities obtained
from the spatially averaged PTV results showed significant
reductions in regions where the low-velocity particles were
removed. In contrast, the time-averaged PTV velocity
vector maps showed a more spatially uniform effect of the
large particle bias removal, producing a uniform increase
in the velocity of approximately 4% across the measured
region of the flow.

The combined correlation/particle tracking processing
technique yields excellent insight into the underlying
particle dynamics in DPIV image data, which is only
possible using particle tracking techniques. Particle
tracking techniques provide the only means possible for
removing large particle velocity bias effects from DPIV
image data. In general, we expect the velocity biases
resulting from larger particles to occur in regions of high
acceleration/deceleration, or sharply turning flows. In the
present work, the velocity bias resulted from particle lag
of large particles. In other flows, there may different kinds
of biases that arise (velocity gradients) that must be
removed or minimized to improve the quality of the
velocity estimates. In each flow measurement case, the
appropriate filtering technique that minimizes the bias
must be determined without compromising the integrity
of the data. The combined correlation/particle tracking
processing technique enables the identification of these
biases in the DPIV data and provides the opportunity for
their removal, without imposing a severe processing time
penalty.
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