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Neural network reconstruction of fluid flows

from tracer-particle displacements

G. Labonté

Abstract We demonstrate some of the advantages of us-
ing artificial neural networks for the post-processing of
particle-tracking velocimetry (PTV) data. This study is
concerned with the data obtained after particle images
have been matched and the obvious outliers have been
removed. We show that it is easy to produce simple back-
propagation neural networks that can filter the remaining
random noise and interpolate between the measurements.
They do so by performing a particular form of non-linear
global regression that allows them to reconstruct the fluid
flow for the entire field covered by the photographs. This is
obtained by training these neural networks to learn the
fluid dynamics function f that maps the position x of a
fluid particle at time ¢ to its position X at time ¢ + At. They
can do so with a high degree of precision when provided
with pairs of matching particle positions (x, X) from only
about 2 to 4 pairs of PTV photographs as exemplars. We
show that whether they are trained on exact or on noisy
data, they learn to interpolate with such a precision that
their output is within one pixel of the theoretical output.
We demonstrate their accuracy by using them to draw
whole streamlines or flow profiles, by iteration from a
single starting point.

1

Introduction

Particle-tracking velocimetry (PTV) is a technique used in
particle-image velocimetry (PIV) for determining the ve-
locity field of a fluid in motion [see Adrian (1991)]. It
consists in measuring the displacements undergone by
small particles suspended in this fluid during a small time
interval At. In its simpler form, this technique is mainly
used for two-dimensional fluid flows. Two photographs of
the same region of the fluid are taken, from a direction at
90° to its plane of motion, one at time t and the other one
at time ¢ + At. These are then usually digitized so that a
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computer can automatically process them. It is necessary
to find the position of the geometric center of the particle
images, in some reference frame. There are many efficient
procedures for doing so, e.g., the neural network method
described by Carosone et al. (1995). Once this is done, one
must solve the correspondence problem, which consists in
determining which points, in the two photographs, rep-
resent the same particles. Labonté (1999) mentions some
of the best methods used for this and describes a self-
organizing map neural network that can very efficiently
solve this problem. The present work deals with the pro-
cessing of the data obtained once image matching is
completed.

1.1

The inaccuracies in the data

As discussed, e.g., in Adrian (1991), Westerweel (1994) and
Luff et al. (1999), the errors in the measurements of PTV
and, more generally of PIV, are essentially of two kinds.
There are errors that result from false matches between
particle pairs in PTV and, with correlation methods in
PIV, from the selections of false correlation peaks. These
errors yield spurious vectors in the velocity field. The tip
of such vectors is at a random, uniformly distributed,
position in the interrogation window (of PTV or PIV).
Many of them are thus much larger than their neighbors or
have very different directions from them so that they can
easily be recognized as outliers. Figure 1 illustrates this
point; it shows displacement vectors as would be obtained
in PTV, after matching two photographs of 200 particles
each, each one having 20 particles that are unmatchable
due to out of plane motion. The flow is that in a vortex
with complex potential V(z) = i/z that is singular at the
origin. The number of spurious vectors present evidently
depends on the efficiency of the matching algorithm. For
the singular flow shown in Fig. 1, which is a difficult
matching problem, there were 24 outliers out of 180 vec-
tors, i.e., about 13% of outliers. Westerweel (1994) men-
tions the figure of 5% as typical for PIV data, and Sun et al.
(1996) gives 15% for a difficult problem with high speed
flow in a combustion chamber.

The other kind of errors in PIV result from the pre-
processing of the pictures, when the background is
removed and the intensity of the particle images is
enhanced, from the finiteness of the grain of the film or of
the pixel size in light detector arrays, and from the noise in
the electronic device that digitizes the data. With corre-
lation methods, there are also inaccuracies due to the
deformation of particle-image patterns. A small number of
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Fig. 1. Displacement vectors as obtained in PTV, after matching
particle images in two photographs of 200 particle images. The
flow is that of a singular vortex centered in the middle of the
picture. Many spurious vectors are easily recognized

errors also correspond to the spurious vectors that were
left in, after the attempt at their removal, because they
were very close to the actual vectors. All of these errors are
much smaller than those corresponding to outliers and
constitute essentially random noise. In PTV, they lead to
measured positions of the centroids of the particles {X:

i = 1,...,N}, being off by some random error vector ¢; so
that, even in a correctly matched image pair, the measured
displacement D! is actually D; + &;, where D; is the true
displacement. One can assume as in Westerweel (1994)
that the components of ¢; are statistically orthogonal and
are distributed normally about the value 0 with standard
deviation ¢,. This author mentions that, for most PIV
systems, o, is estimated at less than 1% of the full dis-
placement range, which is defined as = (length of the
maximum displacement) - (length of the minimum one).
Huang et al. (1993) mentions that locating the center of
intensity of particles in PIV is usually done with an error
under 0.25 pixels. Luff et al. (1999) test their data pro-
cessing methods with artificial data having random, uni-
formly distributed, 1%, 3.3% and 4.5% relative absolute
error in the velocity vectors. For particle-image displace-
ments of 10-20 pixels, the largest errors are then about
0.5-0.9 pixel. These figures are somewhat higher than
those of other authors, as quoted in Guézennec and Ki-
ritsis (1990). Guézennec et al. (1994) mention that in their
tests a sub-pixel accuracy of the average of 0.3 pixel is
normal.

1.2

Spurious vector removal

A large proportion of the spurious vectors can easily be
eliminated manually, as mentioned in Westerweel (1994)
and Sun et al. (1996). Upon so doing with Fig. 1, we re-
moved successfully 20 out of the 24 spurious vectors. The
four that we did not remove happened to be, by accident,
close enough to the correct displacement vectors that they
could be mistaken for these. This similarity to actual

displacement vectors implies that the continuity of the
displacement field will not be much altered by their being
left in. Efficient algorithms, based on the continuity of the
displacement vector field, exist to remove the outliers; see
for example Landreth and Adrian (1990), Willert and
Gharib (1991), Guézennec et al. (1994), Westerweel (1994),
Hartman et al. (1996), and Song et al. (1999). As in the
case of manual outlier removal, these methods are efficient
enough that the only missed vectors are close to the actual
displacement vectors and the displacement field is not
appreciably distorted by their being left in.

13

Random noise removal

Once outliers have been removed, there is often need for
further processing. This may be done to improve the ac-
curacy of physical variables that are to be calculated from
the velocity field, such as the vorticity (see Lourenco et al.
1995; Sun et al. 1996; Luff et al. 1999). It can also be done
for the important purpose of flow field visualization, in
which case, post-processing aims at improving the ap-
pearance for human observers of the graphical represen-
tations of the velocity field. Algorithms are then needed for
the smoothing of the data and its interpolation.

In most published work in PIV, smoothing of the data is
done simply by convolving the velocity field with a
Gaussian function (see, e.g., Luff et al. 1999; Sun et al.
1996; Hartman et al. 1996). This technique usually suc-
ceeds in filtering out some of the random noise. Luff et al.
(1999) report results to that effect for data obtained by
auto-correlation in PIV. In Hartman et al. (1996), the
Gaussian filter is combined with an extended vector me-
dian filter, as described in Astola et al. (1990). The latter
filter is used mainly to remove the outliers but it does at
the same time cancel some of the random noise.

One should however be cautious with filters because
there will actually be a loss, instead of a gain, of precision
when they average or convolve data over too large a do-
main. Small-scale information is then destroyed by their
blurring effect (see Luff et al. 1999; Astola et al. 1990).

1.4

Interpolation

Interpolation is used in post-processing mainly for filling
up the holes left by outlier removal or where the matching
algorithm found no matches. It is then usually done only
locally for small patches of the displacement field. The
interpolation techniques normally used are spline fitting
and linear regression to least-square fit with some chosen
functions. Typically, Sun et al. (1996) use quadratic func-
tions to interpolate the missing velocity vectors and Luff
et al. (1999) do local regression using a second-degree
polynomial. For data visualization, they use spline fitting,
as do most commercial software.

Attempts are rarely made at fitting the whole or a large
region of the displacement field. Luff et al. (1999) show the
result they obtained when doing a full field regression,
with a fourth degree polynomial, for the vorticity field of
an Oseen vortex. The poor quality of the fit obtained is
evident; the maximum relative error is 226% and the
surface average relative error is 55%.
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Smoothing and interpolation by neural networks

Neural networks are massively parallel data processing
systems made up of a large number of very simple pro-
cessing units. These individual processors are, most of the
time, modeled after the McCulloch and Pitts’ (1943) arti-
ficial neuron, also called the perceptron neuron. It is
schematically represented as a cell (processor) that re-
ceives a certain number of input leads and has only one
output lead. Let the n variable inputs be represented by x;,
X2 ..., X, Often one wants to add an input bias term; this
is done by adding a constant input x, set to 1. Each input
lead has a variable transmission coefficient, analogous to a
resistance, called a weight, denoted here by wy, wy, ..., w,,.
When receiving an input, the processor sums up its total
signal as I = " wix;. Upon using column vectors x and
w to denote the inputs and the weights, I can be more
simply written as w'x, where w” is the transposed of w.
The processor’s transfer function f is usually a sigmoid
function, that is, a ‘softened’” Heaviside step function, such
as a logistic, an hyperbolic tangent or an inverse tangent
function. It is often also simply a linear function. The
neuron output is O = f({I). The neurons in a neural net-
work usually have different weights w, while many of them
would have the same transfer function. They are inter-
connected in different patterns, the output of one be-
coming a part of the input of many others. Artificial neural
networks learn and adapt through the modification of their
weights, like the natural ones were shown to do by Hebb
(1949).

2.1

Neural network filters

Filters that correspond to the convolution of a constant
mask with data provided at points in a regular array, as
with the displacement vectors obtained by correlation in
PIV, are easily implemented with neural networks. Such a
neural network would have a single sheet of neurons ar-
ranged regularly, one neuron corresponding to each array
point. The biological analogy of this system is a retina that
provides the input to a neural network consisting of a layer
of neurons. Figure 2 shows the connection pattern of this
system. Each neuron has the same constant weights, which
we denote here w,, ,, m and n taking all the integer values
between —k and +k. The output of the neuron at position

(i, j) is

k
Oij = g WmnXitm.j+n

m,n=—k

and it represents the filtered value at that position of the
data array.

The advantage of using a neural network to calculate
this convolution resides in the short processing time it
requires. If the number of array points of the data is P, and
T, is the time required for one multiplication and one
addition, the neural network will perform the filtering of
the data essentially in the constant time T,. The same fil-
tering operation done sequentially would require the
computing time P2kT,. There could be a disadvantage in
that the neural network requires P processing units, the
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Fig. 2. A neural network that filters data. The bottom square
grid represents the array of data, as provided by a “retina”. The
array of circles above it represents the network of perceptron
neurons that form a sheet and implement the filter. Neuron
number (i, j), which is above array point (i, j), is connected to the
array points in the neighborhood of this point. The weight on the
connection to point (I + m, j + n) is w,,

same number as there are data points, were it not for the
fact that these processors are all identical, extremely
simple and supposedly very cheap to manufacture. For a
photograph divided in 50 x 50 patches, 2,500 neurons are
required and, for a 3 x 3 filter mask, the computation time
is of the order of 45,000 times shorter than that of the
equivalent sequential computation.

2.2

Neural networks for linear regression and spline fitting
The regressions normally done in PIV data post-process-
ing are local linear regressions. One is given a set of data
POintS (Xla Yl)a (X2’ Yz), L] (Xna Yn)) Where Y -5 Yu are
measurement values at the points x;, ..., X, which span a
domain D. One then selects a set of functions {f, f5, ..., fx}
and looks for parameters cy, ¢,, ..., ¢ such that in the
domain D the function F:

k

F(x) =) tnfu(x) (1)

m=1

defined V x € D, provides a least square fit to the data. The
parameters cy, ..., ¢ must then be such that the total
quadratic error

Eq = Z lyi — F(x)|I” (2)

is minimum. Nth degree spline fitting is obtained when the
functions f,, are the monomials of degree up to N in the
components of x and when n, the number of data points,
equals k, the number of these monomials. More generally,
the functions f,, can be any functions one finds appro-
priate for a given situation, such as members of a set of
orthogonal functions (as in partial Fourier series),
Gaussian functions centered at different points, functions
known as Hardy (1971) multiquadrics, etc.

Because E, is a quadratic function of the ¢;, it has a
single minimum. The value of ¢ at this point can be found
exactly by solving the set of linear equations VE; = 0.
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There is a very efficient two-layer neural network that
solves this problem with the help of the LMS (least mean
squares) algorithm of Widrow and Hoff (1960). Figure 3
shows its structure. It has k neurons, in its first layer,
which are somewhat different from the perceptron neuron.
Each one has one of the f,, as its transfer function and for
the input x, it simply returns f,,(x). The second layer has
a single perceptron neuron, with weight vector w = (0, ¢,
...y )T Tts transfer function is the identity, so that its
output is O = an:l Cmfm(x). Applications where this ar-
tificial neural network is used for linear regression are
innumerable; Widrow and Stearns (1985) discusses a
certain number of them.

Local regression, on P patches of PIV data, can be
performed in parallel by a neural network made up of P
such sub-networks as described above. The total number
of neurons that would be required is P(k + 1). Therefore,
27,500 neurons would be required for a data set of 50 X 50
patches to be fitted with cubic splines, for which k = 10.
The speed-up can be roughly evaluated to be about 25,000
as follows. The data in all patches would be fitted simul-
taneously by the 2,500 sub-networks. Furthermore, in each
sub-network, the evaluation of the mfi(x), fori =1, ..., m,
is done in parallel and so is their subsequent multiplica-
tion by ¢; and the final summation. Thus, each sub-
network by itself provides a speed-up of m = 10 over a
processing unit that would compute sequentially.

2.3

Neural networks for non-linear regression

Artificial neural networks are also able to perform a type of
non-linear regression that, after many years of usage in
impressive applications, has been clearly demonstrated to
be much more powerful than linear regression. As the title
of Werbos’ (1974) PhD thesis indicates, they go “Beyond
Regression”. An excellent discussion of their abilities in
pattern recognition and of the advantages they provide can
be found in Bishop (1997). As a simple illustration of what
is meant here by generalized regression, consider the
problem of finding a function F of one variable that would
fit a data set (xy, 1), ..., (Xu» ¥u). A 3-layer neural network,

x —(1 > ) .

X C fZ(X) C2 Output
: o

x —(k 1> 1)

Fig. 3. A neural network that performs a linear regression.
Neuron i in the input layer has a transfer function f;. Upon re-
ceiving the components of the vector x as input, it outputs f(x).
The input connections to these neurons simply bring them the
components of x unaltered. We have represented them as a single
incoming line for simplicity. The network output is provided by a
perceptron neuron with weight vector ¢ and the identity as its
transfer function

in which the hidden layer’s transfer function would be
sinus, could solve this problem by finding constants c, ...,
cx and frequencies wy, ..., wi such that

F(x) = zk: Cm SIN (W)

provides the best least square fit to these data points. The
frequencies w,, will in general not be simply harmonics of
a fundamental frequency with w,,, = mw,. Thus, F ends up
being a sort of generalized partial Fourier series. The
possibility of also adjusting the frequency spectrum of F
provides the advantage that the series will not require a
very large number of components to fit the data precisely
over regions where it varies quickly as well as over regions
where it is fairly constant.

Different functions are commonly used in the role of the
“sin” in the above sum. Figure 4 shows the structure of a
neural network that realizes the function F:

k

F(x) = Z Cmf (Whx)

m=1

with perceptron neurons having a transfer function f.
Neural networks with such patterns of connections are
called feed-forward networks. When they are made up of
perceptron neurons, they are more specifically referred to
as multi-layer perceptrons. As we mentioned before, for
such neurons, sigmoids are used most of the time as
transfer functions. Some other functions such as Gaus-
sians, which have a more localized action, are also often
used. The neurons are then different from the perceptron
neuron. Although they also have a weight vector w, when
they receive the input x, they will calculate as total input
the distance ||w,, — x||, instead of the scalar product w! x.
These functions are commonly referred to as radial basis
functions. They are discussed in most textbooks on
neural networks, e.g., Hassoun (1995). A detailed analysis

X —w—1>@——>f(w1T X)
1
x —25(2 )W x) )

Output
Cx
Wik
X ——>®—>f(wkT X)
Input Hidden Output
layer layer layer

(not shown)

Fig. 4. Standard three-layer feed-forward neural network with
one output. The input layer distributes the n components of the
input vector x to each of the N neurons in the second layer, called
the first hidden layer. The neurons in the hidden layer have n
weights, which are represented as the components of the weight-
vector w. We have used single input lines, for the neurons in the
hidden layer, to represent concisely their n incoming connec-
tions. The output of the hidden layer is fed as input to the neuron
of the output layer, which has N weights



of them can be found in Poggio and Girosi (1990). With
such functions, Eq. (1) could now be understood as
spherical harmonic decompositions with varying
frequencies.

We now briefly review how a neural network performs
this kind of regression. We recall that it has to determine
the vector parameters w,, and the vector of coefficients c,
at which the value E,(c, w;, Wy, ..., w,,,) of the error
function defined in Eq. (2) is minimum. Due to the com-
plexity of the error function, these parameters cannot be
solved for exactly. They will be obtained by iteration. The
most common and most successful algorithm used for this
is error back-propagation [see almost any textbook on
neural networks as, e.g., in section 5.3 of Hecht-Nielsen
(1989), or for a more detailed account, Almeida (1997)].
This algorithm corresponds to a gradient descent that
neural networks realize as follows. For simplicity, let us
denote all the weights of the network as a single vector w,
so that the quadratic error is E,(w). The gradient descent
is an iterative method such that if the variable at step ¢ is
w(t) then, at step (¢ + 1), it will be:

w(t+1) =w(t) + Aw(t)
with the change in the weight vector Aw() being given by:
Aw = —nVE,(w)

n is a constant called the learning rate and V is the gra-
dient operator.

All points (x;, y;) of the data set are used sequentially to
train the neural network as follows. The vector x; is pre-
sented to it as input; its output F(x;) is then observed and
the error it made, |y; — F(x;)|, is calculated. Because of the
layered structure of the neural network, the weight change
to be made in the output layer can immediately be cal-
culated from this error. The back-propagation algorithm
subsequently provides an efficient method [see section
B6.3.3 in Bishop (1997) for a discussion of its efficiency] to
perform the calculation of the weight changes for all other
layers, moving back from the output layer to the input
layer - hence its name of “back-propagation”. Using all
the data points once is said to constitute a “training
epoch” or “cycle”. Generally many training cycles are
required for the network to learn.

Many variants of back-propagation exist, several of
which are based on gradient descent with second order
derivatives of the error function E,. A review can be found
in Battiti (1992). In the present study, we use the method
of Fahlman (1989) called “quick-propagation”. It estimates
the second derivatives from the differences in the first
derivatives from one training epoch to the next.

24

Application to PTV

The main purpose of the present study is to test how
successful such a neural network can be in using PTV data
in which the outliers have been removed to construct a
faithful continuous representation of the fluid motion,
while canceling the random noise in the data. For a given
fluid flow, we will let f denote the fluid dynamics function
that takes the position x of a fluid particle at time ¢, and
transforms it in X = f(x), its position at time t + At. The

neural network will have to learn to approximate f, to a
high degree of accuracy, by generalization from examples
of pairs of positions (x;, X;), corresponding to measure-
ments from the PTV experiment.

3

Existence theorem

A guarantee that a neural network can approximate the
fluid dynamics function f is provided by very general re-
sults due, among others, to Cybenko (1989), Hornik et al.
(1989) and Funahashi (1989) and discussed in section 2.3
of Hassoun (1995). These results concern three layer net-
works, as shown in Fig. 4. They have one hidden layer for
which the transfer function is some continuous sigmoid
function o, as illustrated in Fig. 4. The input layer has as
many neurons as there are components to the input vec-
tors x. These neurons have fixed weights and their role is
simply to distribute the components of x to each neuron of
the next layer. Because of this, they are often not consid-
ered explicitly in the discussion of the neural network. The
next layer is composed of N neurons, each of which has n
weights and a threshold value s, represented by its bias
weight being set to —s. The weights of the ith neuron
constitute the components of the vector w;. This neuron
then receives the total input I; = w!x. Its transfer function
is a sigmoid o, so that its output is o(I;). The output layer
has only one neuron, with weight vector ¢ € RY, and its
transfer function is the identity. Its output is then:

F(x) = 3, cio(w!x). The theorem in question states
that, given any piecewise continuous function f, defined on
a compact subset D of R”, and any € > 0, there exists such
a neural network for which |F(x) — fix)| < &, Vx € D. The
same theorem also holds true when the output layer has a
sigmoid transfer function instead of the identity. It also
generalizes to functions f that have their value in R™, in
which case there are m neurons in the output layer.

We note that, even though the theory guarantees that
three layers suffice for the neural network, it often happens
that networks with four or more layers have to be used,
because an adequate three-layer network would require an
impracticably large number of neurons in its hidden layer.
There are no precise guidelines as to how to select neural
network architectures. There exist some partial results,
such as that of Schwartz et al. (1990), who have indicated
that it should not contain more connections than the
number of data samples. However, there is no doubt that
the most influential factor is the nature of the function to
be approximated, i.e., how fast it varies, etc. A discussion
of the main considerations that influence the choice of the
neural network parameters can be found in section C1.2 of
Almeida (1997). In our study, we wanted also to find out
how difficult it actually is to obtain a neural network
structure and parameters that can make the network learn
the fluid dynamics function f. Thus, we started without
using any of these “tricks of the trade”. We simply took a
relatively inexpensive general-purpose neural network
software, selected the option “backprop” as the training
algorithm, and used the default settings proposed by the
software. For determining the network structure, i.e., its
number of layers and neurons per layer, we adopted the
strategy of starting with very simple neural networks and
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increasing their complexity until they became able to
realize the desired function approximation.

3.1

Noise cancellation

Not only can neural networks realize all physically oc-
curring functions, but they also have the further ability to
filter out noise from experimental data. This has been
demonstrated before by Tamura and Waibel (1988) for
speech processing data, and by Troudet and Merrill (1990)
for control signals. Bishop (1997) has actually proved that
for a very large data set minimizing the quadratic error E,
results in a canceling out of the Gaussian noise. In fact, it
actually benefits a neural network to have random noise
added to its training data, as it results in an improvement
of its robustness (see Noyes 1997).

4
Training procedure

How to train a neural network with experimental data has
been well studied; good guidelines are given in Noyes
(1997) and Bishop (1997). Training the neural network
with exact (i.e., noiseless) data is straightforward. The data
set is divided into two sets: a training set and a test or
validation set, which the neural network will never see in
training mode. It is taught with the training set. When its
output has reached a satisfactory level of performance with
this set, its accuracy is evaluated on the test set.

Training a neural network with noisy data, e.g., data
that contain measurement inaccuracies, is a more delicate
operation. The network has to learn the main features of
the data without learning the noise in it. In neural network
terms, one would say that the network should not over-
train. One method of achieving this is to use a network of
the “right size”, i.e., large enough for it to be able to learn
the relevant information, but too small for it to be able to
learn the noise. Another technique often used, when only
noisy data are available, consists in periodically turning off
the neural network learning, and testing its performance
with the validation data set. Its error on this set is moni-
tored and the training is ended when this error stops de-
creasing. In the present study, in which we have both exact
and noisy data available, we adopted the following strat-
egy. We used the exact data to look for a neural network
that would be as simple as possible, while being able to
learn the fluid dynamics function f, with the desired pre-
cision. We then used a neural network with the same ar-
chitecture for training on the noisy data. Evaluation of the
network’s performance was done with both an exact and a
noisy test set.

5

The data

Studies such as this, which propose to assess the precision
of data analysis methods in PTV and PIV, are best con-
ducted with constructed data instead of experimental data.
Indeed, knowing the exact mathematical solution as well as
the exact statistical properties of the data allows one to
compute exactly the errors made by the data-processing
methods. On the other hand, when using real experimental
data, the position of the particles as well as their velocities

is not known. It then becomes very difficult and would
require much more sophisticated statistical analysis to
evaluate the efficiency of data processing methods. Be-
cause of this, using artificial data is a common procedure,
used for example in Luff et al. (1999), Song et al. (1999),
Carosone et al. (1995), Guézennec et al. (1994), Wester-
weel (1994) and Huang et al. (1993). We have considered
hereafter three two-dimensional fluid flows, for which the
equations of motion are readily available, e.g., in Warsi
(1992). We considered the photographs to be squares with
sides equal to one, and placed the origin of our coordinate
system at the center of this square.

Our first flow is the Poiseuille flow of a viscous fluid
between two infinite parallel plates positioned at y = —0.5
and y = 0.5. The displacements of the fluid particles be-
tween time ¢ and ¢ + At are in the positive x-direction, and
are given by D(1 — y*). The maximum displacement D,
which we took to be 0.075, occurs at the midpoint between
the two plates.

Our second flow is that of an inviscid fluid moving in a
90° corner, corresponding to the region where x > —0.5
and y > —0.5. It moves from y = oo toward x = oo and its
velocity vector is proportional to (x + 0.5, —y —0.5). The
fluid particles that are at (x;, y;) at time #; move to (xy, ;)
at time ¢, with x, = (x; + 0.5) e — 0.5 and y, = (y; + 0.5)
e P—0.5 where D is a constant, which we set to be 0.1.

Our third flow is the laminar flow produced by a vortex
filament in a viscous fluid at rest, i.e., an Oseen-vortex. The
center of the vortex is at the origin of our coordinate
system. The streamlines are concentric circles centered on
the origin and the angular velocity

a_ar (7
P Bt

— =—eX

dt ¢
where A and B are some constants. This equation is readily
integrated for 6 and yields

0(t,) = 0(t,) + % [exp <— B%) - eXp<_Br—;>}

Our data was constructed with A=1and B=1,t =0.1
and t, = 0.1085 so that 0(t,) — 0(t;) < n/4.

Our exact data are constructed as follows. We start with
a set of uniformly distributed random points in the unit
square x; for i =1, ..., N, as the geometric centers of the
particles of the first photo. We then calculate the position
X; for i =1, ..., N, that these points would have At later,
according to the fluid equation of motion. This yields the
set of points for the second photo. We chose the param-
eters so that the displacements would be as large as pos-
sible, while remaining compatible with realistic PTV data.
In so doing, we wanted to make the approximation
problem difficult, by ensuring that the function f would be
as far from the identity as possible. Figure 5 illustrates the
nature of the data we have used. It shows the displace-
ments undergone by 200 randomly positioned particles in
the three flows we have considered. Note that the two
constructed point sets did not have to be matched by some
algorithm because by construction, the point X; in the
second set corresponds to the point x; with the same index,
in the first set.
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We then constructed our noisy data sets by adding
some small random vectors to the particle position vectors
in the exact data sets. Thus, the noisy data were designed
to reproduce the data obtained in a PTV experiment, after
the outlier displacement vectors, i.e., the obvious mis-
matches, have been removed. We took the components of
these random error vectors to be zero-mean normally
distributed numbers, with a standard deviation ¢ of 0.001.
If we consider that our photographs are digitized in
512 x 512 pixels, the size of one pixel would be about
1.953e — 3 and thus ¢ =~ 0.5 pixel. The errors added to the
data are then such that there is a probability of 1/3 of there
being a one-pixel error in the horizontal coordinate, as
well as a probability of 1/3 for the same error in the ver-
tical coordinate in the position vector of each tracer-par-
ticle. The size of these errors is well within the normal
range of values quoted by other authors, as we recalled in
Sect. 1.1.

6

The tests

For each type of fluid flow, the tests were conducted with
two sets of data: one with 600 pairs of points of exact data,
and one with 600 pairs of points of noisy data. Of each set,
400 pairs were used to train the neural network and the
other 200 pairs were kept as testing sets, and were never
shown to the neural networks in learning mode. The na-

complete training data set

ture of the sampling of the unit square that 400 points
provide can be visualized in Fig. 2d. The average distance
between such points is 0.05. For PTV photographs that
contain about 100 to 200 tracer-particle images, the data
we use for training the neural network would correspond
to only 2-4 pairs of PTV photographs.

A series of tests were made with three- and four-layer
neural networks having various numbers of neurons in the
hidden layer. Although the three-layer networks proved
adequate, they were in general appreciably slower in
learning the fluid flows than neural networks with four
layers. We found that, with the same total number of pa-
rameters, i.e., weights and thresholds, the latter networks
converged faster. Neural networks with 36 neurons, con-
figured in four layers as 2-16-16-2, generally gave excel-
lent results, and the results we report hereafter are for such
networks. Each training session started by initializing the
weights to random values. Because of this, the number of
cycles required for training a neural network can vary
appreciably from one run to the other. The number of
cycles we give hereafter only provides an order of mag-
nitude; they are not necessarily very good learning times.

When the input vector is x and the output vector pro-
vided in the data set is X, we define the output error of the
neural network E(x) to be the Euclidean distance between
F(x) and X. We denote by E,, and E.x respectively the
average and the maximum value of E(x) over all inputs x
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in the data set considered. We define a tolerance param-
eter &, which we set equal to 1.953e — 3 (about 1/512,
which is the size of one pixel). If F(x) = (Xnet Ynet) and
X = (X, Y), we shall consider that the network output is
within tolerance of the provided output if both |x,e — X|
and |yne — Y| are smaller than this value. We define the
success rate SR of the neural network as the percentage of
its outputs that satisfies this condition when all the inputs
are presented to it.

6.1

Training on exact data

In the first series of tests, the neural network was trained
with 400 pairs of points of exact data. After each cycle
through this data set, the two errors E,, and E,,,, and the
success rate were calculated. The training was stopped
when the success rate reached about 95%. In most cases, a
higher success rate could have been achieved on the
training set, but we were satisfied with the precision and
did not want to risk over-training the network. The results
obtained are presented in Table 1. The vortex flow is seen
to require a much larger training time than the other two
flows. Some of our tests have indicated that a luckier
random initialization of the weights could result in shorter
training times, such as about 150,000 cycles. Nevertheless,
the above-mentioned fact remains true.

After its training on exact data, the performance of the
neural network was tested on the 200 pairs of points of
both the exact and the noisy data test set. After a cycle
through the test set, with the network’s learning ability
turned off, the two errors E,, and E,,,, and the success rate
were calculated. The results obtained are shown in Table 2.
As is obvious, the performance of the neural network on
the exact data test set is as good as its performance on the
training set. The average errors are of the same order of
magnitude and the success rates are essentially identical.
This indicates that the neural network can generalize or
interpolate well from its training data. Its performance on
the noisy data test set gives an indication of the best that
should be expected for such a neural network trained on
noisy data.

6.2

Training on noisy data

In the second series of tests, the neural network was
trained with 400 pairs of points of noisy data, i.e., the data

Table 1. The second column shows the number of cycles for
which the neural network was trained. E,, and E,,, represent the
average and maximum Euclidean distance between the network
output vector and the output value provided in the training data
set. The last column shows the success rate, i.e., the percentage of
network outputs that are within the specified tolerance of the
outputs provided in the data set

Table 2. Performance of the neural networks trained with exact
data, evaluated with the exact and the noisy data test sets. E,, and
E nax are respectively the average and maximum Euclidean
distances between the vector output by the network and the
vector output provided in the test set. The last column shows the
success rate, i.e., the percentage of points for which the neural
network output is within the specified tolerance of the output
provided in the test set

Evaluation of N.N. trained on exact data

Exact data Noisy data
Flow E., Erax SR E, Erax SR
(%) (%)
Channel 0.001762 0.016889 96.0 0.002658 0.017839 61.5
Corner  0.001165 0.005623 96.0 0.003106 0.005418 58.0
Vortex 0.001555 0.013096 94.0 0.002724 0.013429 55.0

that included simulated measurement errors. We used the
same procedure as for the exact data. Training was peri-
odically stopped and the performance of the neural net-
work assessed with the exact data test set. It was ended
when the network performance reached a satisfactory
level. The results obtained are presented in Table 3. One
notices that the average errors, when tested on noisy data,
are about the same as those made by networks trained on
exact data (see Table 2). The success rates are also within
about 10% of each other. We interpret this as a good in-
dication that the learning of the neural networks cannot
significantly be improved past the point presently reached.
In the same way as when the neural networks were
trained with exact data, the networks were then tested on
the 200 pairs of points in the exact and in the noisy data
test sets. The results obtained are shown in Table 4. We
note that their performance is as good as that of neural
networks trained on exact data. In fact, their average er-
rors and success rates are somewhat better, which would
be surprising were it not for the studies mentioned above
in Sect. 3.1 that indicate that adding noise to a neural
network training data results in improved performance.
As a convincing demonstration of the excellent quality
of the approximation realized by the neural networks, we
have used them to plot whole streamlines for the flow in a
90° corner and for the vortex flow. For the Poiseuille flow,
the streamlines are simply straight lines. We thus had the
neural network perform the more difficult task of plotting

Table 3. The first column shows the number of cycles for which
the neural network was trained with noisy data. E,, and E, .y
represent the average and maximum distance between the
network output vector and the output value provided in the
training data set. The last column shows the success rate, i.e., the
percentage of points for which the neural network output is
within the specified tolerance of the output provided in the data
set

N.N. training on exact data

N.N training on noisy data

Flow Number of cycles E,, Eax SR (%) Flow Num. cycles E,, Eax SR (%)
Channel 6,500 0.000963 0.005549 97.75 Channel 6,500 0.002107 0.005725 67.5
Corner 10,000 0.001045 0.003461 97.25 Corner 6,000 0.002091 0.005465 64.4
Vortex 500,000 0.001093 0.003982 95.5 Vortex 652,500 0.002073 0.005055 67.5




Table 4. Performance of the neural networks trained with noisy
data on the exact and the noisy data test sets. E,, and E,. are
respectively the average and maximum Euclidean distances be-
tween the vector output by the network and the vector provided
in the test set. The last column shows the success rate SR, i.e., the
percentage of points for which the neural network output is
within the specified tolerance of the output provided in the test
set

Evaluation of N.N. trained on noisy data

Exact data Noisy data
Flow E., Ernax SR E, Ernax SR
(%) (%)
Channel 0.001078 0.009267 97.5 0.002332 0.010116 64.0
Corner  0.000659 0.002682 98.5 0.002054 0.005404 70.0
Vortex 0.001384 0.007471 92.0 0.002548 0.006658 51.5

the flow profile, which shows the deformation of a plane of
fluid that starts at the LHS of the picture. The neural
networks were provided with the starting point on the
boundary of the unit square, and then had to produce the
whole sequence of points making the lines by iteration.
This is a good test of the accuracy of the approximation
obtained, because, in this process, the errors are accu-
mulated from point to point. Figure 6 shows the theoret-
ical lines, as continuous lines and the lines produced by
the neural networks as dashed lines. The neural networks
used were those trained on the data with simulated ex-
perimental errors. The lines produced by the neural net-
works trained with exact data are too similar to be worth
including.

7

Conclusion

Once particle images have been paired and the obvious
outliers have been removed, there is further need for data
processing in PTV. The data are still left with some ran-
dom noise, holes where the matching was unsuccessful

and, of course, the empty regions between the measured
displacements - hence, the necessity for data smoothing
and interpolating algorithms. Most of the time, smoothing
is performed with filters corresponding to the convolution
of the data with a Gaussian or a finite impulse function.
Interpolation is essentially always done locally, for small
patches, using splines or linear regression.

We have described simple neural networks that can
perform both of these standard functions. As is evident in
our discussion, the neural networks do exactly the same
set of mathematical operations as the classical algorithms.
They provide however a very important advantage in that
they perform these operations in parallel. We have shown
that for the processing of PTV data, this results in speed-
up factors in the tens of thousands.

We have then described the type of non-linear regres-
sion that neural networks can also perform, which is much
more powerful than linear regression. We have cited a
general theorem that guarantees that a neural network
exists that can approximate any piecewise continuous
function to any specified precision. However, this is only
an existence theorem. It gives no indications as to how
easy or difficult it would be to come up with such a net-
work in a particular field of application. In the present
study, we have demonstrated that it is actually very easy to
produce neural networks that realize the fluid dynamics
function that maps the fluid particle position at time ¢ to
that at time t + At.

To train our neural network, we constructed artificial
data for three different non-trivial ideal fluid flows for
which the exact mathematical description is known. One is
a Poiseuille flow in a channel, one is a flow in a 90° corner,
and the other one a flow in an Oseen-vortex. These data
consist of coordinate pairs (x;, X;) that correspond to the
correctly matched positions of the ith particle in two
successive PTV pictures. We constructed some data sets in
which the image positions were without inaccuracies and
some in which we have added small random errors to
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Fig. 6. a Three streamlines for the flow in a 90° corner. The
dashed lines are produced by the neural network by iteration
starting from a point given at the top of the picture. The solid
lines are the corresponding theoretically calculated streamlines.
b Four streamlines for the vortex flow, that start and return to
points on the x-axis after circling the origin. The dashed lines are
those that the neural network produced by iteration. The solid
lines are the theoretically calculated lines. ¢ Flow profile for the

Poiseuille flow in a channel. The lines represent the successive
surfaces into which a plane of the fluid, which starts at the LHS of
the picture, is deformed. The surfaces are obtained by plotting the
positions of points that start at x = —0.5 after each three suc-
cessive displacement steps. The dashed lines are those produced
by the neural network and the solid lines are calculated from the
equation of motion
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them in order to simulate experimental data obtained after
the removal of outliers. For our neural networks, we used a
commonly available neural network simulation software.
We selected “quickprop” among the standard training
algorithms offered as options and kept all the default pa-
rameters proposed by the software. As network structure,
we started with simple three-layer networks. These already
yielded reasonable results. We then tried four-layer net-
works and found, after two or three attempts, that a net-
work with its neurons distributed in the layers as 2-16-16—
2, produced excellent results. We have thus clearly dem-
onstrated that it is easy to find simple back-propagation
neural networks that can learn to represent non-trivial
fluid flows.

We have also demonstrated that the neural networks
that are trained on data with measurement errors can filter
these out and form a representation of the fluid flow that is
as precise as when they are trained on exact theoretical
data. The results we obtained by training with exact data
are shown in Table 2 and those with noisy data in Table 4.
One can see that, when tested with data corresponding to
the exact analytical solution, the average errors and suc-
cess rates of networks trained with noisy data are even
better than those trained on exact data. This corroborates
the theory mentioned in Sect. 3.1 to the effect that adding
noise to a neural network training data improves its per-
formance. This property makes neural networks an ideal
tool for the post-processing of experimental PIV data.

As can be seen in Tables 1 and 3, training the neural
networks took comparable numbers of cycles, whether
they were trained on exact or noisy data. The differences
we found between the two are well within the normal range
of variation expected, even for the same network, when a
gradient descent algorithm is used. This variation can
simply be due to the fact that the network weights are
assigned random values initially.

The outputs of our neural networks are within less than
0.002 of the correct outputs, for at least 95% of the inputs.
This is 25 times more precise than the average distance
between the data samples they have seen in training, which
is 0.05. These results corroborate the theory in indicating
that indeed arbitrarily high precision is achievable.

In our tests, we chose to consider data sets with as few
as 400 data points, which correspond to about 2-4 pairs of
PTV photographs. This allowed us to demonstrate the
interpolating power of the neural network. When using a
correlation method in PIV, this would correspond to a
particularly sparse array of interrogation windows of di-
mension 20 X 20. Data at points in arrays of 50 x 50, and
much more, are however easily obtained. In this case, the
point spacing would be 4 x 10~* and less, as compared
to 5 x 1072 in the present study (for photographs of
dimensions normalized to one). The quality of the neural
network interpolations is expected to improve by a
corresponding factor in such situations.

We have demonstrated more concretely the good
quality of the fluid flow representations our neural net-
works achieved by showing that they can draw complete
streamlines or flow profiles, with high precision. This
ability makes them particularly well suited for fluid flow
visualization.

Finally, we note that it is not very significant to compare
the times required for training software-simulated neural
networks to the processing times required by algorithms
designed for classical sequential computers. The perti-
nence of this remark becomes obvious when one considers
the neural networks, proposed in Sect. 2.1 and 2.2, to
implement standard convolution filters and linear regres-
sion. Since these perform exactly the same set of mathe-
matical operations as the standard sequential algorithms,
simulating them in software on a sequential computer will
never exhibit any of their advantages. They will take the
same time, if not longer. The processing time speed-up
factors in the tens of thousands, which they can provide,
will only be revealed when they are realized on parallel-
computing hardware. Studies such as the present one are
exploratory and serve to determine neural networks that
can perform a particular task in a particular domain. Once
they are completed, they would normally be followed by
the implementation of the neural networks on special
parallel hardware, PC boards or VLSI (see, e.g., Section
A 2.2.3 of Werbos 1997), where they show their full data-
processing power. Note nevertheless that, as far as per-
forming non-linear regression is concerned, even when
considered as sequential numerical techniques, neural
network algorithms are faster than the methods generally
used in conventional statistics (see Section A 2.3.3.1 of
Werbos 1997).

Further work will involve trying to find neural network
architectures and parameters that will optimize training
times. The efficiency of other types of networks in repre-
senting fluid dynamics functions, such as radial basis
function networks, should also be compared to that of
feed-forward networks. Studies should be made to test the
abilities of neural networks with experimental PTV data.
The same advantages that neural networks provide in the
post-processing of PTV data will also be seen when they
process PIV data obtained by correlation methods.
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