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Abstract
We propose a method to obtain super-resolution of turbulent statistics for three-dimensional ensemble particle tracking 
velocimetry (EPTV). The method is “meshless” because it does not require the definition of a grid for computing derivatives, 
and it is “binless” because it does not require the definition of bins to compute local statistics. The method combines the 
constrained radial basis function (RBF) formalism introduced Sperotto et al. (Meas Sci Technol 33:094005, 2022) with an 
ensemble trick for the RBF regression of flow statistics. The computational cost for the RBF regression is alleviated using 
the partition of unity method (PUM). Three test cases are considered: (1) a 1D illustrative problem on a Gaussian process, (2) 
a 3D synthetic test case reproducing a 3D jet-like flow, and (3) an experimental dataset collected for an underwater jet flow 
at Re = 6750 using a four-camera 3D PTV system. For each test case, the method performances are compared to traditional 
binning approaches such as Gaussian weighting (Agüí and Jiménez in JFM 185:447–468, 1987), local polynomial fitting 
(Agüera et al. in Meas Sci Technol 27:124011, 2016), as well as binned versions of RBFs.

1 Introduction

Much research has focused on developing image-based 
three-dimensional and three-component velocity measure-
ments (3D3C Scarano (2013)) in the last two decades. The 
first popular 3D3C technique is the tomographic particle 
image velocimetry (PIV) introduced by Elsinga et al. (2006). 
This extends the planar cross-correlation-based PIV to a 
three-dimensional setting, where interrogation windows are 
replaced by interrogation volumes. The main limitation is 
the computational cost, which scales poorly when moving 
from 2D to 3D, and the unavoidable spatial filtering pro-
duced by a correlation-based evaluation. Recently, 3D par-
ticle tracking velocimetry (PTV) has emerged as a promising 
alternative, offering better computational performances and 
much higher spatial resolution (Kähler et al. 2012a, b, 2016; 
Schröder and Schanz 2023).

A key enabler to the success of 3D PTV has been the 
development of advanced tracking algorithms such as 

Shake-the-Box (Schanz et al. 2016) or its open-source vari-
ant (Tan et al. 2020). These, together with advancements in 
the particle reconstruction process (Wieneke 2013; Schanz 
et al. 2013; Jahn et al. 2021), allow processing images with a 
particle seeding concentration up to 0.125 particles per pixel 
(ppp), well above the limits of 0.005 ppp of early tracking 
methods (Maas et al. 1993). Nevertheless, PTV processing 
produces randomly scattered data. This poses many chal-
lenges to post-processing, from the simple computation of 
gradients (e.g., to compute vorticity) and flow statistics to 
more advanced pressure integration. Although post-process-
ing methods based on unstructured grids have been proposed 
(see Neeteson and Rival (2015); Neeteson et al. (2016)), the 
most common approach is to interpolate the scattered data 
onto a uniform grid that allows using traditional post-pro-
cessing approaches (e.g., finite differences for derivatives, 
ensemble statistics, modal decompositions, etc.).

When interpolation onto Cartesian grid aims at treating 
instantaneous fields, for example for derivative computations 
and/or pressure reconstruction, the most popular approaches 
are Vic+ and Vic# (Schneiders and Scarano 2016; Scarano 
et al. 2022; Jeon et al. 2022), constrained cost minimization 
(Agarwal et al. 2021), the FlowFit algorithm (Schanz et al. 
2016; Gesemann et al. 2016) or Meshless Track Assimila-
tion (Sperotto et al. 2024b). These methods require time-
resolved data and introduce some physics-based penalty or 
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constraint to make the interpolation more robust. Examples 
are the divergence-free condition on the velocity fields or 
the curl-free condition for acceleration and pressure fields.

When interpolation onto Cartesian grids aims at comput-
ing flow statistics, such as mean fields or Reynolds stresses, 
the most popular approaches are based on the concept of 
binning and ensemble PTV (EPTV, Discetti and Coletti 
(2018)). This method involves dividing the measurement 
domain into bins, within which local statistics are computed 
by treating all samples in a bin as part of a local distribution 
(Kähler et al. 2012a). If sufficiently dense clouds of points 
are available, these methods can significantly outperform 
cross-correlation-based approaches in computing Reyn-
olds stresses (Pröbsting et al. 2013; Atkinson et al. 2014; 
Schröder et al. 2018).

EPTV methods vary in how local statistics, particularly 
second- or higher-order moments, are computed. A tradi-
tional approach, often called “top-hat,” assigns equal weight 
to all samples within a bin. In contrast, the more advanced 
Gaussian weighting method by Agüí and Jiménez (1987) 
assigns greater weight to samples closer to the bin center. 
Godbersen and Schröder (2020) demonstrated that integrat-
ing a fit of individual particle tracks significantly improves 
convergence. However, this approach requires particle tracks 
over multiple time steps, obtained either from time-resolved 
measurements or multi-pulse data (Novara et al. 2016). 
Agüera et al. (2016) demonstrated that the top-hat approach 
suffers from unresolved velocity gradients, while Gaussian 
weighting results in slower statistical convergence. These 
issues are exacerbated in three-dimensional EPTV, where 
achieving statistical convergence may require an impracti-
cally large number of samples. To address these limitations, 
Agüera et al. (2016) proposed using local polynomial fits 
within each bin to regress the mean flow and then compute 
higher-order statistics on the mean-subtracted fields. This 
method combines spatial averaging with ensemble averag-
ing, allowing for a larger bin size (which benefits statisti-
cal convergence) without compromising the resolution of 
gradients in the mean flow. However, the mean flow is only 
locally smooth, does not account for physical priors and pro-
vides statistics only at the bin’s centers.

In this work, we aim to extend the concept of blending and 
integrate it with the meshless framework proposed by Sperotto 
et al. (2022), recently released in an open-source toolbox called 
SPICY (super-resolution and pressure from image velocime-
try, Sperotto et al. (2024a)). The meshless approach is a new 
paradigm in PTV data post-processing, where the interpolation 
step is entirely removed, and all post-processing operations 
(such as computations of derivatives, correlations or pressure 
fields) are performed analytically. In the approach proposed by 
Sperotto et al. (2022), the analytic representation is built using 
physics-constrained radial basis functions (RBFs). The goal of 
operating on analytically (symbolically differentiable) fields 

bridges assimilation methods in velocimetry with machine 
learning-based super-resolution techniques, including deep 
learning (Park et al. 2020), physics-informed neural networks 
(PINNs, Rao et al. (2020)) and generative adversarial networks 
(Güemes Jiménez et al. 2022). The primary advantage of the 
RBF formulation is its linearity with respect to the training 
parameters, allowing for efficient training and implementation 
of hard constraints.

The approach proposed in this work employs the con-
strained RBF framework for spatial averaging, similar to the 
local polynomial regression by Agüera et al. (2016). However, 
we use an ensemble trick to avoid the need for defining bins, 
resulting in an analytic expression for the statistical quantities 
that is both grid-free and bin-free. The general formulation 
is presented in Sect. 2. Section 3 outlines the main numeri-
cal recipes to implement the RBF constraints while signifi-
cantly reducing computational costs compared to the original 
implementation in Sperotto et al. (2022). This is achieved 
using a simplified version of the well-known partition of unity 
method (PUM, Melenk and Babuška (1996)) for RBF regres-
sion (see also Larsson et al. (2017); Cavoretto and De Rossi 
(2019, 2020)). The PUM significantly reduces memory and 
computational demands by splitting the domain into patches, 
performing RBF regression in each patch, and then merging 
the solutions into a single regression. The RBF-PUM was 
recently applied for super-resolution of Shake-the-Box meas-
urements (Li et al. 2021) and mean flow fields in microfluidics 
(Ratz et al. 2022b), though without penalties or constraints. 
Section 4 presents the selected test cases for evaluating the 
algorithm’s performance, while Sect. 5 reviews the algorithms 
used for benchmarking. Results are presented in Sect. 6, and 
conclusions and perspectives are discussed in Sect. 7.

2  Bin‑Free Statistics

We briefly review the fundamentals of radial basis function 
(RBF) regression in Sect. 2.1. Section 2.2 introduces the 
ensemble trick to circumvent the need for binning.

2.1  Fundamentals of RBF regression and notation

The RBF regression consists of approximating a function as a 
linear combination of radial basis functions. In this work, we 
are interested in approximating the components of 3D velocity 
fields and consider only isotropic Gaussian RBFs:

where x = (x, y, z) ∈ ℝ
3 is the coordinate where the basis is 

evaluated, xc,k = (xc,k, yc,k, zc,k) ∈ ℝ
3 and ck are, respectively, 

the k-th collocation point and the shape parameter of the 
basis and || ⋅ || denotes the l2 norm of a vector.

(1)�k(x|xc,k, ck) = exp
(
−c2

k
||x − xc,k||2

)
,
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At any given point x , the velocity field has three entries 
u(x) = (u(x), v(x),w(x)) ∈ ℝ

3 . The RBF regression using 
nb RBFs can be written as:

where wu,k,wv,k,ww,k ∈ ℝ
nb are the weights associated to 

each basis. The function approximation (2) can conveniently 
be evaluated on an arbitrary set of points X = (x, y, z) , with 
x, y, z ∈ ℝ

np the vectors collecting the coordinates in each 
point, using the basis matrix �b(X) : This collects the value 
of each RBF on a set of points X:

This matrix allows us to express approximation (2) in a com-
pact notation:

This block structure is useful when constraints are intro-
duced later on. To ease the notation, we abbreviate (4) 
to U(X) ≈ �W . Here, it is understood that U ∈ ℝ

3np and 
W ∈ ℝ

3nb are the vertically concatenated velocity field and 
weights, respectively.

We assume that training data (e.g., PTV measurements) 
are available on a set of X∗ = (x∗, y∗, z∗) ∈ ℝ

3×n∗ points and 
denote these samples as U(X∗) = U∗ = (u∗;v∗;w∗) ∈ ℝ

3n∗ 
where “;” denotes vertical concatenation. With the basis 
matrix �(X∗) = �∗ , the weights minimizing the l2 norm 
of the training error are (see for example Hastie et al. 
(2009); Bishop (2011); Deisenroth et al. (2020)):

where � ∈ ℝ is a regularization parameter and I is the iden-
tity matrix. The regularization parameter � ensures that the 
inversion is possible. Once the weights are computed, the 
velocity field and its derivatives are available on an arbitrary 
grid since (2) gives an analytical expression (Sperotto et al. 
2022).

(2)u(x) =

⎛
⎜⎜⎝

u

v

w

⎞
⎟⎟⎠
≈

nb�
k=1

⎛
⎜⎜⎝

wu,k �k(x�xc,k, ck)
wv,k �k(x�xc,k, ck)
ww,k �k(x�xc,k, ck)

⎞
⎟⎟⎠
,

(3)�b(X) =

⎛⎜⎜⎝

⋮ … ⋮

�(X;xc,1, c1) … �(X;xc,nb , cnb )

⋮ … ⋮

⎞⎟⎟⎠
,

(4)

U(X) =

⎛
⎜⎜⎝

u(X)

v(X)

w(X)

⎞
⎟⎟⎠

≈

⎛
⎜⎜⎝

�b(X) 0 0

0 �b(X) 0

0 0 �b(X)

⎞
⎟⎟⎠

⎛
⎜⎜⎝

wu

wv

ww

⎞
⎟⎟⎠
.

(5)W =
(
�

T
∗
�∗ + �I

)−1
�

T
∗
U∗ ,

2.2  From ensembles of RBFs to RBF of the ensemble

Let us consider a statistically stationary and ergodic velocity 
field u(x) . The sample at any location x depends on the joint 
probability density function (pdf) fu(x, �) , so that we can 
define the mean field from the expectation operator:

The challenge in estimating the mean field in (6) from a set 
of PTV measurements of the velocity field is that each sam-
ple (snapshot) is available on a different set of points. We 
denote as X(j) the set of n(j)p  points at which the data are avail-
able in the j-th sample of the field (i.e., PTV measurements) 
and as U(j) = U

(
X(j)

)
 the associated velocity measurements.

The usual binning-based approach to compute statistics 
maps the sets of points X(j) onto a fixed grid of bins so that 
all points within the bins can be used to build local statistical 
estimates. Then, attributing all points within the i-th bin to a 
specific position xi allows to remove the spatial dependency 
of the joint pdf and to move from the expectation operator 
in (6) to its discrete (sample-based) counterpart. Therefore, 
at each of the bin locations xi one has:

where U(j)(xi) denotes the mapping of the PTV sample U(j) 
onto the i-th bin, and np,i denotes the number of measure-
ment points available within the bin.

In this work, we propose an alternative path. Introducing 
the RBF regression (4) into (6) and noticing that the Jaco-
bian is du∕dW = �(x) we have:

with fw(W) = fu(x, u)�(x) . The expectation of the weights 
can be estimated from data more easily than the expectation 
of the velocity field, because the distribution fw(W) does not 
depend, at least in principle, on the positioning of the data 
so long as the regression is successful. This implies that the 
same set of RBFs is used for the regression of all snapshots 
and that each of these is sufficiently dense to ensure good 
training.

Assuming that one collects nt velocity fields and denot-
ing as W(j) the weights of the RBF regression of each of the 
j = [1,… nt] snapshots, one has:

(6)⟨u⟩(x) = �{u(x)} = ∫
∞

−∞

u(x)fu(x, u)du .

(7)⟨u⟩(xi) ≈ 1

np,i

np,i�
i=1

U(j)(xi) ,

(8)
⟨u⟩(x) = ∫

∞

∞

�(x)Wfu(x,�(x))du

= �(x)∫
∞

∞

Wfw(W)dW = �(x)⟨W⟩ ,
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where W(j) is the weight obtained when regressing the j-th 
snapshot. Introducing (5) is particularly revealing:

where �(j) = �
(
X(j)

)
 . All operations in (10) are linear, and 

some of these can be replaced by operations on the full 
ensemble of data, which we define as:

The ensemble has useful properties. Defining as 
�E = �(XE) and expanding the summations in the projec-
tions �T

(j)
U(j) and in the correlations �T

(j)
�(j) from (10), one 

has: 

The goal of the proposed approach is to replace the aver-
age of the RBF regression in each snapshot, as requested 
in (10), with the RBF regression of the ensemble set. This 
allows replacing nt regressions of size n(j)p  with one single 
regression of size npE . Without aiming for a formal proof, we 
note that the covariance matrices �T

(j)
�(j) collect the inner 

products between the bases sampled on the points X(j):

and one might expect these to become independent from the 
specific set X(j) at the limit n(j)p → ∞ . The same is true for the 
inner product �T

(j)
u(j) in (9).

Therefore, assuming that each snapshot is sufficiently 
dense, we approximate:

and thus use (12b) to write (10) as:

With the help of (15), we can therefore compute the mean 
of a random field through a single RBF regression of the 

(9)⟨W⟩ ≈ WA =
1

nt

nt�
j=1

W(j) ,

(10)⟨W⟩ ≈ 1

nt

nt�
j=1

�
�

T
(j)
�(j) + �I

�−1
�

T
(j)
u(j) ,

(11)XE =
⋃

j∈1…nt

X(j) UE =
⋃

j∈1…nt

U(j) .

(12a)
nt∑
j=1

�
T
(j)
�(j) = �

T
E
�E ∈ ℝ

nb×nb ,

(12b)
nt∑
j=1

�
T
(j)
U(j) = �

T
E
UE ∈ ℝ

nb×nb .

(13)�
T
(j)
�(j)[m, n] =

n
(j)
p∑

j=1

�m

(
X(j)

)
�n

(
X(j)

)
,

(14)�
T
(j)
�(j) ≈

1

nt
�

T
E
�E ,

(15)⟨W⟩ ≈ WE =
�
�

T
E
�E + �I

�−1
�

T
E
UE .

ensemble of points. The approach uses “meshless” collo-
cation points (see Zhang et al. (2000); Chen et al. (2014); 
Fornberg and Flyer (2015)) because it does not require 
the definition of a computational mesh (with nodes, ele-
ments and connectivity) to compute derivatives. It is “bin-
less” because the spatial distribution of flow statistics are 
regressed globally and not computed in local bins.

3  Numerical recipes

This section describes the numerical details in the imple-
mentation of the RBF regression described in the previ-
ous section. Section 3.1 reviews the methods to introduce 
physics-based constraints while Sect.  3.2 describes the 
partition of unity method (PUM) to minimize the memory 
requirements.

3.1  Constrained RBFs

The RBF regression in (5) can be constrained using 
Lagrange multipliers and the Karush–Kuhn–Tucker (KKT) 
condition as shown in Sperotto et al. (2022).

The current implementation in SPICY (Sperotto et al. 
2024a) allows to set linear constraints and quadratic penal-
ties. These are used to impose or to penalize the violation 
of linear constraints such as Dirichlet and Neumann con-
ditions, as well as divergence-free or curl-free conditions. 
Following the notation in (5), the weight vector defining the 
RBF regression of the data ( X∗,U∗ ) minimizes the following 
augmented cost function:

The first term is the least squares error. A minimization 
solely focused on this term yields the unconstrained solution 
in (5). The second term is related to hard linear constraints. 
The vector � collects the associated Lagrange multipliers: 
These are additional unknowns to be identified in the con-
strained regression. The reader is referred to Sperotto et al. 
(2022) for more details on the shape and formation of these 
matrices.

The third term in (16) is a quadratic penalty, which in 
this work is solely used to penalize violations of the diver-
gence-free condition, set on the full set of ng points with 
coordinates Xg . The importance of the penalty is controlled 
by the parameter �∇ ∈ ℝ

+ . Penalties are soft constraints: 
They promote but do not enforce a condition and require 
the a-priori (and not trivial) definition of �∇ . On the other 
hand, their implementation is computationally much cheaper 
because penalties bring no new unknowns. The current 

(16)
J⋆(w,�) = ||U∗ −�(X∗)W||2

2

+�T (L(XL)W − cL)

+𝛼∇||D∇(Xg)W||2
2
.
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implementation allows both constraints and penalties, to 
offer a compromise between the strength of hard constraints 
and the limited cost of penalties.

The problem of minimizing (16) can be cast into the prob-
lem of solving a linear system of the form:

where A ∈ ℝ
3nb×3nb is computed from the training and pen-

alty points, B ∈ ℝ
3nb×n� is computed from the linear con-

straints, b1 is associated with the training data and b2 is 
associated with the constraints. The vector � ∈ ℝ

n� gathers 
the Lagrange multipliers for which the system must also be 
solved. The reader is referred to Sperotto et al. (2022) for 
details on the matrices and efficient numerical methods for 
the system solution. It is worth stressing that this work solely 
considered equality constraints (e.g., divergence-free of the 
mean flow field), although inequality constraints (e.g., posi-
tiveness of the Reynolds stresses) could also be included. 
These require the solution of a quadratic programming prob-
lem (Boyd and Vandenberghe 2004; Nocedal and Wright 
2006) and are currently under investigation.

In what follows, we introduce the notation 
Ũ(x) = �(x)W = RBF (U∗,X∗) to refer to the analytic 
approximation obtained by solving the constrained regres-
sion (17) for the training data (X∗,U∗).

3.2  The partition of unity method (PUM)

An important limitation of the constrained RBF framework 
is the large memory demand due to the large size and the 
dense nature of the matrices involved in (17). This problem 
can be mitigated using compact support bases to make the 
system sparse and accessible to iterative methods for sparse 
systems or the partition of unity method (PUM) to divide 
the problem into smaller blocks and enable direct solvers. 
We leave a detailed comparison (or possible combination) 
of the two approaches for future works, and here focus on 
the second because a preliminary investigation showed that 
it was faster and generally more accurate.

The PUM was proposed by Melenk and Babuška (1996) 
in the context of the finite element method, explored for 
interpolation purposes in Wendland (2002); Cavoretto 
(2021) and extensively developed by Larsson et al. (2013, 
2017); Cavoretto and De Rossi (2019, 2020) for the mesh-
less integration of PDEs. The general idea of RBF-PUM is 
to split the regression problem in different portions (parti-
tions) of the domain. Different PUM approaches have been 
proposed; these could be classified into “global” or “local.” 
A global approach solves one large regression problem (e.g., 
Larsson et al. (2017)) which is made significantly sparser 
by the partitioning. A local approach solves many smaller 

(17)
(
A B

BT 0

)(
W

�

)
=

(
b1
b2

)
,

regression problems (e.g., Marchi and Perracchione (2018)) 
treating the regression in each portion as independent from 
the other.

In the context of data assimilation for image velocimetry, 
the RBF-PUM has been recently used in Li et al. (2021) for 
smooth gradient computation and in Ratz et al. (2022b) for 
super-resolution. Recently, the extension of the RBF-PUM to 
include constraints has been proposed in Li and Pan (2024), 
following the stable gradient computation by Larsson et al. 
(2013), and combined with a Lagrangian tracking approach. 
Our approach differs from Li and Pan (2024)’s in that we use 
a heuristic treatment of the derivatives at the intersection of 
the patches, which we found to be more stable.

To illustrate the proposed approach, we first briefly recall 
the PUM with the help of Fig. 1. The measurement domain � 
is covered by M spherical patches �m such that 

⋃M

m=1
𝜒m ⊃ 𝜒 . 

In the 2D example of Fig. 1, the rectangular domain (red 
dashed line) is covered by 27 patches (blue circles) with a 
regular spacing Δx and Δy . The minimum radius to cover the 
entire domain is r� =

√
Δx2 + Δy2∕

√
2 . However, following 

Larsson et al. (2017), the regression performs better if patches 
are partially overlapping, that is if the radius r′ is stretched by 
a factor � to r = r�(1 + �) . This radius is used for every patch 
�m . The overlap is visualized in the zoom-in (black solid lines) 
of Fig. 1.

A weight function Ω(m) is assigned to each patch. This func-
tion merges the contributions from the overlapping patches and 
is constructed such that:

The weight functions are generated by applying the method 
by Shepard (1968) for compactly supported functions, which 
gives:

(18)
M∑

m=1

Ω(m)(x) = 1, ∀x ∈ � .

(19)Ω(m)(x) =
�m(x;cm)∑M

q=1
�q(x;cq)

,

2 δ

Fig. 1  Example of a domain � (red dashed lines) being covered by a 
total of 27 circular patches (blue circles) on a regularly spaced grid of 
Δx , Δy . The zoom-in (black solid lines) on the right-hand side shows 
the overlap � between patches
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where �m(x) is a compactly supported generating function, 
centered on cm in the m-th patch. An example for such a 
generating function is the Wendland C2 function (Wendland 
1995) which is defined as:

where r is the radius of the function and the subscript + is 
the positive part of a function, i.e., (a)+ = a if a > 0 and 
(a)+ = 0 if a < 0.

The M patches are used to identify M portions of datasets, 
each contained within the area Ω(m)(x) ≠ 0 with m = 1,…M . 
The partitioning can be interpreted as a partitioning of the 
linear system (4) and the augmented cost function (16). The 
partitioning consists in multiplying both the data and the 
constraints by the local weight function. That is, given the 
full dataset (X∗,U∗) , the data used for the local (constrained) 
regression in patch m are U(m) = Ωm(X∗,m)U∗,m and the bases 
used in each patch is �(m) = Ωm(X∗)�(X∗,Xc,m) , with Xc,m 
considering only the subset of collocation points inside the 
m-th patch. Similarly, all linear constraint operators L(X) 
and their values cL in (16) and (17) are weighted by the 
weight function Ω(XL) . Then, each local regression can be 
carried out solving the local linear system (17) to obtain 
the local weights Wm . Finally, given the set of local sets of 
weights, the analytical expression over the full domain is:

To compute derivatives, we use a heuristic treatment that 
supersedes the product rule and sets all derivatives of the 
weight functions to zero. Therefore, the partial derivative 
along x, for example, reads:

To illustrate the performances of the PUM implemen-
tation, we consider the second test case in Sperotto et al. 
(2022), which is the regression of the flow past a cylinder in 
laminar conditions. We compare both our local PUM with a 
classic, global RBF regression. Figure 2 shows the analytical 
divergence field of the standard RBF regression at the top 
and the one of RBF-PUM at the bottom. Both use solenoi-
dal and Dirichlet constraints on the boundaries as well as a 
divergence-free penalty in every training point. The largest 
differences are at the inlet and close to the cylinder where 
the gradients are largest. The magnitudes are comparable, 
and no pattern of the patches is visible. A comparison of 
the mean flow (not shown here) likewise only shows minor 

(20)

�m(x|cm, r) =
(
4
||x − cm||2

r
+ 1

)(
1 −

||x − cm||2
r

)4

+

,

(21)Ũ(x) =

M∑
m=1

Ωm(x)�(x,Xc,m)Wm .

(22)�xŨ(x) =

M∑
m=1

Ωm(x)�x�(x,Xc,m)Wm .

differences. The computational time of the RBF-PUM is an 
order of magnitude shorter. Further gains are possible by 
solving each of these M problems in parallel on multiple pro-
cessors, but we leave these developments to future improve-
ment. In its current implementation, the PUM allowed to 
process millions of vectors on a modest laptop with 8GB 
RAM.

4  Selected algorithms for benchmarking

4.1  Traditional binning approaches

We consider two traditional binning methods, namely 
the Gaussian weighting by Agüí and Jiménez (1987) and 
the polynomial fitting by Agüera et al. (2016). These are 
described in Sects.  4.1.1 and 4.1.2, respectively. These 
have in common that none of the statistical quantities are 
expressed as continuous functions. The statistics are only 
available at the bin’s center, and higher resolution and gra-
dients can only be obtained through further processing. We 
do not consider the top-hat approach since its shortcomings 
are well-known (Agüera et al. 2016). While all methods can 
extract higher-order statistics, we restrict our descriptions to 
first- and second-order statistics for velocity fields, i.e., the 
mean flow and Reynolds stresses.

4.1.1  Gaussian weighting

The Gaussian weighting (Agüí and Jiménez 1987) tackles 
unresolved velocity gradients by weighting points in every 
bin with a Gaussian. This simple approach gives less impact 
to points far from the bin center, mitigating the effects of 
unresolved mean flow gradients. However, weighting 

Fig. 2  Divergence computed from the analytical RBF representation. 
Top: constrained, global regression from Sperotto et al. (2022), Bot-
tom: RBF-PUM with locally constrained regressions
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reduces the effective number of samples and thus decreases 
statistical convergence. In this work, we choose a standard 
deviation of Db∕3 for the Gaussian weighting functions, with 
Db the bin diameter.

4.1.2  Polynomial fitting

The local polynomial fitting of Agüera et al. (2016) fits the 
ensemble fields within a bin with a polynomial function 
up to second order, providing a continuous function of the 
local mean flow. This continuous function is used for two 
purposes. First, it is evaluated in the bin center to provide 
the mean velocity in the bin. Second, it is evaluated in all 
data points within a bin and subtracted to the instantaneous 
velocities to compute the velocity fluctuations. Higher-order 
statistics are sampled on the mean-subtracted fields through 
a top-hat-like approach.

4.2  RBF‑based approaches

The RBF approaches build on the mathematical back-
ground introduced in Sects. 2 and 3, and in particular 
on the assumption that the expectation operator can be 
approximated by a regression in space. The framework 
was implemented with three variants in three algorithms, 

named “Binned Single RBF,” “Binned Double RBF” and 
“Bin-Free RBF.” These algorithms share several common 
steps, which are recalled in the flowchart in Fig. 3. The 
sequence of steps for each method is traced using arrows 
of different colors, recalled in the legend on the bottom 
left.

– Step 1 The starting point for all methods is an ensem-
ble flow field that is assumed to have gathered enough 
realizations to provide statistical convergence. This is 
indicated in Fig. 3, using different colors for fields in 
different snapshots.

– Step 2 For all methods, the mean flow is computed in 
the same way using a PUM-based constrained regression 
RBF of the ensemble. This provides the analytical mean 
flow field: 

– Step 3 The function (23) is used to compute the ensem-
ble of velocity fluctuations by subtracting the mean field 
⟨Ũ⟩(XE) to the ensemble field: 

(23)⟨Ũ⟩(x) = RBF(XE,UE) .

(24)U�(XE) = UE − ⟨Ũ⟩(XE) .

: Bin-free RBF

: Binned Double RBF

: Binned Single RBF

Method legend

Step 1: Ensemble PTV Step 2: Regression of
ensemble

Step 3: High resolution
fluctuations

Step 4: Binning Step 5: Regression of
binned fluctuations

Step 4 (bin-free): Regression
of fluctuation ensemble

〈Ũ〉(x) 〈U ′
iU

′
j〉(Xbin) 〈Ũ ′

iU
′
j〉(x)〈Ũ ′

iU
′
j〉(x)

〈Ũ ′
iU

′
j〉bf (x)

Fig. 3  Flowchart explaining the processing pipeline of the three pro-
posed RBF-based methods. The colors of the arrows correspond to 
each of the three methods according to the legend. All three methods 
subtract the global mean field analytically and then extract higher-

order statistics using (1) binning (Binned Single RBFs, purple), (2) 
binning and RBF regression (Binned Double RBF, teal) or (3) only an 
RBF regression (Bin-Free RBF, yellow)
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 This field is then used to compute all the products 
U�

i
U�

j
(XE) , that are required by all methods in the fol-

lowing steps. This is the last common step for the three 
methods. 

  Binned Single RBF
– Step 4. This method now interrogates the ensemble fields 

of products U�
i
U�

j
(XE) with a standard binning process. 

This is the simplest approach and most similar to the one 
of Agüera et al. (2016), with the only difference being a 
globally smooth physics-constrained regression instead 
of a local (locally smooth) polynomial regression. The 
binning process yields a discrete field of second-order 
statistics on the binning grid Xbin , i.e., ⟨U�

i
U�

j
⟩(Xbin) . 

  Binned Double RBF
– Step 5. This method builds on the binning grid from Step 

4 of Binned Single RBF with a second regression: 

 This regression has two purposes. First, it gives an 
analytical expression for not only the mean but also the 
Reynolds stresses. Second, it smoothes noisy Reynolds 
stress fields which occur if the number of samples within 
a bin is insufficient for convergence. Therefore, fewer 
samples are required in experiments. 

  Bin-Free RBF
– Step 4 (Bin-Free). The bin-free approach deviates from 

the former two methods after Step 3. This method works 
on the ensemble fields of products U�

i
U�

j
(XE) without 

binning, replacing the ensemble operators with the RBF 
(spatial) regression of the ensemble: 

 where the subscript “bf” is used to distinguish the output 
of (26) from the output in (25). The main advantage with 
respect to the previous approach is to bypass the averag-
ing effects of the binning. However, the computational 
cost and the complexity of the algorithm are higher, 
because the number of ensemble points in (26) is larger 
than the number of bins in (25). Yet, if the same colloca-
tion points and shape parameters are reused, computa-
tions can be shared for the two successive regressions of 
Bin-Free RBF.

5  Selected test cases

5.1  1D Gaussian process

A synthetic 1D test case was designed to illustrate the 
relevance of the assumption that the average of multiple 

(25)⟨Ũ�
i
U�

j
⟩(x) = RBF(Xbin, ⟨U�

i
U�

j
⟩(Xbin)) .

(26)⟨Ũ�
i
U�

j
⟩bf (x) = RBF(XE,U

�
i
U�

j
(XE)) ,

regressions can be approximated by a single regression of 
the ensemble (see Sect. 2.2).

The 1D dataset is generated by sampling a 1D Gaussian 
process with average:

and covariance function:

with � = 12.5 and �f = 0.01 . In a Gaussian process, the 
covariance function acts as a kernel function measuring the 
“similarity” between two points.

The domain x extends from 0 to 1 and total of nE ensem-
bles with ns samples are sampled from this process. Figure 4 
shows two members of the ensembles 

(
x(1), u(1)

)
 and 

(
x(2), u(2)

)
 

together with the process average and the 95% confidence 
interval in shaded area. We verify the validity of assumption 
(15) by varying the size of the ensemble and the sample size.

5.2  3D Synthetic turbulent jet

The second synthetic test case is a three-dimensional, 
jet-like, turbulent velocity field. This is used to com-
pare the proposed RBF-based methods with classic bin-
ning approaches on a case for which the ground truth is 
available. The synthetic test case is set up in the domain 
(x, y, z) ∈ [−100, 100] × [−75, 75] × [−75, 75] voxels ( vox ). 
Using cylindrical coordinates u = (ux, ur, u�) , the mean flow 
has axial component given by:

where U0 = 3vox is the maximum displacement, 
r =

√
y2 + z2  is the radius and �(x) defines the width of 

(27)u(x) = x +
1

6
sin

(
3�

2
x
)
,

(28)�(x1, x2) = �f exp(−�(x2 − x1)
2) ,

(29)⟨ux⟩(x, r) =
U0

2

�
1 + cos

�
2�r

�(x)

��
,

0.0 0.2 0.4 0.6 0.8 1.0
x [ - ]

−0.4

0.0

0.4

0.8

1.2

u
[-
]

1.96σ
Mean

x(1),u(1)

x(2),u(2)

Fig. 4  Test case 1: a 1D Gaussian process. The mean value is shown 
with a solid line, and the 95% interval is shown by the shaded area. 
The scattered markers represent two different members of the ensem-
ble 

(
x
(1),u(1)

)
 and 

(
x
(2),u(2)

)
 ) with n(j)p = 50
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the profile which increases linearly from 60 to 90 vox. The 
mean velocity field is zero in the other components, i.e., 
⟨ur⟩ = ⟨u�⟩ = 0 . Therefore, this field is not divergence-free 
and is solely used for demonstration purposes.

Synthetic turbulence is added in a ring with Gaussian noise. 
The synthetic shear layer is located at r = 0.4�(x) with a width 
of 0.5�(x) corresponding to a standard deviation:

(30)�N(x, r) =
3

2
√
10

�
1 + cos

�
2�(r − 0.4�(x))

0.5�(x)

��
.

This is used to construct the velocity fluctuations u′
x
 , u′

r
 and 

u′
�
 as a multivariate Gaussian u�(x) ∼ N(�,�) ∈ ℝ

3 with 
mean � and covariance matrix � defined as:

That is, the fluctuations u′
x
 and u′

r
 are correlated while the 

fluctuation u′
�
 is not. Figure 5 shows the contour map of the 

axial mean flow (on the left) and the axial fluctuation u′
x
 (on 

the right).
A total of 1 × 106 . scattered random points were taken as 

the velocity field ensemble. We further contaminate these 
ideal fluctuations by adding uniform noise according to 
un(x) = u(x)(1 + q(x)) . Here q(x) = (qx(x), qy(x), qz(x)) is a 
noise vector for each velocity component, where each com-
ponent is independently sampled from a rectangular distribu-
tion in the interval [−0.1, 0.1].

5.3  3D Experimental turbulent jet

The third test case is a 3D PTV measurement of an underwa-
ter jet at the von Karman Institute. The setup of the facility 
is sketched on the left-hand side of Fig. 6, with a picture of 
the facility in the center of the Figure. The jet nozzle with 
a diameter of D = 15mm was located at the bottom of a 
hexagonal water tank with a width of 220 mm and a free 
surface. The nozzle was fixed at the bottom of the tank, and 
the origin of the coordinate system was set to the center of 
the nozzle exit. A centrifugal pump was connected to the 
back of the nozzle with a tube. The effects of the resulting 

(31)u�(x) =

⎛
⎜⎜⎝

u�
x

u�
r

u�
�

⎞
⎟⎟⎠
∼ N

⎛
⎜⎜⎝

⎛
⎜⎜⎝

0

0

0

⎞
⎟⎟⎠
,

⎡
⎢⎢⎣

�2
N

0.7 �2
N

0

0.7 �2
N

�2
N

0

0 0 �2
N

⎤
⎥⎥⎦

⎞
⎟⎟⎠
.
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x
[v
ox
]
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〉/
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2 0
[-
]
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〉/
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Fig. 5  Test case 2. Exact velocity field of the synthetic jet at 
z = 0  vox. Axial mean flow (left) and axial normal Reynolds stress 
(right)

Fig. 6  a Top-down sketch of the experimental facility with the right-
handed coordinate system and b image of the facility during the 
acquisition. Laser light (1) enters the top-hat illumination optics to 
produce a volumetric illumination (2) which enters the hexagonal 
tank (3). The illumination is centered above the jet nozzle (4) which 

is located at the bottom of the tank. Four high-speed cameras (5) with 
100  mm objectives (6) record the jet in an arc that covers approxi-
mately 125◦ ; c example of an acquired raw image for the left-most 
camera
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Dean vortices were suppressed by installing a grid with a 
size of 2 mm inside the nozzle. The inlet length from the 
grid to the exit of the nozzle was approximately 4D due 
to spatial constraints. The exit velocity U0 of the jet was 
approximately 0.45 m/s, which resulted in a diameter-based 
Reynolds number of 6750.

The flow was illuminated with a Quantronix Darwin Duo 
527-80-M laser with a wavelength of 527 nm and 25 mJ 
per pulse. The volumetric illumination was achieved with 
top-hat illumination optics from Dantec Dynamics and 
entered through the side of the tank. The optics produced 
a beam with a rectangular cross section with an aspect 
ratio of 5 : 1, which resulted in an illuminated volume of 
(x × y × z) ≈ 4.5D × 2.5D × 1.5D . The resulting scaling 
factor was approximately 14.7 vox/mm. Red fluorescent 
microspheres with a diameter ranging from 4553 µm3 and 
a density of 1200 kg/m3 were used as tracer particles. The 
higher density of the particles allows to vary the seeding 
concentration by leveraging sedimentation over time. This 
is particularly helpful for the calibration refinement, which 
requires much lower seeding concentration (0.005 ppp) than 
what used during the experiments (0.018 ppp).

The density mismatch was not considered critical to the 
experiments, since the particles have a terminal velocity of 
approximately uT = 0.25mm/s , that is about a thousandth of 
the free jet velocity in the free stream. Moreover, the Stokes 
number was small enough at Stk ≈ 5 × 10−3 to have tracking 
errors below 1% Raffel et al. (2018).

Four SpeedSense M310 high-speed cameras with a reso-
lution of 1280 × 800 px were used to observe the flow in the 
region directly above the jet. The cameras had a distance of 
approximately 350 mm from the jet center and were arranged 
in an arc of approximately 125◦ as shown in Fig. 6. The cam-
eras were equipped with Samyang Macro objectives (F2.8, 
f = 100mm , f# = 11 ) and long-pass filters to suppress the 
reflected laser light. All cameras were used in single-axis 
Scheimpflug arrangement with an angle of approximately 3 
and 12◦ for the interior and exterior cameras, respectively. 
A total of 2000 time-resolved images were acquired with 
Dynamic Studio 8.0, at a frequency of 1000 Hz. This cor-
responds to a maximum displacement of 8 vox for particles 
in the jet center. An example of an acquired raw image is 
displayed on the right-hand side of Fig. 6, and Table 1 sum-
marizes the experimental parameters.

The cameras were calibrated with a dotted calibration 
target (size 100 × 100mm2 , black dots on white background, 
diameter 1.5 mm, pitch 2.5 mm). The target was traversed 
in the range from z = ±15mm throughout the volume by 
means of a translation stage with micrometric precision. 
Five images were acquired at equally spaced positions, and 
a 2nd-degree polynomial in all three axes was used as a cali-
bration model. The resulting calibration error was approxi-
mately 0.15 and 0.3 px for the interior and exterior cameras, 

respectively. The calibration error was reduced using the 
procedure outlined by Brücker et al. (2020). For this, a total 
of 21 statistically independent images were recorded at a 
seeding concentration of approximately 0.005 ppp. After 
calibration refinement, the error of every camera was below 
0.05 px.

The acquired images were processed with a mean sub-
traction over all images for each camera. Residual back-
ground noise was eliminated by clipping all pixels with an 
intensity below 60 counts. For each time step, the 3D voxel 
volume was reconstructed in a domain of approximately 
Lx × Ly × Lz = 990 × 550 × 285 in x, y and z using up to 10 
iterations of the SMART algorithm (Atkinson and Soria 
2009; Scarano 2013).

For the given parameters, the fraction of ghost particles 
can be estimated according to Discetti and Astarita (2014):

where d� = 2.5 px was the particle image diameter and 
Ns = Nppp�d

2
�
∕4 the source density. It is important to high-

light that the volume was not reconstructed in the full illu-
mination depth of 1.5D, but was reduced to 1.3D because of 
reduced intensity in the outer regions. The resulting 10% of 
ghost particles are treated through time-resolved information 
with predictors based on previous time steps. This increases 
the accuracy (Malik et al. 1993; Cierpka et al. 2013) and 

(32)
Nghost

Ntrue

= Npppd�Lz
(
1 − e−Ns

)Ncam−2,

Table 1  Parameters of the experimental setup

Nozzle diameter D 15 mm
Central jet velocity U

0
0.45 m/s

Reynolds number ReD 6750
Medium Water
Camera type SpeedSense M310
Number of cameras N

cam
4

Acquisition frequency f
acq

1000 Hz
Camera resolution 1280 × 800 px

Camera exposure time t
exp

250 µm
Scaling factor 14.7 vox/mm
Illum. vol. (x × y × z) 67.5 × 40 × 24mm3

(4.5D × 2.5D × 1.5D)

Lenses Samyang Macro
F2.8/100 mm

Lens aperture f
#

11
Scheimpflug adapter Single axis
Illumination Quantronix Darwin Duo

527-80-M laser
Seeding Fluorescent microspheres
Seeding diameter dp 45–53 µm
# tracked particles np 4000–7000
Seeding density on sensor N

ppp
0.018 ppp
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allows to filter ghost particles which typically have a short 
track length (Kitzhofer et al. 2009).

After filtering out particles with a track length below 5 
time steps, a total of 4000–7000 vectors were computed 
at each snapshot. Three additional processing steps were 
applied. First, a normalized median test was used to remove 
outliers (Westerweel and Scarano 2005). Second, the domain 
depth was reduced to 1.1D because of an insufficient number 
of particles in the outer region, which negatively affected the 
RBF regression. Third, we only used data from every third 
time step, since this provides sufficient statistical conver-
gence and a sufficient level of statistical independence of the 
snapshots in the shear layer. The resulting dataset consists 
of 3.35 × 106 particles in the ensemble used for the training.

6  Results

6.1  A 1D Gaussian process

The main purpose of this illustrative test case was to com-
pare the average of RBF regressions in (9) with the RBF 
regression of the ensemble in (15). In both cases, we use 25 
evenly spaced RBFs with a radius of 0.06, which is defined 
as the distance at which the RBF reaches half its value. 
These values are chosen to sufficiently cover the domain 
and have a well-posed regression for the lowest seeding 
case. However, the lack of points leads to ill-conditioned 
matrices, and thus, a strong regularization is needed. The 
regularization parameter � in (5) was computed by setting 
an upper limit to the condition number �(H) of the matrix 
H = (�T

∗
�∗) estimated as follows

with �M(H) the largest eigenvalue of H and �L = 104 the 
upper limit of the condition number. This regularization 

(33)�(H) ≈
�M
�

→ � =
�M(H)

�L
,

approach is used in all regressions in the remainder of this 
article, each with different values of �L.

We consider a set of npE samples in the ensemble, vary-
ing from npE = 103 to 107 . To compute the average of RBFs 
in (9), we assume that the “snapshots” from which each 
regression is carried out consists of np samples, taken as 
np = {50, 100, 150, 200, 250} . Therefore, the number of 
regressions is nt = npE∕np : One could either work with many 
sparse snapshots (small np and large nt ) or fewer dense snap-
shots (large np and small nt ), but for the comparison with the 
ensemble approach, the same npE is kept for all cases. The 
points are randomly sampled using a uniform distribution.

For each snapshot i, the regression evaluates the basis matrix 
�b,(i) and computes the set of weights w(i) using the uncon-
strained RBF regression in (5), i.e., w(i) = RBF (x(i), u(i)).

Figure 7 compares the matrices �T
b,(0)

�b,(0) for snapshots 
with np = {50, 100, 150, 200, 250} particles each together 
with the case using the full ensemble of points with npE = 107 . 
As expected, all matrices have a diagonal band proportional 
to the width of the RBFs. This is particularly smooth for the 
ensemble and shows “holes” for the sample matrices, which 
becomes more pronounced as np is reduced. This is due to 
the uneven and overly sparse distribution of points in each 
sample. However, for sufficiently dense snapshots, it is clear 
that the all inner product matrices �T

b
�b converge to a pre-

scribed function. This is the essence of the shift in paradigm 
from the ensemble averaging of regressions to the regression 
of the ensemble dataset wE = RBF (xE, uE) , with (xE, uE) the 
ensemble dataset.

To analyze the impact of the sampling on the comparison 
between (9) and (15), we define the l2 discrepancy between the 
weights and the predictions as 

(34a)�W =
||wA − wE||2

||wA||2 ,

(34b)�⟨u⟩ =
��⟨ũ⟩A − ⟨ũ⟩E��2

��⟨ũ⟩A��2
,
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0

10

20

ΦT
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Fig. 7  Test case 1: matrix structure of �T
b
�b . Subfigures a–e show the matrix for the five different sample sizes and subfigure f shows the matrix 

for the ensemble of points
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 where wA =
∑nt

i=1
w(i)∕nt  , ⟨ũ⟩A =

∑nt
i=0

⟨ũ(i)⟩∕nt  , with 
⟨ũ(i)⟩ = �b(x

(i))w(i) and ⟨u⟩E = �b(xE)wE.
Figure 8 plots �w and �u in (34a and 34b) as a function 

of the number of samples in the ensemble ( npE ) for the five 
choices of samples per snapshot np . The results show that 
np = 50 is clearly insufficient for the problem at hand. This 
is due to the fact that (14) does not hold for most of the sam-
ples and an average of poor regressions is a poor regression. 
However, as np increases, convergence is observed with both 
� dropping smoothly below 1% for npE > 104 regardless of 
np . Moreover, this comparison shows that the discrepancies 
on the weight vectors are attenuated in the approximated 
solution. Although these results depend on the settings of 
the RBF regression, and in particular on the level of regu-
larization, these results give a practical demonstration on the 
feasibility of approximating (9) with (15).

6.2  3D Synthetic turbulent jet

The purpose of this test case was to compare and bench-
mark the methods discussed in Sect. 4 on a 3D dataset for 
which the ground truth is available. We use 121,500 pseudo-
random Halton points as collocation points (see Fasshauer 
(2007) for a discussion on random collocation in meshless 
RBF methods). This gives approximately 8 particles per 
basis, in line with the optimal densities identified in Sper-
otto et al. (2022)). The RBFs use a fixed radius of 30 vox. 
The PUM used 175 regularly spaced patches with an overlap 

of � = 0.25 , and no physical constraints were imposed. All 
methods with binning use spherical bins of different diam-
eters Db , also spaced on a regular grid. The Reynolds stress 
regression has the same RBF and patch placement as the 
mean flow regression. The RBF processing parameters are 
summarized in Table 2. All the bin-based approaches use 
the same binning with size Db while the Gaussian weighting 
has a size of � = Db∕3 . All five methods are compared on 
the binning grid.

Figure 9 shows the errors for different statistics defined 
as:

where u is either a mean or Reynolds stress and ugt the cor-
responding ground truth.

Figure 9a shows the resulting errors over the binning 
diameter Db of the axial mean flow ⟨ux⟩(Xbin) . The abscissa 
shows the bin diameter and the average number of particles 
Npb in each bin. All three RBF-based methods use the same, 
single regression for the mean which is why they are dis-
played as one curve. The curve is constant since the regres-
sion of the ensemble does not use any binning. For small bin 
sizes, the error of the Gaussian weighting and polynomial 
fitting quickly exceeds 15%, although the former has a con-
sistently smaller error. This is because of the small number 
of points within the bin which are insufficient for averag-
ing and local fitting. At the maximum bin size of 16 vox, 
the Gaussian weighting reaches an error comparable to the 
error of the RBF regression whereas the polynomial fitting 
reaches a minimum of only 8%. This is due to the small gra-
dients in the mean flow; for stronger gradients, the spatial 
low-pass filtering due to larger bin sizes leads to increased 
error.

For the Reynolds stresses, the low-pass filtering due 
to the binning is more evident. The errors on the stresses 
⟨u�

x
u�
x
⟩(Xbin) , ⟨u��u��⟩(Xbin) and ⟨u�

x
u�
r
(Xbin)⟩ are shown in 

subfigures (b)–(d). For the axial Reynolds stress, the spatial 
inhomogeneities lead to increased errors for larger bins for 
all methods except the Bin-Free RBFs. For the axial normal 
stress, the effects of unresolved mean flow gradients become 
apparent as the error of the Gaussian weighting strongly 
increases for large bin sizes. For the other stresses, the mean 
flow gradients are not as impactful and the weighting miti-
gates the spatial inhomogeneities. The error trends for the 
polynomial fitting, Binned Single and Binned Double RBF 
collapse for bin sized above 12 vox, because there are no 
convergence problems and the method of mean subtraction 
has little influence. However, for bin sizes below 10 vox, 
the error quickly reaches values above 15% because of poor 
statistical convergence. For the Binned Double RBF, the 
unconverged Reynolds stresses are smoothed, preserving the 

(35)��u��err =
��⟨ũ⟩ − ugt��

��ugt�� ,
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Fig. 8  Test case 1: convergence of the relative difference between the 
RBF regression of the ensemble and the ensemble of the RBF regres-
sions. Difference in the weights (top) and the mean (bottom)



Experiments in Fluids          (2024) 65:142  Page 13 of 20   142 

error between 11 and 13% for all bin sizes between Db = 
4–10 vox.

The Bin-Free RBF outperforms all methods with a con-
stant error of 11%, which is the best error achieved by the 
Binned Double RBF. The fact that the Binned Double RBF 
converges to the Bin-Free RBF at small binning diameters 
is not surprising, considering that both approximate local 
statistics. For small diameters (around 8 vox), the binning 
only produces a poor approximation of the local statistics 
and the subsequent regression yields a strong improvement.

A very similar trend is visible in the tangential Reyn-
olds stress in the third column of Fig. 9. The errors for 
the polynomial fitting and all RBF-based methods appear 
almost identical to the axial stress. In comparison, the 
Gaussian weighting reaches its smallest value for the 
largest bin size. This is because there is no unresolved 
mean flow gradient which affects the Gaussian weight-
ing. The weight again mitigates spatial inhomogeneities 
but the error is still 2% larger than the smallest value 
of Binned Double and Bin-Free RBF. The correlation 
between the radial and axial component u′

x
u′
r
 in the fourth 

column has the same trend as the tangential Reynolds 
stress. However, all errors are slightly increased by about 
2% w.r.t. the other two stresses. The exact reason for this 
is not known. Yet, the correlation is equally well recov-
ered by all five methods and none of them shows addi-
tional advantages in this case.

For Db = 10 vox , Fig. 10 shows a slice through the jet at 
x = 2.5 vox . The first, second and third row contain the mean 
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Fig. 9  Test case 2. Comparison of the errors for different binning 
diameters. The five curves correspond to the Gaussian weighting (
, Agüí and Jiménez (1987)), local polynomial fitting ( Agüera et al. 
(2016)), Binned Single RBF ( ), Binned Double RBF ( ) and Bin-

Free RBF ( ). The error norms are the same as the ones defined in 
Eq. (34a), and in the first figure, the Binned Double and Bin-Free 
RBF have the same line as Binned Single RBF

Table 2  RBF parameters of all three methods for the 3D synthetic jet 
with Reynolds stress computation

Regression of mean flow

Number of training points n∗ 1 × 106 (scattered)
Binning diameter Db 4–16 vox
Number of points per bin Np,b 7–477
Number of RBFs nb 121,500 (Halton)
RBF radius 30 vox
Condition number �L 1012

Number of patches M (x × y × z) 175 ( 7 × 5 × 5)
Overlap � 0.25
Noise level q Uniform, 10%

Regression of Reynolds stresses

Number of training points n∗
Binned Double RBF (x × y × z) 288,000 ( 80 × 60 × 60)
Bin-Free RBF 1 × 106 (scattered)
Binning diameter Db 4–16 vox
Number of points per bin Np,b 7–477
RBF placement Regular
Number of RBFs nb 121,500 (Halton)
RBF radius 30 vox
Condition number �L 1012

Number of patches M (x × y × z) 175 ( 7 × 5 × 5)
Overlap � 0.25
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flow, normal stress and shear stress, respectively. The sub-
figures of the mean flow contain four panels which are from 
top left to bottom right: the field of the analytical solution, 
the Gaussian weighting (Agüí and Jiménez 1987), the local 
polynomial fitting (Agüera et al. 2016) and the mean from 
the RBF regression. The results of all three mean flow com-
ponents are similar between all methods. The shape of the 

mean profile is recovered well, and the fields appear slightly 
noisy in the regions of high shear. As expected from the 
error curves in Fig. 9, the polynomial fitting and Gauss-
ian weighting appear more noisy than the RBF regression. 
Furthermore, the spikes of the former two methods are ran-
dom, whereas the RBF regression yields a globally smooth 
expression.
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Fig. 10  Test case 2. Resulting fields of the slice at x = 0vox for 
Db = 10 vox . Top row: Mean velocity fields. Middle row: Nor-
mal stress fields. Bottom row: Shear stress fields. The four pan-
els for the mean fields show from top left to bottom right: The 
analytical solution, the Gaussian weighting (Agüí and Jiménez 

(1987), � = Db∕0.33) , local polynomial fitting (Agüera et  al. 2016) 
and the solution of the RBF regression. For the Reynolds stresses, 
there are three panels for the RBFs corresponding to the three differ-
ent algorithms outlined in Sect. 4.2
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The subfigures of the Reynolds stresses additionally 
contain two panels at the bottom showing the result of the 
Binned Double and Bin-Free RBF method. The effects of 
not subtracting the local mean are evident in the second row, 
which shows the three normal stresses. In the core of the jet, 
in the bottom right region of the panel, the Gaussian weight-
ing has a nonzero axial normal stress ⟨u′

x
u′
x
⟩ in regions where 

it should be zero. We attribute this to mean flow gradients 
within the bin. The other four methods are not affected by 
this. Moreover, we again highlight the smoothing proper-
ties of the second RBF regression observed in the contours 
of the normal stresses obtained by the Binned Double and 
Bin-Free RBF.

The same observations hold for the shear stresses in the 
bottom row of the figure. All methods recover the correlation 
well. The Gaussian weighting is most severely affected by 
convergence issues whereas the top-hat approach, polyno-
mial fitting and Binned Single RBF have almost the same 
shear stress fields.

To conclude this section, the methods based on two suc-
cessive RBF regressions perform the best for the analyzed 
test case. For small binning diameters, Binned Double RBF 
and Bin-Free RBF yield almost the same result as the bin-
ning only introduces a slight modulation. Besides the lowest 
error, the RBF regressions also give continuous expressions 
of the statistics which enables super-resolution and analyti-
cal gradients for all Reynolds stresses.

6.3  3D Experimental turbulent jet

The regression of the mean flow field was done with 
nb = 77175 RBFs, placed with pseudo-random Halton 
points as in the previous test case. Considering the meas-
urement volume of V ≈ 4000mm3 , this yields an RBF 
density of �b = nb∕V ≈ 1.9 bases per mm3 . For a uni-
form distribution of points, using geometric probability 
one could thus estimate an expected average distance of 
� = (4∕3)1∕3�

−1∕3

b
≈ 0.9mm between bases, enabling suf-

ficient overlapping if these have a radius of 0.5D. Diver-
gence-free constraints were imposed in 14,130 points on 
the outer hull of the measurement domain, and a penalty 
of �∇ = 1 was applied in the whole flow domain. The 
imposed constraints do not significantly impact the l2 
norm of the error, but allows for better derivatives and 
improve the computation of derived quantities such as 
pressure (Sperotto et al. 2022). In total, 1300 patches 
were used for the PUM, again with an overlap of � = 0.25 . 
For the computation of the Reynolds stresses, 760,725 
bins with a diameter of 0.15D were placed on a regular 
grid of 161 × 105 × 45 points in x × y × z . This yielded 
an average of 65 vectors within each bin. The second 

regression reused the same basic RBF and PUM settings. 
All processing parameters are summarized in Table 3.

Figure 11 shows slices of the velocity field from the PTV 
data u∕U0 and the computed mean ⟨u⟩∕U0 for each algo-
rithm. The slices are, respectively, taken from two planes at 
z∕D = 0 and x∕D = 2 . The raw data in a thin volume around 
the slice are shown as a scatter plot in subfigure (a) while 
subfigures (b)–(d) show the velocity on the binning grid. 
All three methods capture the spreading of the symmetric 
jet well although the RBF regression appears smoother, par-
ticularly in the shear layer. The horizontal slice at z∕D = 0 
further confirms this lack of convergence as the bins on the 
domain boundary are particularly noisy. In contrast, the RBF 
solution shows a smooth behavior, as the divergence-free 
flow acts as a regularization which prevents sharp, noisy 
spikes.

Figure 12 shows two mean velocity profiles, extracted 
at z∕D = 0, x∕D = 2 (left) and z∕D = 0, x∕D = 3 (right). It 
can be very well seen that the profiles for all three methods 
almost collapse. The profiles are not symmetric around 
the central axis but this asymmetry is equal between all 
methods, so we attribute it to the jet facility and not the 
methods. The RBF method yields the best performance in 
the aforementioned regions of low particle seeding. While 
the other two methods produce spikes in the mean flow due 
to problems in the statistical convergence, the RBFs yield 
a smooth profile of the axial mean velocity.

Table 3  RBF parameters of all three methods for the 3D experimen-
tal jet with Reynolds stress computation

Regression of mean flow

Number of training points np 3.35 × 106 (scattered)
Number of RBFs nb 77,175 (Halton)
RBF radius 0.5D (110 vox)
Number of solenoidal constraints 14130 ( 81 × 53 × 23)
  n∇ (x × y × z) , outer hull

Divergence penalty �∇ 1
Condition number �L 1012

Number of patches M (x × y × z) 1300 ( 20 × 13 × 5)
Overlap � 0.25

Regression of Reynolds stresses

Number of training points np
  Binned Double RBF 760725 ( 161 × 105 × 45)
  Bin-Free RBF 3.35 × 106 (scattered)

Number of RBFs nb 77175 (Halton)
RBF radius 0.5D (110 vox)
Binning diameter Db 0.15D (44 vox)
Condition number �L 1012

Number of patches M (x × y × z) 1300 ( 20 × 13 × 5)
Overlap � 0.25
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The Reynolds stress profiles in Fig. 13 show the same 
characteristics as the mean flow. We show the normal 
stress ⟨u�u�⟩∕U2

0
 and the shear stress ⟨u�v�⟩∕U2

0
 in the top 

and bottom row, respectively. All methods give results 
which agree with theoretical expectations: The stresses 

are largest in the shear layer and expanding with the 
jet. Furthermore, the normal stress is an even function 
while the shear stress is an odd function. Yet, the Reyn-
olds stresses appear more noisy than the mean flow, as 
convergence is slower for higher-order statistics. This is 

Fig. 11  Test case 3. Resulting fields of the axial flow component 
in a slice through the regression volume. Top row: vertical slice at 
z∕D = 0 . Bottom row: horizontal slice at x∕D = 2 . Subfigure a shows 
the scattered training data u∗ in a thin volume around the slice and 

subfigures b–d, respectively, show the mean field ⟨u⟩∕U
0
 from: the 

Gaussian weighting (Agüí and Jiménez (1987), � = Db∕0.33) , local 
polynomial fitting (Agüera et al. 2016) and the RBF regression of the 
ensemble
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Fig. 12  Test case 3. Resulting mean velocity profile ⟨u⟩∕U
0
 extracted 

at z∕D = 0 and x∕D = 2 (left) and x∕D = 3 (right). The three curves 
correspond to the Gaussian weighting ( , Agüí and Jiménez (1987)), 

local polynomial fitting ( , Agüera et al. (2016)) and the RBF regres-
sion of the ensemble ( )
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particularly visible in the Gaussian weighting approach, 
which shows significant spikes in each of the four sub-
figures with differences in the peak amplitude compared 
to the other methods. In contrast, polynomial fitting and 
Binned Single RBF have almost the same curve. The lack 
of convergence is mainly responsible for the non-smooth 
profile rather than the specific method of mean subtrac-
tion. The  Binned Double RBF and Bin-Free RBF yield 
smoother curves compared to the other methods but still 
struggle in specific areas, like (x∕D, y∕D) = (3, 0.35) for 
⟨u′v′⟩ where the profiles have an unexpected kink. Yet, 
this kink is also visible for all other methods and likely 
stems from unfiltered outliers or a general lack of points 
in this region.

To conclude, the two successive RBF regressions 
give the best results also for the experimental test case. 
In regions with sparse or noisy data, the regularization 
yields a smooth solution and matches the binning-based 
approaches in all other regions.

7  Conclusions and perspectives

We propose a meshless and binless method to compute 
statistics in turbulent flows in ensemble particle track-
ing velocimetry (EPTV). We use radial basis functions 
(RBFs) to obtain a continuous expression for first- and 
second-order moments. We showed through simple deri-
vations that an RBF regression of a statistical field is 
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Fig. 13  Test case 3. Resulting Reynolds stress profile ⟨u�u�⟩∕U2

0
 

(top) and ⟨u′v′⟩ (bottom) extracted at z∕D = 0 and x∕D = 2 (left) and 
x∕D = 3 (right). The five curves correspond to the Gaussian weight-
ing ( , Agüí and Jiménez (1987)), local polynomial fitting ( , Agüera 

et al. (2016)), Binned Single RBF ( ), Binned Double RBF ( ) and 
Bin-Free RBF ( )
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equivalent to performing spatial averaging in bins. We 
expanded this idea and showed averaging the weights 
from multiple regressions can be approximated with a 
single, large regression of the ensemble of points. The 
test case of a 1D Gaussian process served as numerical 
evidence to prove the convergence of the weights and the 
solution. The resulting matrix is very large, and the com-
putational cost of inverting is prohibitive. Therefore, we 
employ the partition of unity method (PUM) and the RBFs 
to reduce the computational cost significantly. Together, 
both approaches result in analytical statistics at a low cost, 
even for large-scale problems.

We proposed three different RBF-based approaches and 
compared them with existing methods, namely Gaussian 
weighting (Agüí and Jiménez 1987) and local polynomial 
fitting (Agüera et al. 2016). The proposed methods range 
from simple ideas based on existing literature (Agüera 
et al. 2016) to a fully mesh- and bin-free method which 
uses two successive RBF regressions. On a synthetic test 
case, the RBF-based methods outperformed the methods 
from existing literature in both first- and second-order sta-
tistics, with the bin-free method having the lowest error. 
Therefore, besides giving an analytical expression, the bin-
free methods also require less data for convergence, which 
is highly relevant for experimental campaigns.

The same conclusions hold on experimental data, with 
the RBF approaches producing the best results. All methods 
show a qualitative agreement with literature expectations 
with the binning-based approaches having more noise. Insuf-
ficient convergence within a bin results in spikes, whereas 
the methods with a second regression yield a smooth curve 
with almost no outliers. Therefore, the two successive 
regressions have the double merit of providing smooth and 
noise-free analytical regression that can be used for super-
resolution of the flow statistics.

Ongoing work focuses on integrating the pressure Pois-
son equation in the Reynolds-averaged Navier–Stokes frame-
work to obtain the mean pressure field. This can be done 
with a mesh-free integration following the initial velocity 
regression, or by coupling both steps in a nonlinear method.
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