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Abstract
Event-based pixel sensors asynchronously report changes in log-intensity in microsecond-order resolution. Its exceptional 
speed, cost effectiveness, and sparse event stream make it an attractive imaging modality for particle tracking velocimetry. 
In this work, we propose a causal Kalman filter-based particle event velocimetry (KF-PEV). Using the Kalman filter model 
to track the events generated by the particles seeded in the flow medium, KF-PEV yields the linear least squares estimate of 
the particle track velocities corresponding to the flow vector field. KF-PEV processes events in a computationally efficient 
and streaming manner (i.e., causal and iteratively updating). Our simulation-based benchmarking study with synthetic 
particle event data confirms that the proposed KF-PEV outperforms the conventional frame-based particle image/tracking 
velocimetry as well as the state-of-the-art event-based particle velocimetry methods. In a real-world water tunnel event-
based sensor data experiment performed on what we believe to be the widest field view ever reported, KF-PEV accurately 
predicted the expected flow field of the SD7003 wing, including details such as the lower velocity in the wake and the flow 
separation around the underside of an angled wing.

1 Introduction

Understanding the characteristics of the flow around objects 
plays an important role during the development of energy 
efficient and structured robust aerodynamic designs. Owing 
to recent technological advancements, state-of-the-art Parti-
cle Image Velocimetry (PIV), Particle Tracking Velocimetry 

(PTV), and Optical Flow (OF) systems have achieved 
exceptional capabilities to estimate the flow velocity using 
complex setups and cutting-edge hardware. The classical 
two-dimensional two-component (2D-2C) setups remain a 
powerful and popular tool for analyzing two-dimensional 
complex flow phenomena due to its robust results, experi-
mental simplicity, and validated algorithms (Scharnowski 
and Kähler 2020; Geisler and Schr 2014) (Fig. 1).
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To estimate a flow velocity using the double exposure 
2D-2C Frame-Based (FB) setup, a single high-speed camera 
is used to observe the seeded particles moving within the 
flow medium, such as a gas or liquid, while crossing the 
illuminated field of view (FOV). By capturing the move-
ment of the seeding particles and estimate its velocity, the 
flow velocity can be estimated relatively using non-intrusive 
approach. After recording two consecutive frames, the PIV 
is performed by estimating the average movement of the 
particles within a spatial window (sub-interrogation areas) 
using cross-correlation to find the best spatial window match 
across the two frames (Thielicke and Sonntag 2021). Alter-
natively, the PTV estimates the velocity of the individual 
particles by tracking the trajectory of a particle between 
two frames using particle matching techniques (Janke et al. 
2020). OF is another approach that leverages photometric 
gradient values to infer the underlying flow field without 
explicit tracking (Liu and Shen 2008; Liu et al. 2015).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00348-024-03877-y&domain=pdf
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Even though the PIV is more commonly used for its 
robustness against the noise and require less fancier hard-
ware, the drawbacks for all methods include difficulty in 
analyzing slow and fast motions simultaneously, limits on 
frame rate/temporal resolution, high data throughput, high 
computational complexity, and high camera hardware costs 
associated with high-speed imaging (Scharnowski and 
Kähler 2020; Qureshi et al. 2020). In addition, the experi-
mental hardware cost and complexity increase as the desired 
accuracy increases, as well as the computational and storage 
costs stemming from large data volume.

Thanks to the state-of-the-art event-based cameras boast-
ing microsecond-order resolution, it possible to observe a 
fast-moving phenomenon with a significant reduction in 
the data throughput without sacrificing the temporal resolu-
tion. The reduction comes from the fact that the event-based 
(EB) sensor generates events only when a change of inten-
sity occur for each pixel individually, unlike the FB systems 
that capture full resolution frames at a given frame rate, as 
illustrated in Fig. 2. Several event-based particle velocime-
try feasibility studies have been conducted in recent years 
(Drazen et al. 2011; Wang et al. 2020; Willert and Klinner 
2022). In our most recent work (AlSattam et al. 2024), we 
proposed the Particle Event Velocimetry (PEV), a noise-
robust particle-level event-based estimate of the flow field 
based on robust flow field analysis. PEV performs the analy-
sis through pre-processing filters, robust tracking, line fit-
ting, and parametric velocity vector estimation. Even though 
the performance analysis showed that PEV in AlSattam et al. 
(2024) achieves state-of-the-art accuracy compared to EB 
(Drazen et al. 2011; Wang et al. 2020; Willert and Klin-
ner 2022) and FB (Thielicke and Sonntag 2021; Janke et al. 
2020) methods, however, it is unsuitable for real-time appli-
cations due to its non-causal design.

The goal of this present work is to develop a causal event-
based particle tracking and velocity estimation in streaming 
format leveraging the Kalman filter operating on an event 
streams from event-based camera sensor. Specifically, the 
proposed Kalman filter-based particle event velocimetry 
(KF-PEV) efficiently solves linear least squares estimate of 
particle velocity, thanks to the iterative streaming format 
processing (i.e., update velocity estimates as new event is 
observed) designed to update the state variables for each 
incoming event. In our benchmarking, Kalman Filter-based 
PEV is shown to outperform state-of-the-art FB and EB 
particle velocimetry methods using the synthetic event data 
generated by the event-based camera simulator1 for particle 
velocimetry that we developed. We also demonstrate the 

KF-PEV operating in real-world water tunnel experiments 
involving actual event-based sensor data.

2  Background and related work

Image sensor technology has improved significantly since 
the time dynamic vision sensing (event-based sensing) 
was introduced to mimic the function of the human retina 
Mahowald (1992). Year 2008 marked first commercially 
available event-based cameras by Inivation (Lichtsteiner and 
Posch 2008), and Prophesee and Sony recently co-developed 
backside illuminated megapixel sensor in 2021. Thanks 
to its low power, high dynamic range, and high temporal 
resolution, event-based image sensors have the potential to 
positively impact many applications (Gallego et al. 2020; 
Finateu et al. 2020; Ni et al. 2012; Benosman et al. 2012; 
Rueckauer and Delbruck 2016; Brosch et al. 2015; Rebecq 
et al. 2018).

Unlike the conventional framing cameras, each pixel 
on the event camera operates independently and asynchro-
nously. Instead of synchronously capturing the accumulation 
of photons to yield intensity frames, each pixel reports an 
event only if there is a change in intensity with time reso-
lution of microseconds. It produces a positive event if the 
intensity increased within a certain threshold and a negative 
one if it was otherwise. Thus, the event camera will generate 
asynchronous data that include the spatial location of the 
event (e.x, e.y), the time stamp e.t, and the polarity of the 
event e.p. Unlike a framing camera, the event camera theo-
retically will not produce any event unless there is change 
in intensity that exceeds the threshold. Thus it is particularly 
advantageous for observing sparse high speed phenomenon 
(such as particle velocimetry), with savings in data through-
put and computational complexity. See illustration in Fig. 2.

Events generated from asynchronous pixels require a dif-
ferent kind of processing than the cross-correlation and pho-
tometric approaches used in the conventional FB PIV/PTV/
OF setup. Although some techniques can be borrowed with 
some modifications (like tracking algorithms), we develop 
below event-based processing techniques that makes full 
considerations for the asynchronous nature of the event 
streams.

The utilization of event-based sensors in particle veloci-
metry application is a developing field of research. The first 
proof of concept for event-based particle velocity was pro-
vided in Drazen et al. (2011). This concept was general-
ized to the stereo event-based particle tracking velocimetry 
based on 2D optical flow Wang et al. (2020). To improve 
robustness and overcome the uncertainty of optical flow-
based tracking and matching, the output of this system is 
an average velocity per space-time volume using two event 
cameras. Tracking in Drazen and Wang can be implemented 1 Initially reported in AlSattam et al. (2024).
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efficiently in streaming format. A three dimensional PTV 
method in Rusch and Roesgen (2021); Rusch and Rösgen 
(2023) used a 2D event-based particle detection on multi-
ple cameras. The multi-camera track correspondence, along 
with triangulation enables three dimensional flow field 
reconstruction.

In Willert and Klinner (2022), the velocity of the fluid 
in 2D was estimated by finding the average velocity per 
voxel using maximum contrast as an alternative to the con-
ventional cross-correlation-based PIV. Although averaging 
of vector velocity was shown to improve robustness for a 
dataset with very large integration time (10ms), the quality 
would deteriorate in presence of strong gradients in flow 
field.

We recently proposed the Particle Event Velocimetry 
(PEV) (AlSattam et al. 2024), aimed at improving the event-
based velocity estimation in terms of noise robustness, the 
spatial-temporal particle trajectory, and the tolerance to very 
high particle density. This is accomplished by exploiting 

specific characteristics of event-based sensors to overcome 
uncertainties in the event stream, integrating inceptive event 
filtering (Baldwin et al. 2019), and by improving the particle 
trajectory by nonlinear function fitting over the estimated 
tracks. However, this method is non-causal, and therefore 
cannot be implemented in real-time manner.

Our work shares some similarities with event-based PTV 
method by Borer et al. (2017) which uses baseline Kalman 
filtering to track the helium-filled soap bubbles. However, 
the seeding density used in this study is low (10 bubbles/
sec) compared to the high seeding rate of standard PIV (8-10 
particles per 32 × 32 interrogation window). The experimen-
tal setup is even more challenging for wind or water tunnels 
where the camera operates under low light conditions to 
track laser-illuminated sub-millimeter particles. Thus further 
modifications are needed to improve its performance in these 
demanding experiments. The increased computational cost 
of Kalman filtering may also be challenging for real-time 
operation (Rusch and Rösgen 2023).

Fig. 1  Classical frame-based PIV/PTV

Fig. 2  Illustration of frame-based and event-based cameras. Particles 
are moving within the field of view (FOV) of the focal plane. The 
scatter plot represents the reported events caused by change in inten-

sity, which is continuously sampled in the time domain. The inten-
sity frames are sampled synchronously, resulting in the loss of motion 
details between the frames
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3  Kalman filter‑based particle event 
velocimetry (KF‑PEV)

To implement a causal event-based particle velocimetry sys-
tem, it is essential to use a streaming format processing that 
provide an optimal solution for the velocity estimation of 
each track in the presence of uncertainty. The Kalman filter 
(Kalman 1960) operates iteratively by adjusting its state var-
iable estimates based on the evolving information. The most 
common application of Kalman filtering is in robust real-
time tracking, where the recursion yields linear least square 
positional estimates by minimizing the effects of measure-
ment noise and errors (Grewal and Andrews 2014; Brookner 
1998). Although it is possible to differentiate the estimated 
Kalman tracks to recover the target velocity (e.g. to recon-
struct the flow field in particle velocimetry), numerical dif-
ferentiation has high risk of amplifying errors, unfortunately.

Instead, we propose to use the Kalman filter to estimate 
object velocity directly (as opposed to differentiating posi-
tional estimates) as a linear least square estimate of the 
states, admitting optimal high-quality flow field reconstruc-
tion in particle velocimetry. The proposed Kalman filter-
based particle event velocimetry (KF-PEV) is summarized 
in the flow chart in Fig. 3. We detail the steps in KF-PEV 
below, such as the modifications made to the Kalman filter to 
handle asynchronous temporal sampling of event-based sen-
sor and multiple tracks with unknown number of particles 
from unlabled events. We initially develop a single particle 
event-based Kalman filter model, then generalize this model 
to handle multiple tracks simultaneously.

3.1  Single particle event‑based Kalman filter model

To formulate a Kalman filter model suitable for the EB par-
ticle velocimetry system, it is essential to consider the nature 

of the observation parameters provided by the sensor. For 
our proposed task, the event camera generates data includes 
(e.x, e.y) pixel coordinate in addition to the time stamp e.t and 
polarity e.p. The goal, however, is to estimate the individual 
particle location, velocity, and acceleration over time. Thus we 
define the Kalman state vector X ∈ ℝ

6 with covariance matrix 
P ∈ ℝ

6×6 as follows:

where (x, y) are the current location of the track, (ẋ, ẏ) is the 
track velocity in x and y directions, and (ẍ, ÿ) represent the 
track acceleration. Consider the following state space model:

Here, (2) is known as the measurement process yielding 
noisy positional observation Ek = (ek.x, ek.y)

T ∈ ℝ
2 , where 

H ∈ ℝ
2×6 and v ∈ ℝ

2 with covariance matrix R ∈ ℝ
2×2 are 

observation matrix and the measurement noise receptively:

On the other hand, the linear stochastic difference equation 
in (3) is regulated by the state transition matrix F ∈ ℝ

6×6 
and the process noise w ∈ ℝ

6 with with covariance matrix 
Q ∈ ℝ

6×6:

(1)X =

[
x

dx

dt

d2x

dt2
y

dy

dt

d2y

dt2

]T
=
[
x ẋ ẍ y ẏ ÿ

]T
,

(2)Ek = HXk + v

(3)Xk+1 = FkXk + w.

(4)H =

[
1 0 0 0 0 0

0 0 0 1 0 0

]
, v ∼ N(0,R) .
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Fig. 3  Overview flowchart of the proposed KF-PEV algorithm
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In this work, we regard observation Ek as the pixel coor-
dinate of the kth event location. Due to the asynchronous 
nature of event-based sensor, the events are not reported in 
an uniform temporal sampling rate. Therefore, the state tran-
sition matrix Fk must be adjusted every time based on the 
time interval Δk = ek.t − ek−1.t between the new event and 
the last reported one. Thus state space model in (2) and (3) is 
nonstationary—contrast this to the conventional stationary 
state space model with constant state transition matrix F.

The Kalman filter is a sequential processing yielding a 
linear least squares estimate of the state vector Xk based 
on the previous state estimate Xk−1 and a new event Ek . We 
definte three steps: initialization, prediction, and correction. 
In our work, the initialization begins by recording the pixel 
location for k=0:

Before processing the subsequent event Ek ( k = 1, 2, ... ), we 
predict the state vector and covariance as follows:

where Xk−1 and Pk−1 are the previous state vector and covari-
ance estimates, respectively. Then, we update the predicted 
state vector X̂k and covariance P̂k using the new event Ek in 
the following correction step:

Repeating the steps two and three for each generated event 
Ek (i.e., process in streaming format), the state vector esti-
mates Xk updates not only the current position of the tracked 
particle (x, y), but also the corresponding velocity (ẋ, ẏ) . 
Note that the accuracy of the measurements will increase as 
the number of the analyzed data increases Brookner (1998).

(5)Fk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 Δk

Δ2
k

2
0 0 0

0 1 Δk 0 0 0

0 0 1 0 0 0

0 0 0 1 Δk

Δ2
k

2

0 0 0 0 1 Δk

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, w ∼ N(0,Q).

(6)

1. Initialization: Model Parameters H,R,Q,P0

Initial Estimates X0 =
[

e0.x 0 0 e0.y 0 0
]T

Track Timestamp Update k = k + 1.

(7)

2. Prediction: Compute State Transition Matrix Fk where Δk = ek .t − ek−1.t

Predict State Vector X̂k = FkXk−1

Predict Covariance P̂k = FkPk−1FT
k + Q,

(8)

3. Correction: Optimal Gain Kk = P̂kHT
(

HP̂kHT + R
)−1

Correct State Vector Xk = X̂k + Kk

(

Ek −HX̂k

)

Correct Covariance Pk =
(

1 − KkH
)

P̂k

Track Timestamp Update k = k + 1.

3.2  Track assignment for multiple particles

We generalize the event-based Kalman filtering devel-
oped in Sect. 3.1 to handle multiple particles with multiple 
tracks. Denote by the superscript n the state space model for 
the nth track (e.g., Xn,Fn

k
,Pn

k
 , etc. ). Then each new event 

Ek = (ek.x, ek.y)
T  must be assigned to a particle track it 

belongs to, prior updating the Kalman filter parameters. This 
track assignment task is performed by a heuristical track 
score aimed at balancing the quality of the track fit and the 
reliability of the existing tracks.

Define the track error as the Euclidean distance between 
the track center (xn, yn) of the nth particle and the new event 
pixel coordinate Ek = (ek.x, ek.y)

T:

TrackError assesses the quality of the track assignment. 
Owing to the microsecond-order resolution of event-based 
sensor, we expect acceptable track assignment to result in a 
very small TrackError, even for a very fast particle.

As noted above, the accuracy of the Kalman filter 
improves as the number of the observations increases. The 
TrackError in (9) computed with track centers (xn, yn) with 
very few observations is less reliable and sensitive to noise. 
This increases the risk of an erroneous track assignment 
whenever TrackError has a low value because of inaccurate 
track center location. To overcome this issue, the notion of 
TrackWeight is introduced to penalize the TrackError when 
the number of events in a track is low:

(9)TrackError{n, Ek} =

√(
xn − ek.x

)2
+
(
yn − ek.y

)2
.
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Fig. 4  MSE of velocity magnitude |V| and angle Vo , as a function of 
the number of observed events in a track. MAPE thresholding in (13) 
significantly improves the accuracy of short tracks with low number 
of events. By setting a low rate of change threshold, the accuracy of 
the KF-PEV measurements improved at lower number of events. In 
addition, the longer tracks that were already stable had low MAPE 
score and therefore were unaffected
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where � is a user parameter specifying the upper limit to 
number of events. Notice that this weight is restricted to the 
range between 1 and 2, where the higher weights indicate 
more reliable TrackError.

We combine the TrackError and the TrackWeight to 
arrive at the final TrackScore, as follows:

where r is a user-specified radius threshold indicating the 
acceptable TrackError for accepting the track assignment. 
Intuitively, this score is designed to yield a negative value 
for TrackError < r , and smaller TrackError yields smaller 
TrackScore. The TrackWeight corresponding to a track with 
many observations increases the sensitivity to the Track-
Error, reflecting the increased confidence in the TrackEr-
ror score. The track assignment for the event Ek is made by 
maximizing the TrackScore:

(10)
TrackWeight{n} = 1 +

min
(
{# of events in the nth track}, �

)

�
,

(11)

TrackScore {n, Ek}

= TrackWeight{n} ⋅

(
1 −

(TrackError{n, Ek})
2

r2

)
,

(12)n̂ = argmax
n

TrackScore{n, Ek}.

3.3  Rejection criteria

While the Kalman filter model is known for its effective-
ness in handling noisy measurements, we implemented 
multiple rejection criteria to ensure that only accurate track 
assignments are accepted. First, the TrackScore in (11) is 
positive only if the TrackError is smaller than r. If the maxi-
mum score in (12) is positive, then the track assignment is 
accepted. The event Ek will be used to predict and update the 
assigned track according to the Kalman filter rules described 
in (7) and (8). On the other hand, suppose the maximum 
score in (12) is negative. The new event is deemed not suf-
ficiently close to existing tracks (i.e., TrackError exceeds r), 
and therefore the track assignment is rejected. Instead a new 
track is formed, initialized by the event Ek according to the 
Kalman filer initialization descried in (6).

Second, a moving particle enters and exits the sheet of 
laser while being measured. For this reason, the particle 
track is only valid for a short duration of the time. If a track 
has not seen a new event assignment for more than � sec-
onds, then it will be labeled as inactive track and will be 
excluded in the track assignment considerations for the sub-
sequent events.

Finally, the Kalman filter estimates of velocity vector 
(ẋ, ẏ) improves with the number of observed events. Con-
sequently, only tracks that surpass the specified length 
threshold are deemed acceptable. In addition, when two or 
more tracks intersect, errors can be introduced to the track 

Fig. 5  Steps to generating synthetic event-based data for moving 
Gaussian particles, mimicking the analog signal path of the pixel 
readout circuitry. Although the steps taken are similar to the other 
event-based sensor simulators, the source image (moving particles) 

are modeled in continuous time domain instead of frames. Plots 
showing temporal evolution of the pixel under investigation (red box). 
We also generate the corresponding intensity frames to test on frame-
based particle velocimetry
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assignment such that the state estimates would experience 
rapid changes. If the convergence of the state estimates 
suddenly changed, it can be flagged and labeled as unsta-
ble states. Therefore, only measurements from tracks that 
exceeds certain length and state stability are valid and can be 
used for velocity estimation. We use mean absolute percent-
age error (MAPE) to monitor the stability of state estimates, 
which is defined as follow:

where i indexes all 6 parameters within the Kalman state 
parameter Xn

k
∈ ℝ

6 in (1). By setting a low rate of change 
threshold, the accuracy of the KF-PEV measurements 
improved at lower number of events, as shown in Fig. 4. 
The longer tracks that were already stable had low MAPE 
score and therefore were unaffected.

(13)MAPEn
k
=

1

6

6∑
i=1

|||Xn
k
(i) − Xn

k−1
(i)
|||

|||Xn
k
(i)
|||

,

4  Benchmarking study

We benchmark the accuracy of the proposed KF-PEV 
against the prior art in FB and EB methods objectively and 
subjectively. For objective benchmarking, we developed an 
event simulator for event-based PIV/PTV applications. The 
handful of event-based camera simulators available today 
(Rebecq et al. 2018; Shah et al. 2017) are frame based and 
not well suited for unresolved targets that resembles mov-
ing point sources—generated events that are inconsistent 
with the physical movement of particles. We instead model 
a continuous movement of the point source-like features of 
seed particles explicitly, along with the optical transfer func-
tion and circuit bandwidth in the event-based sensor to yield 
event streams in a continuous time space based on the flow 
field. Because the ground-truth flow field is known in simu-
lation, the flow field reconstruction error can be objectively 
quantified.

Table 1  Technical details of the 
synthetic particle velocimetry 
modeling

 Model specs Description

 Movement Type Forced vortex with opposite rotation
 Duration 2 (mSec)
 Particle Density 0.03 (PPP)
 Linear Velocity Range 0 to 50K  (Pixel/Sec)
 Angular Velocity 0.012  (Degree/uSec)
 Particle Size 2 to 4  (Pixel)
 Model Sensor Size 501 × 501  (Pixel)
 Intensity Based output 2000 Frame  (1 frame/uSec)
 Event Based Output 2 mSec of streaming event (x , y , ts , p)

Fig. 6  Ground truth velocity vectors of the synthesize data. The velocity direction is encoded as the color hue
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4.1  Simulation experiment setup

Our synthetic model is designed to produce continuous 
time event streams as well as FB images to be benchmarked 
against conventional PTV and PIV methods. We derive the 
changes of intensity of traversing particles at the pixel level 
in analytical form, and combine it with the pixel simulator 
modeling the optical transfer function and circuit bandwidth 
in the event-based sensor in Lichtsteiner and Posch (2008) 
from observing the intensity changes at the photodiode until 
reporting the event when occurred.

Specifically, we model each particle as a small two 
dimensional Gaussian function. Temporally, the intensity 
profile at a particular pixel of a particle traveling across the 
detector is also Gaussian function, whose width and height 
are determined by the proximity of the pixel to the particle 
path. The event based pixel observing this would apply a log 
function followed by a one pole lowpass filter to model the 
internal analog signal path. The events are then generated at 
level crossings (contrast thresholds). See Fig. 5.

Since the Gaussian function and one pole lowpass filters 
are relatively simple, the overall signal path inside a camera 
can be derived analytically. Thus the analytically simulated 
Guassian-lowpass signal can be used to determine the exact 
timing of the level crossings with arbitrary timing accuracy. 
Unlike the “video-to-event” event simulators that are inher-
ently frame-based simulation of events (Rebecq et al. 2018; 
Shah et al. 2017), analytical generation of events do not 
suffer from interpolation artifacts, erroneous optical flow 
calculations, etc. that are particularly severe for unresolved 
targets like seed particles.

Same technique can be used to generate a synthetic frame. 
Because the intensity profile of a particle at a particular pixel 
is modeled as Gaussian, we can calculate the exact integra-
tion over the exposure time without any temporal interpola-
tion that would fail for unresolved targets such as the seed 
particles. Examples are shown in Fig. 5. Due to the analyti-
cal nature of the simulation, there is no theoretical limit to 
the frame rate or the exposure time (other than the compu-
tational resource required to render the simulated events/
frames).

The user can specify the simulation experiment setup, 
such as particle density, the particle size, and flow field; 
as well as camera parameters such as contrast threshold 
and one pole lowpass filter in event-based cameras and 
exposure time and frame rate for frame-based cameras. In 
our simulation experiment, we chose the particle density 
and the exposure time to be similar to what is currently 
used in conventional FB PIV. The forced vortex with two 
direction model is chosen as the flow field, since it pro-
vides a wide range of velocities with a boundary where 
two opposite flow direction. The direction of movement 
is set to be clockwise for all particles located in the center 
and less than 250-pixel radius while the outer particles are 
moving in the counter clock manner as demonstrated in 
Fig. 6. Table 1 shows the technical details of the simula-
tion model used in our experiment.

For benchmarking, the performance of particle veloci-
metry is evaluated objectively by computing the mean 
square error (MSE) of the estimated velocity components 
�V = (�̇x, �̇y) relative to V = (ẋ, ẏ) (both component-wise and 
magnitude), as well as the angle error computed using the 
Spectral Angel Mapper (SAM) as descried in eq  14:

4.2  Benchmarking

We compare the proposed KF-PEV to the state-of-the-art 
frame-based (FB) and event-based (EB) PIT/PTV methods. 
For the FB-PIV implementation, we used the latest version 
of PIVlab (particle image velocimetry (PIV) tool with GUI 
Version 2.62.0.0) by Thielicke and Sonntag (2021). The FB-
PTV benchmarking used Part2Track (A MATLAB pack-
age for double frame and time resolved Particle Tracking 
Velocimetry), which is an open-source system published in 
2020 (Janke et al. 2020). The parameters in FB-PIV and 
FB-PTV play an important role to achieve the best measure-
ments. For example, larger window size contributes to low 
spatial resolution while reducing the window size increases 

(14)Angle
�
�V,V

�
= cos−1

�V
⊤
V

����V
���‖V‖

.

Table 2  Result of the parameter 
analysis in Appendix, showing 
the ranges of parameters 
we tested and the optimal 
configuration that yielded best 
performance for our simulation

Method Parameter Tested range Best performance

 Event
Based

 Drazen et al. (2011) Mass weight 0 to 80 .3
 Wang et al. (2020) Propagation weight 0 to.9 0.4
 Willert and Klinner (2022) Window size 8-80 pixel 24 pixel

Interrogation time 100 to 2000 �Sec 1000 �Sec
 Frame
Based

 Thielicke and Sonntag (2021) Window size 16-24-32 pixel 16 pixel
Time between frames 1to 150 �Sec 100 �Sec

 Janke et al. (2020) Time between frames 1to 250 �Sec 50 �Sec
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the cross-correlation error; and the interrogation time must 
be tuned to achieve the highest temporal accuracy with the 
minimum relative uncertainty (Adrian 1997; Raffel et al. 
2018). In the benchmarking study, we iterated over ranges 
of each parameters to find the best performing parameter 
choices. (See Appendix for the parameter analysis.) Thus 
what we report for the competing algorithms is practically 
the peak performance of the competing algorithms (Fig. 14).

Similarly, we compare the proposed KF-PEV to state-
of-the-art EB-PIV (Willert and Klinner 2022) and EB-PTV 
methods (Drazen et al. 2011; AlSattam et al. 2024; Wang 
et al. 2020). All reported parameters were used (e.g., propa-
gation weight for Wang et al. (2020), mass ratio for Drazen 
et al. (2011), and the voxel sizes (time and space for Will-
ert and Klinner (2022)). Other parameters were optimized 
experimentally by parameter sweeps, as reported in Table 2. 
(See Appendix for the parameter analysis.)

4.3  Simulation results

We report the results of the simulation study in Table 3 and 
Fig. 8. The proposed KF-PEV yielded a very stable flow 
field reconstructions with highest accuracy among all meth-
ods compared. Flow field is dense, while the boundaries are 
very cleanly preserved. As illustrated in Fig. 4, the accuracy 
of the velocity estimates indeed improves with an increased 
number of observations per track, consistent with the prin-
ciples of Kalman filter theory. Slow moving particles inher-
ently yield fewer events, however, and therefore it is difficult 
to reject the tracks by thresholding the number of observa-
tions only. Instead, thresholding based on MAPE was more 
effective for improving the accuracy for shorter tracks. Thus 
we empirically found that the nth track should be rejected if 
the following conditions are satisfied:

Other benchmarking results in Table 3 and Fig. 8 are pro-
duced with optimized parameters (described in Appendix). 
Objectively, the proposed KF-PEV has the lowest MSE in 
( Vx,Vy ) and angle error scores among all methods compared 
in Table 3. The number of tracks was the highest among 
the event-based PTV, albeit fewer than FB-PTV method 
(Janke et al. 2020). The number of tracks can be increased 
by adjusting the rejection thresholds (�, �) in (15) to exceed 
method in Janke et al. (2020), but at the risk of including 
more outliers. FB methods (Janke et al. 2020; Thielicke and 
Sonntag 2021) in addition to EB-PIV (Willert and Klinner 
2022) show moderate to high mean squared error (MSE) 
values. By comparison, EB-PTV methods (Wang et al. 2020; 
Drazen et al. 2011; AlSattam et al. 2024) improved accu-
racy. Among these, AlSattam et al. (2024) stand out with the 
lowest magnitude MSE. The performance of the proposed 
KF-PEV was best among EB methods in every performance 
metric except for the velocity magnitude, which was very 
close second to AlSattam et al. (2024). FB-PIV method 
in Thielicke and Sonntag (2021) outperformed FB-PTV 
method (Janke et al. 2020) in objective metrics, but the situ-
ation may reverse with lower particle density (which would 
be disadvantagoues for PIV and advantageous for PTV).

Qualitatively, Fig. 8 shows that the proposed KF-PEV 
has the densest track estimation among all the EB meth-
ods. Particles exhibiting low velocities near the center are 
detected within the anticipated flow magnitude and direc-
tion, as are particles with higher velocities located around 
the edge. FB-PIV method (Thielicke and Sonntag 2021) and 
EB-PIV method (Willert and Klinner 2022) appear to pro-
duce smooth flow field (despite the coarse resolution yield-
ing better performance; supported by parameter analysis in 
Appendix). EB-PTV method in Wang et al. (2020) did not 
yield enough tracks; methods (Drazen et al. 2011; AlSattam 

(15){MAPEn
k
> 𝜇} ∩ {# of events in the nth track < 𝜏}.
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Fig. 7  Ablation study comparing tracking performance using TrackError in (9) and TrackScore in (11)
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Fig. 8  Estimated particle velocity vectors of the synthetic particle data computed by EB and FB methods

Finally, the risk of incorrect track assignment is increased 
when the seeding density is high. We performed an ablation 
study comparing the tracking assignment using TrackError 
in (9) instead of TrackScore in (11). Figure 7 indeed con-
firms that Kalman filtering with TrackError alone is inferior, 
confirming that TrackWeight in (10) plays a key role in track 
assignment when the track event count is low.

et al. 2024) yielded satisfactory results, though not as dense 
as the proposed KF-PEV. On the other hand, the FB-PTV 
method (Janke et al. 2020) reconstructed the flow field with 
fewer outliers than the proposed KF-PEV. However, closer 
examination reveals that the velocity vector angles seemed 
to be quantized (as indicated by the non-smooth hues in 
Fig. 8(f); Table 3 also shows poor SAM angle performance).
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5  Real event‑based sensor data experiments

5.1  Real experiment setup

In addition to the simulation experiments, the proposed KF-
PEV was tested in a real-world environment. The particle 
event velocimetry experiments with the event-based camera 
was conducted at the University of Dayton Water Tunnel, 
shown in Fig. 9(a). The facility is a horizontal free-surface 
water tunnel with a 6:1 contraction and a 38 cm wide and 
46 cm high test section of 152 cm length. The free-surface 
speed range is 0.075 m/s to 0.38 m/s. For this study, the 
freestream velocity of the tunnel was set to 0.28 m/s. The 
tunnel is equipped with a one degree of freedom motion 

stage consisting of a H2W Technologies linear motor driven 
by a Xenus XTL-230-18 motor driver from Copley Controls. 
This motor is outfitted with a rack and pinon gear to control 
the angle of attack of the airfoil position. An SD7003 wing, 
as shown in Fig. 9(b), was 3D printed using a transparent 
material that allows the laser sheet to pass through and illu-
minate both sides. The event camera was positioned below 
the test section focusing on a thin laser plane illuminating 
the trailing edge of a rotating cylinder with the trailing plate 
to capture the vortex locking in the wake.

For event-based camera, Prophesee EVK2 camera with 
50 mm lens was used, yielding a field of view (FOV) of 
18x10cm. To the best of authors’ knowledge, this is the wid-
est FOV used in EB PIV/PTV experiments reported in the 
literature thus far. The main difference between the standard 
2C2D PIV setup with the conventional PEV system is the 
that the event camera requires a continuous light laser source 
to keep track of the particle at 1 MHz resolution.

5.2  Real event‑based sensor data experiment result

The SD7003 wing experiment was carried out with fixed 
0 o and -8o angles of attack as shown by the visualization in 
Fig. 10. Note that both ends of the airfoil have two apparent 
gaps at the tips, stemming from the laser refraction when 
passing through the transparent airfoil. Similarly, there are 
areas surrounding the SD7003 where the particles are absent 
due to the parallax effect of the lens. These are real-world 
constraints on the experiment configurations, and do not rep-
resent a limitation to the event-based particle velocimetry.

Table 3  Benchmarking result 
using the simulated event-
based pixel data, comparing the 
eproposed KF-PEV with frame-
based and event-based prior art. 
The "bold" formatting is used to 
emphasize the best performance 
in each column, while the 
"underlined" formatting denotes 
the second-best performance

Method  PIV/PTV MSE SAM # of
tracks

Vx Vy Magnitude Angle

 Frame
Based

 Janke et al. (2020) PTV 2.486E-03 2.449E-03 2.384E-03 5.24 4243
 Thielicke and Sonntag 

(2021)
PIV 1.490E-03 1.413E-03 1.278E-03 4.44 N/A

 Event
Based

 Drazen et al. (2011) PTV 9.885E-04 1.039E-03 8.906E-04 1.86 2540
 Wang et al. (2020) PTV  9.335E-04  9.530E-04  6.069E-04  1.48 862
 Willert and Klinner (2022) PIV 2.961E-03 3.015E-03 2.192E-03 8.72 N/A
 AlSattam et al. (2024) PTV 6.440E-04 6.778E-04 5.451E-04 1.30  3107
KF-PEV(Proposed) PTV 6.342E-04 6.173E-04 5.721E-04 1.05  3931

Fig. 9  Experimental setup. a University of Dayton Water Tunnel 
facility and b the SD7003 3D printed clear airfoil

Fig. 10  Visualization of events 
observed around the SD7003 
wing fixed at a negative eight-
degree and b zero-degree angles 
of attack. The event time is 
encoded by a gray scale (gray = 
past, black = recent)
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Given the airfoil’s stationary position throughout data 
collection, we accumulate tracks over time, resulting in a 
very dense flow field. The proposed KF-PEV resulted in 
a high-resolution, dense flow field estimates in Fig. 11, 
with flow vectors consistent with the expected flow dynam-
ics from the SD7003 wing experiment. KF-PEV handled 
diverse velocity patterns well, representing a diversity of 
velocity magnitudes and angles. We furthermore smoothed 
the velocity field by averaging the Kalman velocity measure-
ments within the 8 × 8 and 16 × 16 pixel windows, yielding 
velocity reconstructions in Fig. 12. Larger window yields 
a smoother, more stable results, while smaller window 
preserves the details of free flowing particles better. If no 
measurements exist within the pre-defined window, a larger 
spatial window was used to estimate the velocity.

Qualitatively, it can be seen that the trails of the events in 
Fig. 10 match the direction of the reconstructed flow field 
in Fig. 12. Additionally, the smooth variation of the velocity 
vectors’ direction and magnitude yields what is expected. It 
can be seen that at 0 degrees, the particle trajectories follow 
the expected trends, where a higher Vx-velocity is observed 
on the upper surface and a lower velocity in the wake. The 

Vy-velocity also shows the expected behavior. At an -8 
degree angle of attack, flow separation on the lower surface 
can be observed. Even in the separated region of the flow, 
the particle trajectories in Fig. 12 were captured in great 
detail using the KF-PEV approach, as seen in both Vx and 
Vy velocities.

Finally, Kalman filter yields linear least squares error 
estimates of the state variables in (1), including the accel-
eration in the x and y directions from events. Although not 
the main parameter we seek to reconstruction in velocime-
try, the estimated particle acceleration field shown Fig. 13 
for 0 and -8 degree angles of attack are informative. At 0 
degrees, the flow shows almost no acceleration variation 
except near the front of the airfoil. However, at -8 degrees, 
significant acceleration variations are observed under the 
wing where disturbances in the flow occur.

5.3  Discussions

While the proposed KF-PEV algorithm showed competi-
tive performance in the quantitative analysis, it is not with-
out limitations. The computational complexity of KF-PEV 

Fig. 11  Velocity vector field of the SD7003 wing estimated by KF-PEV. a, b Velocity V
X
 in X direction; c, d Velocity V

Y
 in Y direction
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scales linearly (roughly) with the particle density. KF-
PEV code is written in Matlab (single thread), and flow 
field reconstruction was conducted a Lenovo Legion Pro 
7i 16IRX8H Laptop, equipped with a 2.2 GHz Intel Core 
i9 HX 24-core CPU and 32GB of DDR5 memory. Table 4 
reports the time required to process one million events by 
KF-PEV as well as alternative methods. Despite all three 
event sequences comprising 1 million events each, varia-
tions in processing time were observed due to differences in 
event density, noise levels, and positive to negative events 
ratio within each sample. The analysis revealed that Drazen 
was faster than Wang in very dense synthetic data, but Wang 
was faster for less dense real-world data. By contrast, KF-
PEV was slower, as expected due to increased computational 
overhead of Kalman filtering, but the increase was not com-
putationally prohibitive. While we have not achieved real-
time performance with the unoptimized Matlab code, we 
believe it is possible to narrow gap considerably by further 
optimizing the code, multi-threading (e.g., 24 cores in i9 HX 
processor), and reduced particle density (a reasonable trade 
off for applications needing real-time inference of dynamic 

flow field). As a future research direction, we plan to develop 
real-time KF-PEV implementation.

On the other hand, the proposed KF-PEV algorithm incor-
porates multiple parameters, requiring fine-tuning for some 
experiments. Some are Kalman filter-specific, such as the 
covariance matrix for the process and measurement noise; 
additional parameters such as spatial and temporal thresholds 
used in track assignment have direction relations to the parti-
cle size and particle density. Fortunately, although the tuning 
was carried out by trial-and-error, we empirically found that 
the performance of KF-PEV was relatively insensitive or sta-
ble to these parameters, and even consistent between the syn-
thetic and real-world experiments. Furthermore, the empirical 
distribution of the event positions generated by the observed 
particles is assumed to be sufficiently similar to the normal 
distribution that the Kalman filter is designed for Benson and 
Holzinger (2023), such that the KF-PEV still maintains a sat-
isfactory performance. It is difficult to quantify the exact loss 
stemming from making this assumption, however.

Finally, there are also limitations to the event-based 
particle velocimetry itself (not specific to KF-PEV). In 

Fig. 12  Uniform velocity field distribution for −8 degree angle of attack, girded in (a, c) 8 × 8 pixel and (b, d) 16× 16 pixel windows. (a, b) 
Velocity V

X
 in X direction; (c, d) Velocity V

Y
 in Y direction



 Experiments in Fluids          (2024) 65:141   141  Page 14 of 16

our real-world experiments, the number of distinctive par-
ticles that the event-based cameras detected seemed to be 
less than the number of particles recorded by a high-speed 
intensity camera observing the same seeded flow field. This 
discrepancy could potentially be attributed to the relatively 
low pixel density of the commercially available event-based 
sensors. Like any emerging technology, sensor sensitivity 
issues are likely to become irrelevant within a few years as 
the device capabilities advance.

6  Conclusion

In this article, we proposed a causal event-based particle 
velocimetry technique called Kalman filter-based particle 
event velocimetry (KF-PEV). Leveraging a Kalman filter 
redesigned to handle asynchronous event-based pixels and 
multiple particles, KF-PEV is robust to noise and is in a 
streaming format. The Kalman filtering also admits a lin-
ear least squares estimate of the particle velocity directly, 
rather than differentiating the positional estimates at the 
risks of amplifying noise and estimation error.

Additionally, we developed a simulation framework for 
objectively benchmarking event-based particle velocime-
try. This overcomes the limitations of frame-based event 
simulation methods by generating event streams of mov-
ing unresolved targets in continuous time using analytical 
models of the underlying signal. Evaluation by objective 
performance metrics indicate that KF-PEV’s reconstruc-
tion of the flow field represents a substantial improvement 
over the state-of-the-art frame-based (Thielicke and Sonn-
tag 2021; Janke et al. 2020) and event-based (Wang et al. 
2020; Willert and Klinner 2022; AlSattam et al. 2024) 

Fig. 13  Kalman state variable also yields particle acceleration. Uniform acceleration field distribution, girded in 16× 16 pixel windows, for −8 
degree angle of attack (a, c) and 0 degree angle of attack (b, d). (a, b) Acceleration A

X
 in X direction; (c, d) Acceleration A

Y
 in Y direction

Table 4  Execution time comparison: examining the processing time 
for 1 million events by Drazen et al. (2011); Wang et al. (2020), and 
KF-PEV for both synthetic and real-world data

Method Execution time for 1 million events

Synthetic data 
( ≈ 0.5 mSec)

Sample 1 ( ≈ 
172 mSec)

Sample 
2 ( ≈ 102 
mSec)

 Drazen et al. (2011) 57.19 Sec 29.59 Sec 5.32 Sec
 Wang et al. (2020) 80.14 Sec 6.97 Sec 1.91 Sec
KF-PEV (proposed) 457.31 Sec 65.35 Sec 14.83 Sec
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PIV/PTV techniques in terms of velocimetry magnitude 
and flow direction.

Real event-based sensor data experiments conducted 
in the water tunnel show robustness to noise and errors in 
the widest field-of-view reported for event-based particle 
velocimetry experiment. The proposed KF-PEV successfully 
tracked particles in dynamic flow field, and reconstructed a 
dense high-resolution flow field of airfoil consistent with its 
expected behavior.

Appendix: Benchmark optimization

For the benchmarking methods in Sect. 4.2, we tuned the 
parameters listed in Table 2 to optimize for the perfor-
mance. Each parameter is evaluated over its respective 
dynamic range in terms of MSE of angle and velocity mag-
nitude, as illustrated in Fig. 14. The parameter minimizing 
the MSE scores are reported in Table 2, and subsequently 
used to produce Table 3. For this reason, what we report 
for the competing algorithms are their theoretical peak 
performance scores.

Fig. 14  Parameter performance study for benchmark algorithms
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