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Abstract
The present study applies a framework of the spatiotemporal superresolution measurement based on the total-least-squares 
dynamic mode decomposition, the Kalman filter and the Rauch-Tung-Striebel smoother to an axisymmetric underexpanded 
supersonic jet of a jet Mach number of 1.35. Dual planar particle image velocimetry was utilized, and paired velocity fields 
of the flow with a short time interval were obtained at a temporal resolution of 5000 Hz. High-frequency acoustic data of 
200,000 Hz were simultaneously obtained. Then, the time-resolved velocity fields of the supersonic jet were reconstructed at 
a temporal resolution of 200,000 Hz. Also, time coefficients of dynamic modes in high temporal resolution were calculated. 
The correlation between time coefficients implies that the mixing promotion by screech tone causes the lift-up of the high-
velocity fluid from the jet center and accelerates at the downstream side.

1 Introduction

Studies on supersonic jet noise have been an object of 
research because the exhaust gases of the supersonic air-
craft cause the noise contamination (Bailly and Fujii 2016; 
Raman 1999). In the imperfectly expanded jet conditions, 
the components of the supersonic jet noise can be classi-
fied into three categories: the turbulent mixing noise, the 
broadband shock-associated noise, and the screech tone 
(Tam 1995). The first two acoustic waves show a broad-
band spectrum in the frequency domain, while the screech 
tone has an intense sound pressure level and a discrete fre-
quency. The generation mechanisms of these noises have 
been extensively investigated by performing numerical 
simulation and experiment (Powell 1953; Suzuki and Lele 
2003; Tam 1995). Then, the dominant flow structures relat-
ing to supersonic jet noise have been clarified based on the 
modal decomposition such as singular value decomposition 
(SVD) and dynamic mode decomposition (DMD) (Xiangru 
et al. 2021; Andrew et al. 2017). A coherent structure which 
generates the screech tone by interfering with shock cell 
structure (Powell 1953) can be observed upstream. Then, 

large-scale turbulent structure and streak structure can be 
observed downstream.

Screech tone phenomena are known to promote mix-
ing in downstream (Glass 1968; Krothapalli et al. 1986; 
Alkislar et al. 2003; Knowles and Saddington 2006). Glass 
(1968) discovered that the jet diameter of the axisymmet-
ric underexpanded jet becomes larger due to increase of jet 
spread rate when acoustic feedback occurs by screech tones. 
Krothapalli et al. (1986) investigated the underexpanded jet 
from a converging rectangular nozzle and described the 
angle of jet spread is increased at the pressure ratio cor-
responding to the maximum screeching sound. In the asym-
metric jet, this mixing promotion is caused by streamwise 
vortices in the mixing-layer region. The streamwise vorti-
ces produce a strong traverse outward velocity and enhance 
the transverse transport between the jet and the surround-
ing fluid there (Alkislar et al. 2003). Alkislar et al. (2003) 
explored the three-dimensional flow characteristics of a 
underexpanded rectangular jet by using a stereoscopic parti-
cle image velocimetry (stereo-PIV), and they elucidated that 
the three-dimensional deformation of the large-scale span-
wise coherent vortical structures results in strong streamwise 
vortices. These spanwise vortical structures are generated by 
the self-excitation in the shear layer of the underexpanded 
jet. Husain and Hussain (1993) proposed the mechanism 
for the generation of the streamwise vortices based on the 
influence of mutual and self-induction of the spanwise vorti-
cal structures and corrobolated their proposed mechanism 
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using numerical simulation data of the low-speed elliptic jet. 
They delineated the ribs consisting of streamwise vortices 
are formulated from the deformation of the spanwise vortical 
structures in detail.

The streak structure is also one of the structures which are 
associated with the streamwise vortices. The streak structure 
is the streamwise elongated structure and it is identified at 
low frequency and nonzero azimuthal wavenumbers through 
the mode decomposition such as spectral proper orthogonal 
decomposition (SPOD) and resolvent analysis (Nogueira 
et al. 2019; Pickering et al. 2020). The streamwise vortices 
have radial velocity components which lift fluid from low- 
to high-speed regions (leading to a low-speed streak) and 
from high- to low-speed regions (leading to a high-speed 
streak) (Nogueira et al. 2019). This phenomenon is referred 
to as lift-up mechanism, and the streak structure and the lift-
up mechanism have long been understood as an important 
mechanism in wall-bounded flows (Brandt 2014; Schlatter 
et al. 2008; Hack and Zaki 2016). However, it is known 
that the wall is not necessary for the lift-up mechanism, and 
they have been identified in some previous works for the 
mechanism identification in jet flows (Nogueira et al. 2019; 
Pickering et al. 2020).

However, the discussion about the relationships between 
the mixing promotion by screech tones and the downstream 
structures such as the streak structure has not been con-
ducted in detail by following the time histories of these 
structures in high temporal resolution.

Numerical simulations are superior to the experiment 
with regard to the spatial and temporal resolution of fluid 
data (Gojon and Bogey 2017; Arroyo et al. 2019; Li et al. 
2020). However, its computational costs to analyze the data 
are so high that it could not obtain the flow field informa-
tion in a longer time span. On the other hand, there is still 
a technological difficulty in measuring the experimental 
data in high spatial and temporal resolution with the exist-
ing measurement system. Therefore, we apply the spati-
otemporal superresolution measurement technique for the 
experimental data and overcome it. Here, the superresolution 
technique includes the spatial superresolution (Fukami et al. 
2023), which recovers the high spatial resolution data from 
the low spatial resolution data and was recently applied to 
experimental data (Ozawa et al. 2024), and the spatiotem-
poral superresolution, which recovers the high spatial and 
temporal resolution data from the combination of the low 
spatial but high temporal resolution data and the high spatial 
but low temporal resolution data. Here, the spatiotemporal 
superresolution measurement which adopts the latter is con-
sidered in this study.

The spatiotemporal superresolution measurement (Nick-
els et al. 2020; Zhang et al. 2020; Li and Ukeiley 2021) is 

the method to reconstruct the flow field in high spatial and 
temporal resolution by using data-driven techniques. Tu et al. 
(2013) has reconstructed a wake flow behind a model using a 
modified time-delay LSE (mTD-LSE) (Durgesh and Naughton 
2010) that estimates the time-resolved flow field from the high 
sampling rate hot-wire measurement data and the correlation 
between the two. Here, proper orthogonal decomposition 
(POD) (Berkooz et al. 1993) is used to reduce the complexity 
of the physical fields before the correlation with the acoustic 
data is calculated. Li and Ukeiley (2022); Tinney et al. (2008) 
achieved a reconstruction of the time-resolved velocity fields 
in the axisymmetric subsonic jet using time-resolved pressure 
data. Ozawa et al. (2021) applied a similar framework into the 
aeroacoustic field of a Mach 1.35 supersonic jet, and success-
fully reconstructed the velocity fluctuations related to screech 
tone using a sparse linear regression model. They found that 
the estimation accuracy can be improved by least absolute 
shrinkage and selection operator (LASSO) regression (Ozawa 
et al. 2022). This method selects the high-correlative acoustic 
data with the velocity field and avoids over-learning. Although 
the smooth convection of the flow fluctuation related to the 
screech was observed (Ozawa et al. 2022), its reconstruction 
was limited to the screech phenomena. In addition, the spati-
otemporal superresolution was also successfully applied to the 
density measurement using background oriented shlieren by 
Lee et al. (2023, 2024), but its reconstruction was limited to 
the screech phenomena as well as that using measured veloc-
ity field.

The present study proposes a spatiotemporal superresolu-
tion measurement framework based on DMD (Schmid 2010; 
Tu et al. 2014) with the Kalman filter (Kalman 1960) and the 
Rauch-Tung-Striebel (RTS) smoother (Rauch et al. 1965). 
Here, DMD can estimate the linear dynamical system with 
respect to coherent structures that grow, decay, and oscillate. 
Therefore, the matrix that expresses the temporal evolution of 
the velocity field is derived from DMD and is used for the state 
equation. The Kalman filter and the RTS smoother estimate 
and correct the time-resolved velocity field using the acoustic 
information.

We applied the proposed method to the experimental data 
of a Mach 1.35 axisymmetric jet. First, we constructed the 
dual PIV systems, and paired velocity fields with a short time 
interval were measured for a Mach 1.35 axisymmetric jet. The 
dual PIV and acoustic measurements were simultaneously per-
formed and the time-resolved velocity field is estimated. Then, 
the time coefficients of DMD modes in high temporal resolu-
tion are calculated to investigate the relationships between the 
mixing promotion by the screech phenomena and the down-
stream structures.
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2  Calculation procedure 
of the spatiotemporal superresolution 
measurement

Figure 1 illustrates the schematic image of the proposed 
spatiotemporal superresolution measurement. Note that 
this figure does not show the actual sampling rate. Paired 
velocity fields captured from two high-speed cameras (using 
dual PIV technology) are taken with only 2.5 µs of time 
difference between each of them, which allows us to obtain 
the information about the temporal evolution of the velocity 
field at that precise moment. The time difference 2.5 µs is 
half of the time difference of the sampling rate of the micro-
phone measurement, and the reason why we choose this time 
difference is related to elimination of biased errors in the 
measurement as discussed later. On the other hand, the time 
between paired velocity fields is large because of limitations 
of the cameras, and the dynamics of the system might be 
completely lost. Therefore, acoustic measurement devices, 
that can work at very high sampling rates, are included in 
the experiment and used for reconstruction of the dynamics 
together. It may be important to remark that the sampling 
rate of the acoustic measurement is sufficiently high for cap-
turing unsteady flow. DMD allows us to extract dynamical 
system information from the paired velocity fields and it 
brings an accurate reconstruction of the flow together with 
acoustic information at the end of the process.

In this case, the proposed method calculates the system 
matrix of the velocity field based on the DMD and the obser-
vation matrix as a linear regression coefficient matrix of the 
velocity field and acoustic data. Those matrices are used 
for the system and observation equations and applied to the 
Kalman filter and the RTS smoother. Here, the estimated 

velocity fields are the same as the observed ones at the time 
steps when the PIV measurements were conducted. On the 
other hand, the velocity field is estimated and interpolated 
by the Kalman filter and the RTS smoother at the time steps 
when only microphone measurements are conducted.

The dual PIV is used in the present study, and the paired 
velocity fields with small time differences which can suffi-
ciently resolve the temporal evolution of the supersonic jet 
flow are captured. It should be noted that the single camera 
PIV typically does not meet this shutter speed requirement. 
Here, the use of two cameras ( � and � ) for the experiment 
will normally introduce systematic biased errors coming 
from, mainly, an asymmetrically processing of the snapshots 
in different parts of the calculation. This can cause noise 
in the measurement and errors in the DMD process if not 
addressed properly. Therefore, a specially designed timing 
chart for the cameras and lasers of the dual PIV and DMD 
are introduced to greatly improve the results.

Figure 2 shows the timing chart of the velocity fields 
taken by each camera. The time intervals for each PIV sys-
tem and image pairs were set to be 1 µs and 2.5 µs, respec-
tively. This setup allows reconstruction of the flow in both 
directions: from the camera � to the camera � and vice versa. 
This technique reduces a possible error introduced when 
the cameras are not perfectly aligned or have slightly dif-
ferent characteristics in the configuration, lens or software. 
The experimental technique to realize this timing chart is 
described in Sect. 3 in detail. The final reconstruction, as 
it is remarked further in this document, is conducted by 
merging both of the reconstruction directions, reducing any 
error tendency that otherwise would be amplified when the 
process is repeated for the whole pool of snapshots. The 
presented timing chart repeats itself every four velocity 
fields. It is remarkable that the time interval between paired 
velocity fields is approximately 40 times greater than the 

Fig. 1  Schematic image of the proposed spatiotemporal superresolu-
tion measurement

Fig. 2  Timing chart of dual PIV. � , depicted in yellow, and � , 
depicted in blue
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time interval between the velocity fields of a pair, due to the 
camera limitations.

The spatiotemporal superresolution measurement pro-
cedure is explained in detail in the following Subsections. 
Then, the summary of the analysis procedure is shown in 
Appendix A.

2.1  Dimensionality reduction of PIV data 
by singular value decomposition

The SVD is applied to the mean-subtracted velocity fields 
obtained by the cameras � and � . Then, the PIV data are 
lowered in dimension by a truncation. This dimensionality 
reduction is conducted for three reasons. The first reason is 
to select the fluid structures of which temporal evolution 
can be approximated by a linear model more accurately. The 
second reason is that the DMD is sensitive to noisy data, and 
noise components are also truncated. The third reason is that 
the calculation cost is reduced by lowering the dimension. 
The convergences of the mean velocity field and the POD 
mode energy are shown in Appendix B.

First, the PIV velocity fields are divided into PIV data 
matrices X� ∈ ℝ

2n×N and X� ∈ ℝ
2n×N (n and N are numbers 

of spatial points in the velocity field and pairs of velocity 
fields, corresponding to, in this study, 26728 and 14990, 
respectively), depending on the camera origin of each veloc-
ity field due to the particular camera timing chart:

where ũ ∈ ℝ
n and ṽ ∈ ℝ

n are the axial and vertical com-
ponents of the velocity fluctuation field, respectively, and 
0.5�t is the short time interval of the paired velocity fields 
corresponding to, in this study, 2.5 µs ( �t is the sampling 
period of the acoustic measurements corresponding to 5 µs). 
Also, the discrete-time tk (1 ≤ k ≤ NF) is defined based on 
the sampling rate of the microphone measurements, where F 
is the ratio of the sampling rate of the microphone and PIV 
measurements, corresponding to 40. Every pair of velocity 
fields is composed of the velocity field at tk and the following 
one at tk + 0.5 �t , even though they are stored in different 
matrices.

Next, velocity components of the horizontally flipped PIV 
snapshots are added to the PIV data matrices. Thereby, only 
symmetric and asymmetric spatial modes are extracted by 
the SVD. This process is based on the assumption that the 
dominant structures of the flow can be divided into sym-
metric and asymmetric structures, and it helps to improve 
the estimation accuracy of the spatial mode.

(1)
X� =

[
ũ(tF) ũ(t2F + 0.5�t) ũ(t3F) ⋯ ũ(tNF + 0.5�t)

ṽ(tF) ṽ(t2F + 0.5�t) ṽ(t3F) ⋯ ṽ(tNF + 0.5�t)

]
,

X� =

[
ũ(tF + 0.5�t) ũ(t2F) ũ(t3F + 0.5�t) ⋯ ũ(tNF)

ṽ(tF + 0.5�t) ṽ(t2F) ṽ(t3F + 0.5�t) ⋯ ṽ(tNF)

]
,

PIV data matrices which include f lipped data 
X�

Sym
∈ ℝ

2n×2N and X�

Sym
∈ ℝ

2n×2N are obtained as follows:

where ũflip ∈ ℝ
n and ṽflip ∈ ℝ

n are the axial and vertical 
components of the horizontally flipped PIV snapshots, 
respectively.

Then, the SVD is applied to both PIV data matrices which 
include flipped data:

where U�(r),U�(r) ∈ ℝ
2n×r are an orthogonal matrices 

of the spatial modes, ��(r),��(r) ∈ ℝ
r×r are matrices of 

which diagonal components are singular values � , and 
V�(r),V�(r) ∈ ℝ

2N×r are orthogonal matrices of the temporal 
modes. Also, r is the number of the POD modes for dimen-
sionality reduction.

POD mode coefficients of PIV data matrices which are 
reduced in dimension, Z�

1st
,Z

�

1st
,Z

�
2nd

,Z
�

2nd
∈ ℝ

r×0.5N are 
derived as follows:

where data matrices X�
1st

∈ ℝ
2n×0.5N and X�

1st
∈ ℝ

2n×0.5N are 
the “1st” velocity fields of the paired velocity fields obtained 
by the cameras � and � , respectively:

Then, data matrices X�
2nd

∈ ℝ
2n×0.5N and X�

2nd
∈ ℝ

2n×0.5N are 
the “2nd” velocity fields after 0.5�t of the paired velocity 
fields obtained by the cameras � and � , respectively:

(2)
X�

Sym =

[

ũ(tF) ⋯ ũ(tNF + 0.5�t) ũflip(tF) ⋯ ũflip(tNF + 0.5�t)
ṽ(tF) ⋯ ṽ(tNF + 0.5�t) −ṽflip(tF) ⋯ −ṽflip(tNF + 0.5�t)

]

,

X�
Sym =

[

ũ(tF + 0.5�t) ⋯ ũ(tNF) ũflip(tF + 0.5�t) ⋯ ũflip(tNF)
ṽ(tF + 0.5�t) ⋯ ṽ(tNF) −ṽflip(tF + 0.5�t) ⋯ −ṽflip(tNF)

]

,

(3)X�
Sym

≈ U�(r)��(r)V�(r)�,

(4)X
�

Sym
≈ U�(r)��(r)V�(r)�,

(5)Z
�
1st

= U
�(r)�

X
�
1st
,

(6)Z
�

1st
= U

�(r)�
X

�

1st
,

(7)Z�
2nd

= U�(r)�X�
2nd

,

(8)Z
�

2nd
= U�(r)�X

�

2nd
,

(9)
X�

1st
=

[
ũ(tF) ũ(t3F) ũ(t5F) ⋯ ũ(t(N−1)F)

ṽ(tF) ṽ(t3F) ṽ(t5F) ⋯ ṽ(t(N−1)F)

]
,

X
�

1st
=

[
ũ(t2F) ũ(t4F) ũ(tNF) ⋯ ũ(tNF)

ṽ(t2F) ṽ(t4F) ṽ(tNF) ⋯ ṽ(tNF)

]
,
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2.2  Total least‑square dynamic mode 
decomposition

The temporal evolution of the velocity field in the short time 
interval is obtained, and the system matrix and the system 
noise covariance matrix of the Kalman filter and the RTS 
smoother are constructed for the spatiotemporal superreso-
lution in Sect. 2.4.

The present study applied tlsDMD to POD mode coef-
ficients of the velocity fields which were reduced in dimen-
sion by SVD, and the temporal evolution in the short time 
interval is calculated. The best-fit linear operators in the 
following equations, A0.5

�→�
∈ ℝ

r×r from the camera � to the 
camera � and A0.5

�→�
∈ ℝ

r×r from the camera � to the camera 
� (Fig. 3) are shown as follows:

where the time interval between the paired POD mode coef-
ficients is 2.5 µs. The number of DMD modes was deter-
mined in Appendix C. Also, the convergence of the best-fit 
linear operators when the number of snapshots is changed, 
is shown in Appendix B.

If standard DMD is used and the best-fit linear operators 
is obtained, Eqs. (11) and (12) are solved by least-squares 
solution, minimizing noises which are included in only Z�

2nd
 

and Z�

2nd
 . However, actually, noises are included in Z�

1st
 and 

Z
�

1st
 as well. If they are not reduced, small errors will add up 

and significantly increase errors in the final reconstruction. 
Thus, tlsDMD is used, and the supposition that errors ( �Z1st , 

(10)

X�
2nd

=

[
ũ(t2F + 0.5�t) ũ(t4F + 0.5�t) ⋯ ũ(tNF + 0.5�t)

ṽ(t2F + 0.5�t) ṽ(t4F + 0.5�t) ⋯ ṽ(tNF + 0.5�t)

]
,

X
�

2nd
=

[
ũ(tF + 0.5�t) ũ(t3F + 0.5�t) ⋯ ũ(t(N−1)F + 0.5�t)

ṽ(tF + 0.5�t) ṽ(t3F + 0.5�t) ⋯ ṽ(t(N−1)F + 0.5�t)

]
,

(11)Z
�

2nd
= A0.5

�→�
Z�
1st
,

(12)Z�
2nd

= A0.5
�→�

Z
�

1st
,

�Z2nd ) can be found in both Z1st and Z2nd is corporated into the 
calculation of the best-fit linear operators. This new assump-
tion has been proven to give more accurate results than that of 
standard DMD in some particular cases. The procedure form 
of tlsDMD takes this shape:

Refer to Hemati et al. (2015) for a detailed tlsDMD calcula-
tion method.

Since POD mode coefficients used for the calculation of 
each matrix ( A0.5

�→�
 and A0.5

�→�
 ) are different, the dynamical 

information in them may not be similar. Therefore, a new best-
fit linear operator A ∈ ℝ

r×r that summarizes both dynamical 
information is calculated as follows:

The objective of this process is to revert the asymmetricity 
provoked by the order in which the dataset is analyzed in 
the previous step of the calculation, a bias that is present in 
A0.5

�→�
 as well as in A0.5

�→�
 . As a result, the temporal resolution 

of the reconstruction will reduce by half and the sampling 
frequency of the acoustic measurements matches the tem-
poral resolution of � (5 �s). This new best-fit linear operator 
A is used as the system matrix of the Kalman filter and the 
RTS smoother.

When z�
k
∈ ℝ

r is the POD mode coefficients at a time step 
k obtained by the camera � , z�

k+1
∈ ℝ

r at the next time step is 
estimated by multiplying � to z�

k
 (Fig. 4) as follows:

(13)
min

A0.5
�→�

,�Z
�

2nd
,�Z�

1st

‖‖‖‖‖

(
�Z

�

2nd

�Z�
1st

)‖‖‖‖‖
, subject to Z

�

2nd

+ �Z
�

2nd
= A0.5

�→�
(Z�

1st
+ �Z�

1st
).

(14)
min

A0.5
�→�

,�Z�
2nd

,�Z
�

1st

‖‖‖‖‖

(
�Z�

2nd

�Z
�

1st

)‖‖‖‖‖
, subject to Z�

2nd

+ �Z�
2nd

= A0.5
�→�

(Z
�

1st
+ �Z

�

1st
).

(15)A = A0.5
�→�

A0.5
�→�

.

(16)z�
k+1

= Az�
k
+ vk,

Fig. 3  Best-fit linear operators, 
A0.5
�→�  from the camera � to the 

camera � and A0.5
�→�  from the 

camera � to the camera �
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where vk∈ ℝ
r is the noise when z�

k+1
 is estimated. The algo-

rithm adopted here, which cancels out the biased error, is 
very similar to one of the denoising technique of DMD: for-
ward-backward DMD (Hemati et al. 2017). See the reference 
(Hemati et al. 2014) for more details.

Next, the covariance matrix of the noise vk in Eq. (16), 
Q∈ ℝ

r×r is calculated. Q indicates the reliability of the next 
step estimation by A , and it is used as the system noise covari-
ance matrix of the Kalman filter and the RTS smoother in 
Sect. 2.4. Q is defined as follows:

Q is estimated by dividing Eq.  (16) into the following 
equations:

where z�
k+0.5

∈ ℝ
r is the POD mode coefficients when only 

A0.5
�→�

 is multiplied to z�
k
 . Also, v0.5

�→�
∈ ℝ

r and v0.5
�→�

∈ ℝ
r are 

gaussian noises generated by multiplying A0.5
�→�

 and A0.5
�→�

 , 
respectively. The characteristics of v0.5

�→�
∈ ℝ

r and v0.5
�→�

∈ ℝ
r 

were discussed in Appendix D.
Then, Eq. (18) is substituted into Eq. (19) as follows:

By comparing right-hand side of Eqs. (16) and  (20), we 
obtain

Therefore, Q is represented as follows:

where ��→�∈ ℝ
r×r and ��→�∈ ℝ

r×r are the covariance 
matrix of v0.5

�→�
 and v0.5

�→�
 , respectively:

(17)Q = E
[
vkvk

�
]
.

(18)z�
k+0.5

= A0.5
�→�

z�
k
+ v0.5

�→�
,

(19)z�
k+1

= A0.5
�→�

z�
k+0.5

+ v0.5
�→�

,

(20)z�
k+1

= Az�
k
+ A0.5

�→�
v0.5
�→�

+ v0.5
�→�

.

(21)vk = A0.5
�→�

v0.5
�→�

+ v0.5
�→�

.

(22)Q = A0.5
�→�

��→�A
0.5
�→�

𝖳

+��→�,

(23)Q�→� = E
[
v0.5
�→�

v0.5
�→�

𝖳
]
,

��→� and ��→� in Eqs.  (23) and (24), respectively, are 
approximated by sample average as follows:

whereas �̂0.5
�→�

∈ ℝ
r×N and �̂0.5

�→�
∈ ℝ

r×N are estimated as 
follows:

2.3  The construction of the observation matrix

The linear regression coefficient matrix of the velocity field 
and acoustic data is obtained, and the observation matrix and 
the observation noise covariance matrix of the Kalman filter 
and the RTS smoother are constructed for the spatiotemporal 
superresolution in Subsection 2.4.

The observed vector in the present study, yk∈ ℝ
na , 

consists of the mean-subtracted acoustic signals ãi(tk) 
( 1 ≤ i ≤ na ) of microphones:

where na is the number of microphones, in this study, cor-
responding to 18.

The observation matrix C∈ ℝ
na×r is calculated as the lin-

ear regression coefficients matrix of the POD mode coef-
ficients of PIV data Z� ∈ ℝ

r×N and acoustic data matrix 
M ∈ ℝ

na×N:

In addition, the observation noise covariance matrix 
R∈ ℝ

na×na is also calculated. R indicates the reliability of 
the linear regression by C , and it is used as the observation 
noise covariance matrix of the Kalman filter and the RTS 
smoother. R is defined as follows:

(24)��→� = E
[
v0.5
�→�

v0.5
�→�

𝖳
]
.

(25)�̂�→� =
1

N − 1
�̂0.5

�→�
�̂0.5𝖳

�→�

(26)�̂�→� =
1

N − 1
�̂0.5

�→�
�̂0.5𝖳

�→�
,

(27)�̂0.5
�→�

= Z
�

2nd
− A0.5

�→�
Z�
1st
,

(28)�̂0.5
�→�

= Z�
2nd

− A0.5
�→�

Z
�

1st
.

(29)yk =

⎡
⎢⎢⎢⎣

ã1(tk)

ã2(tk)

⋮

ãna(tk)

⎤
⎥⎥⎥⎦
,

(30)C = MZ�†,

(31)Z� = U�(r)�X�
Sym

,

(32)M =
[
yF y2F ⋯ yNF

]
.

Fig. 4  Estimation of the POD mode coefficient at the next time step 
by best-fit linear operator
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Here, wk∈ ℝ
na is observation noises as follows:

Also, � is the hyperparameter that alters the strength of the 
observation noise against that of the system noise. The con-
dition � = 1 corresponds to the estimation based on the sim-
ple sample average, but it may not give us the best results for 
the spatiotemporal superresolution. Therefore, � is optimized 
by cross-validation as shown in Appendix C.

R in Eq. (33) is approximated by sample average as follows:

whereas observation noises �̂k∈ ℝ
na×N are estimated as 

follows:

2.4  The Kalman filter and the RTS smoother

The spatiotemporal superresolution measurement is conducted 
by estimating and interpolating the POD mode coefficient by 
the Kalman filter and the RTS smoother at the time steps when 
only microphone measurements are conducted.

First, the Kalman filter considers the linear system and 
observation equations as follows:

where z�
k
 , z�

k+1
 , yk , A , C , vk and wk in Subsections 2.2 and 2.3 

are used as the state vector at the kth time step and at the 
(k + 1) th time step, observed vector at the kth time step, 
the system and observation matrices, and the system and 
observed noises, respectively.

The prediction step is expressed using the system noise 
covariance matrix Q and the system matrix A as the following 
equations:

where ẑ�
k
∈ ℝ

r , ẑ�
−

k+1
∈ ℝ

r , Pk∈ ℝ
r×r and P−

k+1
∈ ℝ

r×r are the 
estimate of the state vector at kth time step, the prior estimate 
of the state vector at (k + 1) th time step, the error covariance 
matrix at kth time step and the prior estimate of the error 
covariance matrix at (k + 1) th time step, respectively.

(33)R = �E
[
wkw

�

k

]
,

(34)yk = Cz�
k
+ wk

(35)�̂ =
�

N
�̂k�̂

�

k
,

(36)�̂k = M − CZ� .

(37)��
k+1

= ���
k
+ �

k
,

(38)�
k
= ���

k
+ �

k
,

(39)�̂�
−

k+1
= ��̂�

k
,

(40)�−
k+1

= ��
k
�T +�,

The filtering step can be expressed using the observation 
noise covariance matrix R and the observation matrix C:

where Kk∈ ℝ
r×na is the Kalman gain at the kth time step.

Then, the estimated state vector is smoothed by applying 
the RTS smoother. The Kalman filter estimates the state vector 
by using only information at the past time steps. On the other 
hand, the RTS smoother smoothes the state vector by using 
the information at all time steps in the interval. Therefore, the 
accuracy of the spatiotemporal superresolution is improved.

The smoothing process is shown by the following equations:

where ẑk|kend ∈ ℝ
r , Pk|kend ∈ ℝ

r×r and Bk ∈ ℝ
r×r are the final 

estimates of the state vector and the error covariance matrix 
by the RTS smoother, and the smoothing gain. Also, kend is 
the last time step in the filtering and smoothing time interval. 
The Kalman filter and the RTS smoother are applied to each 
time duration between the ‘ � ’ images of two consecutive 
image pairs (not between paired images), and the informa-
tion given by the PIV images is assumed to be the ground 
truth by setting the very low noise covariance for the PIV 
images.

2.5  Extraction of time histories of dominant 
structures in high temporal resolution

In this section, the time histories of dominant structures in the 
supersonic jet at the same temporal resolution as the acoustic 
data are extracted to investigate correlations between them.

The dominant spatial structures which oscillate with char-
acteristic frequencies and growth/decay rates are obtained 
by projecting DMD modes to the velocity field as shown in 
Eq. (47), because DMD is applied to POD mode coefficients 
of the velocity field in this study.

where � ∈ ℝ
r×r� is the DMD modes which are obtained 

by applying eigenvalue decomposition to the best-fit linear 
operator A , and � ∈ ℝ

2n×r� is the DMD modes projected to 

(41)�
k
= �−

k+1
�T (��−

k+1
�T + �)−1,

(42)�̂�
k+1

= �̂�
−

k+1
+�

k
(�

k
− ��̂�

−

k+1
),

(43)�
k+1 = �−

k+1
+�

k
��−

k+1
,

(44)�̂
k|kend = �̂

k
+ �

k
(̂�

k+1|kend − ��̂
k
),

(45)�
k|kend = �

k
+ �

k
(�

k+1|kend − ��
k
�T −�)�T

k
,

(46)�
k
= �

k
�T�−−1

k+1
.

(47)� = U�(r)�,
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the velocity field which show dominant spatial structures. 
Also, r′ is the number of DMD modes.

The time histories of these DMD modes projected to the 
velocity field can be extracted by calculating DMD mode 
coefficients of them. The time-resolved velocity field data 
matrix X ∈ ℝ

2n×NF is the superposition of products of pro-
jected DMD modes �m ∈ ℝ

2n and DMD mode coefficients 
�� ∈ ℝ

1×NF , as follows:

where m is the mode number. Thus, DMD mode coefficients 
show the time coefficients of dominant structures.

The time-resolved DMD mode coefficient matrix 
L ∈ ℝ

r�×NF can be calculated by projecting time-resolved 
POD mode coefficients Zkalman ∈ ℝ

r×NF obtained by the 
Kalman filter and the RTS smoother into DMD mode space 
as follows:

3  Experimental apparatus

3.1  Jet generating system

The present experiments were performed using a device that 
generates a supersonic jet installed in an anechoic room pro-
vided by Tohoku University. Figure 5 shows a schematic 
image of this device: high-pressure air is stored inside a 
high-pressure tank by using a compression pump, being all 
these systems located upstream. Also, a plenum chamber is 
located at the center of the anechoic room, being the stag-
nation point of the jet flow. The jet is ejected vertically to 

(48)X = �L,

(49)X =

r�∑
m=1

��Lm,

(50)L = �†Zkalman,

the ceiling and the flow speed is changed by adjusting the 
ratio between the pressure in the plenum chamber and the 
atmospheric pressure in the anechoic room. Refer to Ozawa 
et al. (2020a, 2020b) for more details about the experimen-
tal facilities. Figure 6 shows the cross-sectional shape of 
the convergent nozzle, which was used for reproducing an 
underexpanded supersonic jet. The nozzle exit diameter is 
10 mm and the contour of the nozzle was designed based on 
the reference (André et al. 2013). The nozzle pressure ratio 
was 2.14 corresponding to the Mach 1.35, and the Reynolds 
number based on the nozzle exit diameter was 3.37 × 105 . 
The stagnation temperature was 297 K.

3.2  Measurement system

Figure 7 shows the experimental setup which is composed 
of a dual PIV system (two pairs of cameras and lasers) and 
near-field acoustic measurements (18 microphones). Table 1 
summarizes the spatial and temporal resolution of the meas-
urement. Here, the ratio between the acoustic measurements 
and PIV measurements sampling rate was set to be F = 40.

3.2.1  Synchronization of a dual PIV measurement 
and acoustic measurements

Three function generators (WF1974, NF) and a delay 
generator (DG535, SRS) were used for synchronization 

Fig. 5  Schematic image of the 
supersonic jet generating device

Fig. 6  Cross-sectional shape of the convergent nozzle



Experiments in Fluids          (2024) 65:139  Page 9 of 24   139 

of a dual PIV measurement and acoustic measurements. 
Figure 8 shows the generation and flow of trigger and 
synchronous signals in the present study. The blue and 
red lines show the trigger signal path and synchronous 
signal path, respectively. Here, the function generator 3 
and the delay generator play the same role as each other, 
and they generate signals with delays after they receive 
trigger signals from the channels 1 and 2. Figure 9 shows 
the timing chart of exposure times of camera frames and 
laser pulses. The delays A and C were adjusted so that the 
first and second laser pulses are in the exposure time of 
first and second frames, respectively. The delays B and D 
were set to the time interval for each PIV system, 1 µs. 
Each microphone is connected to a data acquisition (DAQ) 
system through an amplifier, and the acoustic measure-
ments are synchronized with the PIV measurements by 
the synchronous signal.

3.2.2  Dual PIV system

The dual PIV system was built for acquisition of the short 
time interval paired velocity fields. Two double-pulsed lasers 
(LDY-300PIV, Litron, and DM60-527, Photonics industries) 
with wavelengths of 532 and 527 nm, respectively, and two 
high-speed cameras (Phantom V1840 and V2640, Vision 
Research) were used and placed in the anechoic room. The 
cameras, situated symmetrically around the nozzle, are 
embedded with a band pass filter. The wavelengths of the 
band pass filter are 532±1.5 and 527±5 nm, respectively, 
and they correspond to the wavelength of the lasers. In this 
way, each laser only interferes with its assigned camera. 
Both laser sheets are oriented vertically and situated over 
the center of the nozzle exit.

Here, the time chart of the velocity fields taken by each 
camera shown in Fig. 9 is explained. The time intervals for 
each PIV system and image pairs were set to be 1 µs and 2.5 
µs, respectively. The signal colored by light red is repeated 
every 400 µs. In other words, the function generator 2 gen-
erates the colored signal at 2500 Hz. However, two veloc-
ity fields are obtained by the colored signal in each PIV 
system, and the temporal resolution of PIV is 5000 Hz, as 
shown in Table 1. Here, the colored signal was created by 

Table 1  Parameters of the measurements

PIV(particle image) Acoustic measurement

Spatial resolution 800 × 2048 8 points
Temporal resolution 5000 Hz 200,000 Hz

Fig. 7  Experiment setup: a Dual 
PIV measurement. b Micro-
phone placements

Fig. 8  Synchronization of a dual 
PIV measurement and acoustic 
measurements by function gen-
erators and a delay generator



 Experiments in Fluids          (2024) 65:139   139  Page 10 of 24

using arbitrary waveform creation software of the function 
generator.

3.2.3  Acoustic measurement system

Near-field acoustic measurements are simultaneously 
performed in the experiment using 18 microphones 
(TYPE4158N, ACO), as shown in Fig. 7. Six microphones 
arranged in a hexagon were installed in three stream-
wise positions. The streamwise positions xm of three lay-
ers were set to xm∕D = 0, 3 and 12, respectively, and the 
radial distances rm between the nozzle center axis and the 
microphones on three layers were set to rm∕D = 2, 8 and 8, 
respectively. These positions prevent the microphones from 
interfering the camera view. The signals from the micro-
phones are intensified by the amplifiers (TYPE5006/4, 
ACO) and recorded using data acquisition system (USB-
6366, National Instruments).

4  Results and discussion

4.1  Acoustic results

Figure 10 shows the power spectral density (PSD) of the 
sound pressure level (SPL) of 18 microphones. Black, blue, 

and red lines are the PSD measured at the microphone posi-
tions (xm∕D, rm∕D) = (0, 2), (3, 8), (12, 8) , respectively. Here, 
the Hann window was used for PSD calculation, and the 
window size is 1024. Also, the results of the Fourier analy-
sis were averaged 1000 times, whereas the overlap ratio of 
windows is 50 %. The frequency is nondimensionalized as 
the Strouhal number St = fD∕Uj where Uj = 397 m/s and 
D =10 mm are the jet velocity and diameter at the nozzle 
exit, respectively. The distinct peak of screech is observed 
at 12.9 kHz ( St = 0.66 ) and the second and third harmonics 
are observed.

4.2  PIV results

The PIV velocity fields are estimated by using the recursive 
cross-correlation method, reducing the correlation window 
size from 32 × 32 to 8 × 8 . As a result, the final spatial reso-
lution of the estimated velocity fields was 104 × 257 for the 
particle images of which spatial resolution is 800 × 2048 . 
Figure 11 shows the basic characteristics of the velocity 
field of a Mach 1.35 supersonic jet. The velocity field is 
nondimensionalized using the jet velocity at the nozzle exit 
Uj = 397 m/s derived from the equation of the isentropic 
flow. The mean velocity field shows the potential core and 
the shear layer development of the jet. The velocity fluc-
tuation in the potential core is due to the occurrence of the 

Fig. 9  Timing chart of dual PIV. 
� , depicted in yellow, and � , 
depicted in blue
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shock cells. The standard deviation and the Reynolds stress 
are distributed mainly in the shear layer region, as expected. 
Since the observed characteristics are consistent with the 
previous findings, the dual PIV system works well for the 
present study.

The tlsDMD analysis (Dawson et al. 2016) was applied 
to the paired velocity field taken with the short time interval 
of 2.5 µs. Figure 12 summarizes the results of DMD. Fig-
ure 12a shows that the growth rates of most DMD modes 
are near 1, which indicates that these modes are purely oscil-
latory modes. Figure 12b shows the amplitude spectrum of 
microphones and spatial distributions in the axial and verti-
cal direction of the DMD modes projected to the velocity 
field. Here, one of each pair of DMD modes of which eigen-
values are in the complex conjugate relationship is shown. 
This figure illustrates that the flapping mode 1 was obtained 
near the screech frequency of the microphone measurements 
and that this mode is estimated to be the structure relating to 
the screech tone. This result is consistent with the previous 
findings, which say that the screech tone associated with the 

flapping mode is dominant at Mach 1.35 (Tam 1995). Then, 
the modes 3, 5, 7 and 10 which are estimated to be compo-
nents of the large-scale turbulent structure can be confirmed 
in the range of 1.0 to 5.0 kHz, and the mode 12 which is 
estimated to be the streak structure can be confirmed at the 
frequency near 0 Hz.

4.3  Reconstructed PIV result in spatiotemporal 
superresolution

Figures 13 and 14 depict the snapshots of the superresolved 
axial velocity field and velocity fluctuation field. They depict 
snapshots in the different time zones. Figures 13 and 14 
illustrate snapshots from t = 0 µs and t = 8000 µs, respec-
tively. The smooth convection of the large-scale structure on 
the downstream side and the structure relating to the screech 
tone on the upstream side can be observed, while the POD-
based spatiotemporal superresolution measurement (Ozawa 
et al. 2021) cannot estimate such large-scale structures. 
Therefore, the proposed method is effective to reconstruct 

Fig. 10  Acoustic spectrum at the nozzle 
exit (x

m
∕D, r

m
∕D) = (0, 2), (3, 8), (12, 8)

Fig. 11  Basic characteristics of the velocity field of a Mach 1.35 supersonic jet
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the entire flow fluctuation because the DMD modes express 
the linear dynamical system of the velocity fields.

Also, the strength of the structure relating to the 
screech tone in snapshots from t=8000 µs is observed to 
be stronger than the one in snapshots from t=0 µs by com-
paring velocity fluctuation fields in different time zones. 
This is because the structure relating to the screech tone 
rotates around the streamwise axis. The strength of the 
observed structure looks strong when it is in the PIV meas-
urement plane, and the strength looks weak when it is 
out of the PIV measurement plane. The rotation of the 
structure relating to the screech tone is mentioned in the 
previous work (Lee et al. 2024). Next, most of the down-
stream region in snapshots from t = 8000 µs is observed 
to be accelerated, while most of the downstream region 
in snapshots from t=0 µs is shown to be decelerated by 

comparing velocity fluctuation fields in different time 
zones. In addition, the width of the mixing layer in snap-
shots from t = 8000 µs seems to be wider than the one in 
snapshots from t = 0 µs by comparing velocity fields in 
different time zones.

The accuracy of the proposed method was evaluated 
by downsampling the velocity fields that were originally 
acquired in the PIV measurement. The downsampled data 
was used for calculating system and observation matrices, 
while data other than the downsampled data was used as the 
reference data for calculating the reconstruction errors. The 
downsampling rates fdwn were set to 1/2, 1/4, 1/8, and 1/16 
of full data, and the ratios of the sampling rates of the micro-
phone and PIV measurements F are 80, 160, 320, and 640, 
respectively. Then, three kinds of reconstruction errors E1 , 
E2 , and E3 were calculated by using the following equation:

Fig. 12  Summary of the 
obtained DMD modes: a 
Growth rate of Eigenvalues. b 
Amplitude spectrum and spatial 
distributions of the DMD modes



Experiments in Fluids          (2024) 65:139  Page 13 of 24   139 

Fig. 13  Snapshots of the spatiotemporal superresolved axial velocity components from t=0 µs

Fig. 14  Snapshots of the spatiotemporal superresolved axial velocity components from t=8000 µs
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where Z∈ ℝ
r×Ndwn , X ∈ ℝ

2n×Ndwn , and, Xmean+ ∈ ℝ
2n×Ndwn 

are data other than downsampled data which were origi-
nally acquired by PIV measurement, respectively. Also, 
Ẑ∈ ℝ

r×Ndwn , X̂ ∈ ℝ
2n×Ndwn , and X̂mean+ ∈ ℝ

2n×Ndwn are the 
estimated POD mode coefficients, velocity fluctuation, and 
velocity fields (mean + fluctuation), respectively. Here, Ndwn 
is the number of data other than downsampled data, corre-
sponding to N − Nfdwn.

The originally acquired data are also lowered in dimen-
sion in Eq. (51), indicating the estimation accuracy of the 
low-dimensional data itself. On the other hand, E2 and E3 
include not only the reconstruction error of the low-dimen-
sional data itself but also the errors due to the reduction in 
dimension by the SVD.

In this study, the numbers of both POD and DMD modes 
were set to 14, and � = 1 by considering reconstruction 
errors E1 and E2 . A detail is provided in Appendix C. Fig-
ure 15 shows the reconstruction errors when the downsam-
pling rates were 1/2, 1/4, 1/8, and 1/16. As a result, the 
reconstruction errors E1 , E2 , and E3 when the downsampling 
rate is 1/2 are the minimum (78.92 %, 92.77 %, and 22.81 

(51)E1 =
‖Ẑ − Z‖2

F

‖Z‖2
F

× 100,

(52)E2 =
‖X̂ − X‖2

F

‖X‖2
F

× 100,

(53)E3 =
‖X̂mean+ − Xmean+‖2F

‖Xmean+‖2F
× 100,

%, respectively). The errors can be further decreased when 
the downsampling rate is 1/1 of the full data. The linear 
estimations of errors E1 , E2 , and E3 at the downsampling 
rate of 1/1 are 67.72 %, 89.15 %, and 21.89 %, respectively. 
These reconstruction errors are significantly lower than the 
reconstruction error E1 (96.69 %) when the spatiotemporal 
superresolution measurement without a dynamical system 
was conducted only by the linear least-square regression 
of velocity field and acoustic data with (Nishikori 2022). 
Ozawa et al. (2022), Lee et al. (2023) and Lee et al. (2024) 
improved the estimation accuracy of the linear regression 
model by selecting POD modes of a time-delay embedded 
microphone data matrix of which correlation with the PIV or 
BOS data is high. However, the fluid structure which could 
be reconstructed was limited to the structure relating to the 
screech tone which has a high correlation with the acoustic 
data. On the other hand, the proposed method successfully 
reconstructed structures that do not have high correlations 
with the acoustic data like the large-scale turbulent structure 
downstream.

4.4  Correlation between DMD mode coefficients

The correlations between DMD mode coefficients are cal-
culated to clarify the influence of the mixing promotion by 
screech tones on the large-scale turbulent structure and the 
streak structure downstream.

The DMD mode coefficient is composed of complex 
numbers, and it oscillates at each DMD mode frequency 
with the amplitude fluctuating. When we look at the real 
or imaginary part of the DMD mode coefficient, it also 
oscillates at each DMD mode frequency with the amplitude 
fluctuating as well. On the other hand, information about 
only amplitude fluctuation can be extracted when we look 
at the absolute values of DMD mode coefficients. Figure 16 
shows the real part and absolute values of the complex DMD 
mode coefficient (the mode 1). The real part oscillates at the 
screech first peak (12.4 kHz) and the absolute values also 
oscillates at a lower frequency than the real part. This oscil-
lation of the absolute values is due to the rotation around the 
streamwise axis of the structure relating to the screech tone, 
as mentioned earlier. The absolute values are high when the 
structure relating to the screech tone is in the PIV measure-
ment plane. On the other hand, the absolute values are low, 
when it is out of the PIV measurement plane.

Table 2 shows the correlation coefficients between the 
absolute values of the DMD mode coefficient of the mode 
1 and the ones of other modes. This result illustrates that 
correlation coefficients with the modes 3, 5, 7 and 10 are 
low. These modes are dominant structures which con-
struct the large-scale turbulent structure. Thus, it shows 
that the amplitudes of large-scale turbulent structures are 
not influenced by change in the amplitude of the structure 

Fig. 15  Reconstruction errors E
1
 , E

2
 , and E

3
 of all the estimated 

velocity fields at the time steps when the downsampling rates were 
1/2, 1/4, 1/8, and 1/16 (the numbers of both POD and DMD modes 
are 14, and � = 1)
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relating to screech tone. On the other hand, the correlation 
coefficient with the mode 12 is relatively high. This mode 
is the streak structure which represents acceleration and 
deceleration of the flow field downstream, and it shows 
that the amplitude of the acceleration and deceleration is 
influenced by change in the strength of the structure relat-
ing to screech tone to some degree. This result implicates 
that there may be some relationship between the structure 
relating to the screech tone and the streak structure.

Hereafter, we focus on the relationship between the 
structure relating to the screech tone (the mode 1) and the 
streak structure (the mode 12). Figures 17 and 18 show the 
covariance between the absolute DMD values of the mode 
coefficient of the mode 1 and the time history of the veloc-
ity field component composed of only streak structure at 
each spatial point. The time history is obtained from the 
real part of the velocity field data matrix composed of 
only the mode 12. Based on Eq. (49), this data matrix is 
calculated as follows:

where Xm=12
PIV

 is the velocity field data matrix composed of 
only the mode 12. The actual velocity field relating to only 
the streak structure is composed of the modes 12 and 13. 
Here, the mode 13 is the DMD mode of which eigenvalue is 

(54)Xm=12
PIV

= �12L12,

in a complex conjugate relationship with the eigenvalue of 
the mode 12. However, the following relationship consists:

where Re(⋅) denotes the real part of the complex matrix. 
Therefore, the real part of Xm=12

PIV
 is used and the time history 

of the velocity field component composed of only streak 
structure is obtained.

Figure 17a shows the covariance with the time history 
of the axial component of the velocity field at each spatial 
point. This result represents that the positive streak struc-
ture is generated when the amplitude of the structure relat-
ing to the screech tone is large in the PIV measurement 
plane. In other words, the downstream flow is accelerated 
in the mainstream direction when the structure relating 
to screech is in-plane, and vice versa (Fig. 17b). Then, 
Fig. 18a shows the covariance with the vertical compo-
nent of the velocity field at each spatial point. This result 
represents that the downstream flow is accelerated in the 
radial direction when the structure relating to screech is in-
plane, and vice versa (Fig. 18b). Here, the acceleration and 
deceleration in the radial direction represents the move-
ment of the streamwise vortice, and the acceleration in 
the radial direction corresponds to the mixing promotion. 
This is consistent with findings of previous researches that 
screech tones promote the mixing in downstream due to 
the streamwise vortices (Alkislar et al. 2003; Husain and 
Hussain 1993). In addition, the relationship of accelera-
tion/deceleration between the mainstream and the radial 
directions represents the lift-up mechanism that lifting of 
high-/low-velocity fluid from the center/outer jet induces 
positive/negative streaks, respectively (Pickering et al. 
2020). Therefore, the in-plane structure relating to screech 
tone causes the lift-up of the high-velocity fluid from the 
jet center (mixing promotion), and the lift-up accelerates 
the downstream by lift-up mechanism.

(55)2Re(�12L12) = �12L12 +�13L13,

Fig. 16  Real part and the abso-
lute values of the DMD mode 
coefficient (the mode 1)

Table 2  Correlation coefficients 
with other absolute values of the 
DMD mode coefficients

Mode Correlation coef-
ficient

Mode 3 −0.080
Mode 5 −0.067
Mode 7 −0.096
Mode 10 −0.049
Mode 12 −0.213
Mode 14 −0.051
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Next, the relationship between the amplitude of the 
structure relating to the screech tone and the acceleration/
deceleration of the streak structure is evaluated from the 
other point of view. Figure 19a shows the absolute values of 
the DMD mode coefficient of the mode 1 which represents 
the time history of the amplitude of the structure relating 
to the screech tone. Figure 19b shows the real part of the 
DMD mode coefficient of the mode 12 which represents 
the time history of acceleration/deceleration of the streak 
structure. Then, the correlation between the two time his-
tories is calculated. Here, the phase of the real part of the 
mode 12 coefficient should be adjusted because the phase 
varies depending on the axis into which the complex value 
is projected, including the real axis and the imaginary axis. 
When the phase of the real part of the mode 12 coefficient 
is changed by � , the real part of the mode 12 coefficient is 
rewritten as follows:

where Im(⋅) denotes the imaginary part of the complex 
matrix.

Here, the correlation coefficient between the abso-
lute DMD mode coefficient of the mode 1, |Z1

DMD
| and 

(56)Re(Z12
DMD

⋅ ei�) = Re(Z12
DMD

) cos � − Im(Z12
DMD

) sin �,

the real part of the DMD mode coefficient of the mode 
12 with the phase changed, Re(Z12

DMD
⋅ ei�) is the func-

tion of � . Thus, �max when the correlation coefficient is 
maximized is solved by calculating the derivative of the 
correlation coefficient. As a result, the correlation coef-
ficient is maximized when � is 0.1097 (Fig. 20) and the 
maximized correlation coefficient is 0.797. This high 
correlation coefficient shows that the period of change 
in amplitude of the structure relating to the screech tone 
corresponds to the period of acceleration/deceleration of 
the streak structure.

5  Conclusions

The present study applies a framework of the spatiotemporal 
superresolution measurement based on tlsDMD, the Kalman 
filter and the Rauch-Tung-Striebel smoother to a Mach 1.35 
axisymmetric underexpanded supersonic jet. The dual PIV 
system was constructed and paired velocity fields of the flow 
with a short time interval at the sampling rate of 5000 Hz 
were obtained. Also, high-frequency acoustic measurements 
of 200,000 Hz were simultaneously conducted. Then, the 
temporal development information was obtained by applying 

Fig. 17  Relationship between 
the structure relating to screech 
tone and the streak structure 
(axial component): a covari-
ance with the time history of the 
axial component of the velocity 
field at each spatial point. b 
Acceleration/deceleration in 
the mainstream direction of 
downstream depending on the 
screech position
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Fig. 18  Relationship between 
the structure relating to screech 
tone and the streak structure 
(vertical component): a covari-
ance with the vertical compo-
nent of the velocity field at each 
spatial point. b Acceleration/
deceleration in the radial direc-
tion of downstream depending 
on the screech position

Fig. 19  Correlation between the amplitude of the structure relating to the screech tone and acceleration/deceleration of the streak structure: a 
Time history of the amplitude of the structure relating to the screech tone. b Time history of acceleration/deceleration of the streak structure
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tlsDMD to the POD mode coefficients of the paired veloc-
ity fields. Finally, the superresolved velocity fields of the 
supersonic jet were reconstructed at the same sampling rate 
as that of the acoustic measurements (200,000 Hz) by inter-
polating the temporal development information and acous-
tic data into the Kalman filter and the RTS smoother. The 
superresolved result illustrates the smooth convection of 
the large-scale turbulent structure on the downstream side 
as well as that of the structure relating to the screech tone 
on the upstream side, while the previous POD-based spa-
tiotemporal superresolution measurement cannot estimate 
such large-scale structures. The reason is that the proposed 
method can reconstruct the structures which do not have 
high correlation with the acoustic data. In addition, from the 
tlsDMD results, the DMD mode 1 which is estimated to be 
the structure relating to the screech tone was obtained near 
the screech frequency of the microphone measurements. In 
addition, the DMD modes 3, 5, 7, and 10 are estimated to 
be components of the large-scale turbulent structure, and 
the DMD mode 12 is estimated to be the streak structure.

Next, the time coefficients of the DMD modes were cal-
culated from the POD mode coefficients which are time-
resolved by the Kalman filter and the RTS smoother. Then, 
the absolute value of the DMD mode coefficient of the mode 
1 which shows the time history of the amplitude of the struc-
ture relating to the screech tone was calculated. The covari-
ance distribution of it with the time history of the velocity 
field which is composed of only the mode 12 shows that the 
acceleration of the downstream in the axial and radial direc-
tion occurs when the structure relating to the screech tone is 
in the PIV measurement plane, and vice versa. It shows that 
the screech causes the mixing promotion of the downstream, 
and this mixing promotion accelerates the downstream in the 
axial direction by lift-up mechanism. Also, the real part of 
the DMD mode coefficient of the mode 12 which shows the 
time history of acceleration/deceleration of the streak struc-
ture, was calculated. The correlation coefficient between the 
absolute values of the DMD mode coefficient of the mode 1 

and the real part of the DMD mode coefficient of the mode 
12 is 0.797 when the phase of the real part is changed by 
0.1097. It shows that the period of change in amplitude of 
the structure relating to the screech tone corresponds to the 
period of acceleration/deceleration of the streak structure.

In this study, nonlinear fluid dynamics is estimated 
by using a linear dynamical model. This is based on the 
assumption nonlinear dynamics in short time intervals can be 
approximated by the linear model. However, the estimation 
accuracy became worse when the number of the POD modes 
used for the reconstruction was larger as shown in Appendix 
C. It shows that the estimation of higher-frequency turbu-
lent structures is difficult in the proposed method. This is a 
reason why the fine-scale turbulent structure relating to the 
broadband shock-associated noise could not be reconstructed 
although the large-scale turbulent structure and the structure 
relating to the screech tone were successfully reconstructed. 
Therefore, the fluid structures that can be reconstructed are 
limited to the structures with lower frequency compared to 
the short time interval of the paired data. This is the limita-
tion of the proposed method. Therefore, in the future, we 
will focus on the development of the spatiotemporal super-
resolution measurement with the nonlinear dynamical model 
which can estimate the nonlinear fluid dynamics.

Appendix A: Summary of analysis procedure

Figure 21 shows the flowchart of the system identification 
procedure. In this procedure, the system and observation 
matrices, and the noise covariance matrices are calculated 
by using the tlsDMD and the linear regression for the spati-
otemporal superresolution measurement.

Figure 22 shows the flowchart of the spatiotemporal 
superresolution measurement procedure. In this process, 
unknown velocity fields in the time region between the 
measured velocity fields are estimated by the Kalman filter 
and the RTS smoother based on the calculated system and 
observation matrices, and the noise covariance matrices.

Appendix B: Convergences of the mean 
velocity field, POD modes, and best‑fit linear 
operators

Convergence of the mean velocity field

The convergence of the mean velocity field used to calcu-
late the mean-subtracted velocity fields for the SVD was 
discussed.

The convergence of the mean velocity field was evaluated 
by calculating the relative difference adiff between the mean 

Fig. 20  Correlation coefficient when the phase of the real part of the 
mode 12 coefficient is changed by �
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velocity field when the number of snapshots is changed and 
the one when full snapshots are used for the averaging as 
follows:

where Xmean and Xfull
mean

 are the mean velocity field when 
the number of snapshots is changed and the one when full 
snapshots are used for the averaging, respectively. Also, the 
number of full snapshots is N, corresponding to 14990.

Figure 23 shows the relative difference adiff of the camera 
� . The mean velocity field converges enough.

(57)adiff =
‖Xmean − Xfull

mean
‖2
F

‖Xfull
mean

‖2
F

× 100,

Fig. 21  Flowchart of the system 
identification procedure for the 
spatiotemporal superresolution 
measurement

PIV data (camera ) PIV data (camera )Acoustic data

Mean subtraction Mean subtraction

PIV data matrix, PIV data matrix,

Acoustic data matrix,

Mean subtraction

Addition of flipped data

PIV data matrix
with flipped data, Sym

Addition of flipped data

PIV data matrix
with flipped data, Sym

SVD + truncation

POD mode,

POD mode coefficient,
+

“1st” of paired data, 1st
α

“2nd” of paired data, 2nd
α

“1st” of paired data, 1st

“2nd” of paired data, 2nd

SVD + truncation

POD mode,

POD mode coefficient,
+

tlsDMD

Best-fit linear operator, 0.5

System matrix,

Best-fit linear operator, 0.5

+
Noise covariance matrix, 0.5 Noise covariance matrix, 0.5

+

System noise
covariance matrix,

Linear
regression

Observation matrix,

Observation noise
covariance matrix,

Fig. 22  Flowchart of the 
spatiotemporal superresolution 
measurement procedure

Fig. 23  Convergence of the mean velocity field of the camera �
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Convergence of POD modes

The convergence was evaluated by calculating the cumula-
tive energy of the first r POD modes, ae as follows:

where �(i) is the ith diagonal component of � in Eqs. (3) 
and (4).

Figure 24 shows the cumulative energy ratio ae of the 
camera � when the first r modes were used. In this study, 14 
modes were used to discuss the relationships between the 
corresponding dominant structures. However, ae was only 
37.0 % in that case, which implicates that the POD modes 
do not converge. The reason why only 14 modes were used 
is that the reconstruction error increases as the number of 
POD modes increases as described in Appendix C due to the 
nonlinearity of the temporal evolution. POD modes do not 
converge, and the reconstruction error E2 was higher than 
the reconstruction error E1 as shown in Fig. 15 because it 
includes the errors due to the reduction in dimension by the 
SVD. However, the reconstruction error E3 was lower than 
E2 although the energy of the low-dimensional data was only 
37.0 %. The reason is that the SVD was applied to the veloc-
ity fluctuation, and the mean velocity field has high energy.

Convergence of best‑fit linear operators calculated 
by the tlsDMD

The convergence of the best-fit linear operators A0.5
�→�

 and 
A0.5

�→�
 was discussed by changing the number of snapshots 

used for the tlsDMD.
The convergence of the best-fit linear operators was 

evaluated by calculating the relative difference bdiff between 
the best-fit linear operator when the number of snapshots is 
changed and the one when full snapshots were used for the 
tlsDMD as follows:

where A0.5 and A0.5,full are the best-fit linear operator when 
the number of snapshots is changed, and the one when full 
snapshots are used for the tlsDMD, respectively. Also, full 

(58)ae =

∑r

i=1
�(i)2

∑2N

i=1
�(i)2

× 100,

(59)bdiff =
‖A0.5 − A0.5,full‖2

F

‖A0.5,full‖2
F

× 100,

Fig. 24  Convergence of POD modes of the camera �

Fig. 25  Convergence of the best-fit linear operators (the numbers of 
POD and DMD modes are 14): a A0.5

�→�
 . b A0.5

�→�

Fig. 26  Reconstruction errors when the numbers of POD and DMD 
modes are changed ( � = 1): a E

1
 . b E

2
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snapshots are used when the sampling rate is 1/1, and the 
number of snapshots is N/2, corresponding to 7496.

Figure 25 shows the relative difference bdiff of the best-fit 
linear operators A0.5

�→�
 and A0.5

�→�
 . In this study, the numbers 

of snapshots when the sampling rates are 1/2, 1/4, 1/8, and 
1/16 are (Nfdwn)∕2 , corresponding to 3748, 1874, 937, and 
469, respectively. In that case, both best-fit linear operators 
do not converge enough as the sampling rate is lower. This is 
one of the reasons why the reconstruction errors are higher 
as the sampling rate is lower.

Appendix C: Optimization 
of hyperparameters

The optimal numbers of the POD and DMD modes, and 
the optimal coefficient of the observation error covari-
ance matrix, � , were determined based on the reconstruc-
tion errors E1 and E2 when the sampling rate is 1/2. First, 
the optimal numbers of the POD and DMD modes were 
determined when � is 1. Next, the optimal � was determined 
when the numbers of the POD and DMD modes are optimal 
numbers.

Fig. 27  Reconstruction errors when � is changed (the numbers of 
both POD and DMD modes are 14)

(a) (b)

(c)

Fig. 28  Probability density functions: a v0.5
�→�

 generated by multiplying A0.5

�→�
 . b v0.5

�→�
 generated by multiplying A0.5

�→�
 . c observation noise w

k
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Figure 26 shows the reconstruction errors E1 and E2 when 
the numbers of the POD and DMD modes are changed. As 
mentioned earlier, the number of the POD modes must be 
more than the number of the DMD modes. The reconstruction 
error E1 increases as the number of POD modes increases. 
That is because the temporal evolution between the paired 
velocity fields with small time differences was estimated 
by using the tlsDMD, assuming that it can be approximated 
by a linear relationship. POD modes with higher numbers 
include high-frequency turbulent structures of which tem-
poral evolution could not be represented by the linear rela-
tionship. Therefore, the estimation accuracy was deteriorated 
when those POD modes were also used for the reconstruc-
tion. The reconstruction error E2 increases as the number of 
modes increases for the same reason. However, the error also 
increases when the numbers of POD and DMD modes are 
too small (from 2 to 12 modes) because E2 includes not only 
the reconstruction error of the low-dimensional data itself but 
also the errors due to the reduction in dimension by the SVD. 
In addition, the final goal of this study is to discuss the rela-
tionships between as many low-dimensional fluid structures 

as possible. Therefore, both numbers of the POD and DMD 
modes were set to 14 in this study.

Figure 27 shows the reconstruction error E1 when � is 
changed. As a result, the reconstruction error is minimum 
(78.92 % ) when � is 1. It implicates that system and obser-
vation noise covariance matrices were estimated properly.

Thus, the optimal parameters for the spatiotemporal 
superresolution measurement were determined.

Appendix D: Noise characteristics

Figure 28 shows probability density functions of v0.5
�→�

 and 
v0.5
�→�

 generated in Eqs. (18) and (19), and observation noise 
wk . The shapes of these functions are almost normal distri-
butions. Therefore, these noises can be regarded as gaussian 
noises. Also, Fig. 29 shows normalized distributions of the 
noise covariance matrices �̂�→� , �̂�→� , and �̂.

Fig. 29  Normalized noise 
covariance matrices: a �̂�→� . b 
�̂�→� . c �̂
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