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Abstract
This paper explores integrating artificial intelligence (AI) segmentation models, particularly the Segment Anything Model 
(SAM), into fluid mechanics experiments. SAM’s architecture, comprising an image encoder, prompt encoder, and mask 
decoder, is investigated for its application in detecting and segmenting objects and flow structures. Additionally, we explore 
the integration of natural language prompts, such as BERT, to enhance SAM’s performance in segmenting specific objects. 
Through case studies, we found that SAM is robust in object detection in fluid experiments. However, segmentations related 
to flow properties, such as scalar turbulence and bubbly flows, require fine-tuning. To facilitate the application, we have 
established a repository (https:// github. com/ AliRK hojas teh/ Flow_ segme ntati on) where models and usage examples can be 
accessed.

1 Introduction

Experiments in fluid mechanics have evolved significantly, 
with objects of study becoming complex. While traditional 
experiments focused on canonical objects like cylinder wake 
flows and backward step flows, current studies contain com-
plicated cases such as the motion of flying birds (Usherwood 
et al. 2020). Even studies in canonical objects are now in 
three-dimensional experiments with perspective effects in 
the recorded images, which challenge accurate masking. 
This becomes essential in fluid–structure interaction stud-
ies where the object’s shape and position must be detected. 
Current approaches rely on either identifying void regions 
with no particles (Jux et al. 2021) or case-specific manual 
masking.

Apart from object identification, flow structures also 
require segmentation. Turbulent flow structures are known 
for their complex and chaotic patterns, which make the iden-
tification of these structures complicated. The turbulent/non-
turbulent interface (TNTI) is among these structures, mark-
ing the boundary between the chaotic, rotational regions of 
turbulent flow and the irrotational regions (Westerweel et al. 
2005). Accurately detecting the TNTI structures is essential 

for understanding and modelling turbulent properties, such 
as transport across the interfaces. In scalar turbulence, such 
as smoke plumes, the TNTI displays a sharp-edge separation 
from the non-turbulent region. However, edge detection is 
still challenging due to the chaotic patterns of turbulence 
(Asadi 2024). Scalar turbulence segmentation is a common 
measure to detect the TNTI. Existing methods primarily rely 
on a threshold approach, finding the local minimum from the 
histogram intensity distribution, or a clustering approach 
(Younes et al. 2021). Manual segmentation to detect tur-
bulent structures is also employed in complex situations. 
A review of TNTI detection algorithms is available in the 
thesis of Asadi (2024). All these examples highlight the need 
for a universal segmentation model that can effectively work 
on both coherent structures and objects in fluid experiments.

Recent advancements in image segmentation using arti-
ficial intelligence (AI) offer favourable applications in fluid 
mechanics experiments. Vennemann and Rösgen (2020) 
introduced an automatic masking method based on artifi-
cial neural networks (ANNs) in velocimetry images. This 
approach showed promising results in 2D measurements, 
particularly in scenarios where only a single object is present 
within the field of view. However, its capability to segment 
complex flow structures or differentiate between distinct 
objects in the view, such as for segmenting the bike from 
the cyclist in a sports flow experiment (Jux et al. 2018), 
is constrained. The Segment Anything Model (SAM), 
developed by Meta AI (Kirillov et al. 2023), stands out as a 
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foundation model. The extensive training dataset of SAM, 
consisting of over 1 billion masks and 11 million images, 
offers a robust starting point for exploring its capabilities in 
fluid experiments.

In this paper, we begin by introducing object segmen-
tation and detailing the process of fine-tuning to address 
the complexities in fluid flow detection using pre-trained 
architecture and weightings of SAM. We focus on detecting 
structures in a turbulent flow, the turbulent/non-turbulent 
interface, by using a time series of images of scalar con-
centration. This needed fine-tuning of the mask decoder of 
the SAM implementation. We fine-tuned the mask decoder 
using the same approach as the model was originally trained, 
aiming to detect scalar turbulent/non-turbulent structures. 
Finally, we demonstrate how the prompt encoder of SAM 
can be modified and combined with language models to ease 
complex object detection in experiments using only textual 
input.

2  Segment Anything Model

SAM’s architecture comprises three key modules: an image 
encoder, a prompt encoder, and a mask decoder (see Fig. 1). 
The image encoder processes input images to generate image 
embeddings (representations), while the prompt encoder 
transforms point and box prompts into embeddings that 
guide segmentation. The mask decoder combines the infor-
mation from the image and prompts encoders to predict the 
final segmentation mask(s). SAM accepts guiding prompts 
in various forms, such as points or bounding boxes. How-
ever, complex geometries require more detailed prompts, 
and objects often move during experiments, such as a fly-
ing bird (Usherwood et al. 2020). Therefore, using point 
or box prompts might not be directly applicable in fluid 
experiments.

Recent studies have attempted to integrate natural lan-
guage models, such as BERT introduced by Google AI 
Language (Devlin et al. 2018), as encoder prompts to per-
form highly specific and context-aware tasks. The language 
understanding from BERT helps the model focus attention 

Fig. 1  The Segment Anything Model (SAM) (Kirillov et al. 2023). Its 
image encoder creates a representation that supports object mask gen-
eration in response to different prompts, capable of producing multi-
ple valid masks (shown in black) and confidence scores

Fig. 2  Identification of turbulent/non-turbulent flow. The model is 
trained on a a low Reynolds number of 2000. b–d The fine-tuned 
model is then applied at higher Reynolds numbers
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and isolates desired objects within an image. In this study, 
we were inspired by Lightning AI (Lightning 2024), which 
integrated natural language prompts with GroundingDino 
(Liu et al. 2023) and SAM. GroundingDino employs BERT 
to detect a bounding box around objects. BERT tokenises 
the textual input to create contextualised embeddings, which 
are enhanced using text-to-image and image-to-text cross-
attention mechanisms (Liu et al. 2023). These refined fea-
tures are processed by a cross-modality decoder, aligning the 
text with relevant visual regions to generate bounding boxes 
around described objects and serve as prompts for the SAM 
model (see Fig. 1). We, therefore, can combine language 
understanding from BERT to use textual inputs in SAM for 
flow experiment segmentation.

2.1  Fine‑tune SAM model

Fine-tuning involves optimising a pre-trained model 
(architecture+weights) with data specific to a particular 
use case. Ma et al. (2024) demonstrated that employing 
SAM in medical images can enhance performance, particu-
larly when the number of training images is substantially 
increased. The fine-tuning process involves multiple epochs, 
where the model iterates over the entire dataset, computing 
the loss between predicted masks and ground truth masks 
for each batch and updating the model’s parameters using 
backpropagation. During fine-tuning, the pre-trained mod-
el’s parameters are adjusted to minimise the discrepancy 
between the predicted segmentation masks and the ground 
truth masks. This is achieved by iteratively optimising the 
model’s parameters using an optimisation algorithm (in this 
case, Adaptive Moment Estimation, ADAM (Kingma and 
Ba 2014)). The loss between the predicted and ground truth 
penalises deviations between the predicted and ground truth 
masks. Through this process, the model learns better to cap-
ture the specific patterns and features in datasets, ultimately 
improving its performance on segmentation tasks such as 
scalar turbulence. The convergence and evaluation of the 
fine-tuning process are provided in Appendix A.

3  Detect scalar turbulence

Direct application of SAM to scalar turbulence works 
on random cases, but as Fig. 1 also illustrates, the output 
valid masks fail as they are trained and designed for natu-
ral images. SAM suffers from incorrect predictions, bro-
ken masks, and large turbulent and non-turbulent detection 
errors. Scalar turbulence can exhibit complex patterns, low-
contrast boundaries, thin structures, and significant differ-
ences from the objects typically found in natural images. 
Despite being trained with 1.1 billion masks, SAM’s predic-
tion quality falls short in dealing with turbulent flow.

We then fine-tuned the mask decoder of SAM for the 
specific task of scalar turbulence segmentation. As explained 
in Appendix A, we selected reliable turbulent/non-turbulent 
masks from low Reynolds number experimental data and 
applied them to pre-trained SAM model weights. We used 
scalar turbulence images of a jet flow provided by Fuku-
shima and Westerweel (2022). We intentionally trained the 
model with low Reynolds number data because the interface 
is well-shaped at such Reynolds numbers. Subsequently, we 
applied the fine-tuned model to higher Reynolds numbers, 
as shown in Fig. 2 and evaluated in Fig. 3. The performance 
of the fine-tuned model improved significantly, with IoU 
scores, which measure the overlap between the predicted 
and reference masks relative to the area of their union (see 
Appendix A), increasing from 0.5 to above 0.95 for all Reyn-
olds numbers. At higher Reynolds numbers, the interfaces 
have more scattered patterns and less sharply defined edges, 
which is why the pdf plots show broader distributions. We 
extend an additional application of the segmentation model 
in bubbly flows in Appendix B.

4  Objects in experiments

We analysed recent particle image velocimetry (PIV) and 
particle tracking velocimetry (PTV) experiment images, 
which present unique challenges compared to other seg-
mentation cases due to thousands of surrounding light-
emitting particles. In our initial case study, we focused on 
volumetric measurements of vortices behind a flying owl as 
it crossed the field of view (Usherwood et al. 2020). Given 
the complex nature of this object, manual masking proved 
impractical. Instead, by inputting only the text "Flying Owl", 
the segmentation model accurately produced masks without 
necessitating fine-tuning (see Fig. 4). The next case study 
involved 3D-PTV analysis around a cyclist (Jux et al. 2018). 
The model segmented the cyclist and accurately differenti-
ated the bike from the cyclist’s body.

The most challenging scenario occurred during parti-
cle detection in a water tank experiment where the jet was 

0.30.50.7
IoU score

0

100

200

pd
f

a)

0.60.81.0
IoU score

b)
Re 2000
Re 9000
Re 12000
Re 31000

Fig. 3  IoU scores for four Reynolds numbers: a SAM and b Fine-
tuned SAM in TNTI detection
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injected into the tank (Schanz et al. 2016). This case required 
fine-tuning the segmentation model for effective particle 
detection (similar to the bubbly flow in Appendix B). Even 
after fine-tuning, some large particles remained undetected. 
We found the model fails to detect particles when the back-
ground is fully dark, and the particles are bright. Therefore, 
we inverted the image colours to have dark particles and 
a bright white background. Furthermore, the model effec-
tively masked four sharks in a 3D-PIV study of schooling 
fish (Muller 2022). This level of understanding from the 
model to distinguish sharks individually allows for tracking 

schooling fish without interference from larger fish. In 
2D-PIV image analysis, the model segmented a flat plate and 
a hydrofoil using the "Hydrofoil + Wall" input (Zhou 2023).

5  Conclusion

In conclusion, we have introduced a practical approach by 
implementing the natural image segmentation model for 
coherent structure and object identification in fluid experi-
ments. SAM has proven to be a valuable tool, capable of 

Fig. 4  Object detection within the field of view of flow experiments. 
The segmentation model demonstrates robustness across various 
objects, accurately detecting their position, area, and shape with 
solely textual inputs. Textual inputs are a A flying owl (Usherwood 

et al. 2020), b A cyclist and a bike (Jux et al. 2018), c A skater (Terra 
et al. 2023), d Particles (Schanz et al. 2016), require fine-tuning simi-
lar to Appendix B, e Sharks (Muller 2022), f A hydrofoil close to a 
wall (Zhou 2023)
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being fine-tuned to understand the TNTI structures. Our 
approach involved fine-tuning the mask decoder of the 
SAM model, aligning with its original training methodol-
ogy. Additionally, we integrated the model with language 
models to serve as a prompt encoder, allowing communi-
cation between the language model and SAM for precise 
context detection.

Appendix A: Fine‑tuning and optimisation 
using adaptive moment estimation

SAM used the Adaptive Moment Estimation (ADAM, 
Kingma and Ba 2014) optimisation algorithm during the 
training of its model. We implement a similar optimiser 
for our fine-tuning process. The fine-tuning was performed 
on A100 NVIDIA GPUs. The key idea behind ADAM is 
to maintain an exponentially decaying average of past and 
squared gradients and then use these averages to update the 
parameters. To quantify the performance of the turbulent/
non-turbulent interface (TNTI) identification, we used three 
loss functions: Focal loss, Dice loss, and Intersection over 
Union (IoU) loss as explained by Kirillov et al. (2023). 
Focal loss addresses class imbalance by down-weighting 
easy examples and focusing more on hard examples. The 
Dice loss compares the overlap between the predicted and 
ground truth masks across the entire area. In contrast, the 
IoU measures the overlap relative to the area of their union, 
as illustrated in Fig. 5d. The ground truth (or reference) is 
the interface obtained from conventional edge detection 
techniques from Westerweel et al. (2005), which was first 
introduced by Prasad and Sreenivasan (1989). The total loss 
is then computed as the sum of the weighted Focal loss (with 
a weight of 20), Dice loss (with a weight of 1), and IoU loss 
(also with a weight of 1), reproducing the training configura-
tion of the original SAM model. 

We divided our data into 70% of uncorrelated snapshots 
(random snapshots) to train the model and kept the rest of 
30% to evaluate. This means that the model did not have 
access to the 30% of data. During training, losses con-
verged after ten epochs, as illustrated in Fig. 5a. We vali-
dated the model every two epochs using the remaining 30% 
of images unseen by the model, as shown in Fig. 5b. Vali-
dation scores ranged between 0 and 1, where 1 indicated 
perfect segmentation with respect to the ground truth. 
Both Dice coefficient (F1) and mean IoU scores remained 
well above 0.97 after epoch one but began to decline after 
15 epochs, indicating overfitting. Based on this analysis, 
we stopped fine-tuning at epoch 15. We then applied the 
fine-tuned model to cases with higher Reynolds numbers. 
As shown in Fig. 5c, the predicted IoU scores average 

approximately 0.95. This high average score indicates that 
the model predicts the results with a high degree of con-
fidence. All technical steps are available in the repository 
(https:// github. com/ AliRK hojas teh/ Flow_ segme ntati on).

Appendix B: Bubbly flows

Here, we focused on the hydrodynamics of bubbles in a 
channel (Hreiz et al. 2015). In this scenario, bubbles travel 
along the channel and experience size changes over time. 
The challenge arises from the fact that bubbles, while not 
conventional objects have hydrodynamic properties absent 
from the SAM model’s trained dataset. Moreover, bubbles 
exhibit diverse sizes and shapes, further complicating their 
detection. Therefore, fine-tuning the SAM model becomes 
necessary. To achieve this, we employed manual masks to 
train the model on bubble shapes and sizes. Consequently, 
the model successfully identified a wide range of bub-
bles, spanning from dot shapes to fully formed bubbles. 
The distribution of bubble areas in the probability density 
function (PDF) reveals the entire spectrum of sizes, with 
an average diameter of 3.5 pixels (see Fig. 6).

Fig. 5  Performance and loss metrics over 20 epochs during the train-
ing of the segmentation model on TNTI images. a Displays the aver-
age IoU loss, Dice loss, and Focal loss for each epoch, with error bars 
indicating the standard deviation. b is the Mean IoU and Mean F1 
scores over unseen 30% samples  of low Reynolds number. c Shows 
the confidence and IoU predictions on high Reynolds cases (see 
Fig. 2). d Schematic of IoU and Dice losses for TNTI detection

https://github.com/AliRKhojasteh/Flow_segmentation
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