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Abstract
The link between in-cylinder flow and subsequent combustion in a single-cylinder gasoline spark-ignition engine is analyzed 
via independent component analysis (ICA). Experimentally, the two in-plane components of the velocity are measured in 
the central cylinder plane by high-speed particle image velocimetry (PIV) with the engine running slightly lean at 1500 rpm 
in skip-fired mode. In 213 cycles, measurements are made during the late compression stroke before ignition with approxi-
mately 1° crank-angle temporal resolution. ICA then decomposes the set of 213 flow fields at each time step, yielding a set 
of “source” flow patterns—the independent components (IC). The temporal coherence between the ICs is then examined 
in a persistence analysis, comparing each IC with the one from the previous time step starting at ignition timing and going 
backwards in time. The results show which ICs persist how long throughout the compression stroke. To investigate the link 
between the ICs and combustion, the crank angle at which 10% of the fuel are burned (CA10) in each cycle is correlated with 
the extent to which a given IC can be found in each flow field. The most persistent IC can be traced over more than half of 
the 70 degrees crank angle over which images were acquired. The IC that correlates best with CA10 visually more resembles 
some of the flow features found in conditional averaging of fast-burning versus slow-burning cycles.

1 Introduction

Cycle-to-cycle combustion variations (CCV) in internal 
combustion engines lead to variations in output torque and 
emissions. This is more pronounced in spark-ignited (SI) 
engines, and even more so in lean operation, the extremes 
being knocking or misfiring cycles. The causal chain that 
explains the nature of CCV is still ongoing research, even 
though CCV have been investigated for decades. The fur-
ther development of optical diagnostics made it possible to 
obtain data like instantaneous flow fields and flame propa-
gation with high spatiotemporal resolution. This has been 
utilized to better understand the underlying reasons for CCV 
and to improve predictive models (Fontanesi et al. 2015; 
Granet et al. 2012; Zeng et al. 2017).

Since the turbulent flow in the cylinder of an engine is far 
from isotropic homogeneous turbulence, but instead is struc-
tured on a large scale (e.g., swirl or tumble), it is reasonable 

to assume that CCV in part is driven by variations of large or 
intermediate spatiotemporal scales (Reuss 2000). Therefore, 
one might look for “typical” flow features, which can be 
linked to combustion metrics such as peak pressure, combus-
tion phasing, and indicated mean effective pressure (IMEP), 
such that ultimately engine design can be informed by this 
insight. For this, a combination of in-cylinder pressure-based 
combustion analysis and time-resolved imaging diagnostics 
is needed. High-speed imaging systems with frame rates that 
are adequate to resolve the turbulent time scales in combi-
nation with large storage can collect time-resolved data to 
study combustion-related events on a statistically significant 
basis (Fajardo et al. 2006; Peterson et al. 2011). Next, objec-
tive and automated processing tools are needed to analyze 
the large amount of imaging data. Conditional averaging 
is a very simple yet useful method. In the context of CCV, 
typically images of the flow, fuel/air mixing, or flame propa-
gation are averaged conditionally to stemming from a subset 
of cycles with a specific combustion outcome, for example, 
being among the fastest or slowest-burning ones (Bode et al. 
2019; Laichter and Kaiser 2022). Correlation maps (Laichter 
et al. 2023) are used to investigate how well a single-valued 
quantity correlates with a scalar field quantity at any point 
in a two-dimensional field. Stiehl et al. (Stiehl et al. 2016) 
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investigated the in-cylinder flow field and fuel spray in a 
direct-injection spark-ignition engine via such correlation 
maps. The results indicated that CCV of the large-scale tum-
ble vortex significantly influenced the spray shape of the sec-
ond injection. When data from a large number of cycles (on 
the order of thousands) is available, machine learning can 
offer valuable insights. Such machine-learning approaches 
were employed by Hanuschkin et al. (2021). They used 
the two-dimensional cross sections of the flame at a single 
crank-angle degree (CAD) shortly after ignition to predict 
high- or low-energy combustion cycles.

In addition, proper orthogonal decomposition (POD) 
has found a range of applications in combustion research, 
including internal combustion engines (Borée 2003; Chen 
et al. 2011; Liu and Haworth 2011). POD decomposes data 
in terms of dominant structures by energy and frequency 
(Chen et al. 2013, 2012; Druault et al. 2005; Graftieaux et al. 
2001). However, in the resulting decomposition, even the 
leading-order modes do not necessarily resemble “typical” 
flow features, i.e., features that one might recognize in a 
given single cycle (Chen et al. 2013). POD is a good tool to 
compare data sets (Abraham et al. 2015) or to identify sub-
sets of data that have common features (Chen et al. 2014), 
but the connection between what is found in the POD mode 
structures and their coefficients on the one hand and physical 
processes on the other is not a priori guaranteed or obvious.

It appears that an alternative method, or at least further 
processing, is required to extract features that can be directly 
connected with observed flow and combustion behavior. 
This work explores if independent component analysis (ICA) 
of vector fields can extract flow features that are potentially 
responsible for the difference between late and early burns 
in lean spark-ignited premixed iso-octane/air combustion 
in an engine. The example studied here utilizes high-speed 
2D-particle image velocimetry (PIV) to investigate cycle-
to-cycle combustion variation in an optically accessible 
research engine.

Independent component analysis is a statistical tool used 
in various fields. Like POD, it is also based on single value 
decomposition (Hyvärinen 1999). Hyvärinen et al. (2001) 
investigated ICA in terms of mathematics and statistics and 
their research group provides an open-source code for Mat-
Lab©, FastICA (Hyvärinen n.d.).

The classic example for ICA is the so-called “cocktail 
party problem.” Voice signals are randomly mixed, and 
the task is to extract the individual speakers’ voices. ICA 
or POD can be used to separate the single-source signals. 
While POD just gives a set of dominant mixtures, ICA is 
able to extract the independent sound sources. The differ-
ence between ICA and POD is that ICA extracts statistically 
independent and non-Gaussian components from large data 
sets. This means that underlying statistically independent 
structures (blind sources) in signal mixtures are separated 

by ICA, while POD modes are always mixtures of dominant 
patterns (Chen et al. 2012). ICA is used without knowledge 
of the physically properties of the sources, and therefore, the 
number of independent components in a data set is usually 
unknown (Bizon et al. 2013a; Hyvärinen and Oja 2000). 
However, in contrast to POD, ICA does not sort dominant 
structures by level of energy.

The application of ICA in engine research is quite rare. 
Bizon et al. (2013a, 2016b) showed that ICA with two com-
ponents applied to images of flame luminosity in a diesel 
engine could identify two separate combustion events, the 
main combustion zone along on the central spray axes and 
the later combustion near the piston bowl. Bizon et al. (2016) 
also studied how ICA could be used to study the evolution 
of combustion luminosity for individual cycles and cycle 
sequences. They showed that time-dependent coefficients 
carry information about the CCV morphology. ICA could 
extract and separate moving sources from the background 
using a nonlinear mixing model. This was further elabo-
rated on using artificial examples to show the limitations of 
applying linear ICA to nonlinear mixtures. A study based on 
direct numerical simulation (DNS) used ICA to analyze the 
streamwise velocity fluctuations occurring in turbulent chan-
nel flows. The results indicate that ICA may be suitable to 
connect statistical with structural descriptions of turbulence 
(Wu and He 2022).

Since ICA appears to fulfill the intended task of iden-
tifying “typical” large-scale structures in scalar images, 
it should also be applicable to velocity fields, which is 
explored in this work. It is demonstrated that ICA of vector 
fields works and provides a plausible physical picture of the 
processes, leading to either early or late burning cycles.

2  Experimental setup and PIV 
measurements

2.1  Optical engine and operating conditions

Flow imaging was performed by high-speed PIV in an opti-
cally accessible four-stroke single-cylinder SI engine with 
four valves and a pent roof. Figure 1 illustrates the relevant 
part of the engine, and Table 1 summarizes the operating 
conditions. The engine was operated at 1500 rpm, and flow 
fields were captured from −90 to −20°CA (i.e., for 70 crank 
angles) in 213 fired cycles. Running the engine in “skip-
fired” mode, each fired cycle was followed by two motored 
cycles, which decreases the thermal load and the potential 
influence of the residual gas on CCV. The fuel was injected 
via port-fuel injection (PFI), which yields a near-homoge-
nous mixture at the timing of ignition. From each cycle’s 
record of the in-cylinder pressure trace, the heat-release rate 
(HRR) was calculated, and the crank angle at which 10% of 
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the fuel is burned (CA10) was used as an indication of the 
speed of the initial phase of combustion.

2.2  Optical diagnostics and image processing

A fused-silica cylinder liner and a flat piston window 
provided optical access. Silicone-oil droplets were intro-
duced ~ 50 cm upstream in the intake manifold. Two laser 
pulses from a frequency-doubled Nd:YVO4 (edgewave 
IS335, 532 nm, 1 mJ/ pulse, 9 ns pulse duration), tempo-
rally separated by Δt = 20 µs illuminated the tumble plane 
in a 0.6-mm-thick light sheet. The light scattered by the oil 
droplets was imaged by a CMOS camera, with 10.000 image 
pairs acquired per second, corresponding to about one image 
pair per crank angle. From each image pair, velocity vec-
tors were calculated using LaVision’s DaVis 8.4. Multi-pass 
cross-correlation with an interrogation window size decreas-
ing from 64 × 64 pixels to 32 × 32 pixels with 50% overlap 
resulted in a vector spacing of 914 µm. The moving average 
of five vector fields was calculated before ICA was applied. 
A more detailed description of the diagnostics and the image 
analysis can be found in Laichter and Kaiser (2022).

2.3  Pressure‑based analysis and PIV measurements

In Fig. 2, the pressure traces and the pressure-based quantity 
CA10 are plotted. With ignition at a −20°CA and a rela-
tively lean mixture of λ = 1.1, the IMEP at this operating 
point is 7.7 bar with a COV of 1%, which would be consid-
ered perfectly acceptable operating stability in a production 
engine. Nevertheless, as is typical for spark-ignited engines, 
the pressure traces show significant variability. A histogram 

Fig. 1  Sketch of the optical engine with the field of view

Table 1  Engine properties and 
operating conditions

a This paper assigns 0°CA to 
compression top-dead center, 
i.e., crank angles during intake 
and compression are negative

Engine type 4-stroke 
single 
cylinder

Fuel Iso-octane
Air–fuel ratio λ 1.1
Bore/stroke 84 /90 mm
Geom. comp. ratio 9:1
Engine speed 1500 RPM
Intake pressure 1 bar
Spark timing –20°CAa

IMEP 7.7 bar
COV of IMEP 1%

Fig. 2  (a) Pressure traces for all cycles in gray and their mean value in black. The red x indicates ignition, and the investigated crank-angle 
(= time) range is marked in light blue. (b) Histogram of CA10
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of CA10 is shown in Fig. 2b. The distribution is near-Gauss-
ian, slightly skewed to earlier crank angles and with the peak 
bin centered at 3°CA after combustion TDC. The mean is at 
2.4°CA. 74% of the cycles reach CA10 between 0 and 4°CA.

To give an overview of the flow during compression, 
Fig. 3 shows flow fields for selected crank angles. The first 
three columns contain flow fields from different single cycles 
and the last column shows the flow fields averaged over the 
whole data set. At −90°CA, the typical tumble motion can 
be found in each single cycle and in the average. The tumble 
vortex center is in a different position for each single cycle, 
and on average located somewhat to the right of center in 
the field of view. The peak velocity magnitude also differs 
from cycle to cycle. At −60°CA, the vortex center of the 
average flow has moved to the exhaust (i.e., right) side of the 
combustion chamber, and on a single-cycle basis, the posi-
tion of the vortex center still varies. This behavior continues 

until ignition timing at −20°CA. In Cycle #7 and Cycle #80 
a vortex can still be seen close to the spark plug, but in cycle 
#179 and also in the average the tumble vortex is now much 
less pronounced, reflecting the expected tumble breakdown 
toward TDC.

3  Methodology

3.1  Snapshot ICA

ICA is a statistical tool for finding underlying independent 
source flow structures s1, s2, …, sn from a set of flow fields 
x1, x2, …, xm at a given crank angle. Each flow field x con-
tains different proportions of the sources s. To what extent a 
flow field contains each of these sources is described in the 
mixture matrix A. This mixture matrix provides two pieces 

Fig. 3  First three columns: 
flow fields from three cycles at 
selected crank angles. Fourth 
column: mean flow at these 
crank angles. Only every 3rd 
vector in each dimension is 
shown
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of information, the absolute value and the polarity. However, 
this information is determined through a scaled version of 
the source signal; thus, it is difficult to recover the length 
and orientation of the vector. The model can be written as

with W = A−1. While x is known from the measurements 
(here the flow fields), A and s are unknown and must be 
determined iteratively, resulting in the best estimate y = Ws 
that maximizes the statistical independence of these esti-
mated components y (Hyvärinen et al. 2001). By assuming 
that the sources s are statistically independent, where each 
source is characterized by a non-Gaussian distribution, the 
maximization of the statistical independence of the estimate 
y solves the basic ICA problem from Eq. (1) (Hyvärinen and 
Oja 2000).

As the number n of the independent sources s is often 
unknown and much smaller than the number m of the flow 
fields x, the plain application of the ICA model would result 
in a m × n mixing matrix A. Thus, the rank of the data needs 
to be decreased. This is usually done by pre-processing 
based on principal component analysis (PCA), for example, 
by POD, so that only a few eigenvalues and vectors remain 
as input to ICA (Hyvärinen 1999; Bizon et al. 2013b).

3.2  Synthetic example

To obtain a first understanding what applying ICA to flow 
fields does, a synthetic example was exercised, as summa-
rized in Fig. 4a. Three sources are randomly mixed to cre-
ate 500 mixture samples. Each mixture contains all three 
sources, but to a different extent. POD creates as many 
modes as mixture samples are given to the algorithm. Here, 
only the first three are shown. The first POD mode φ1 repre-
sents the mean value of all mixture samples. The remaining 

(1)x = As ↔ s = Wx,

POD modes are sorted by energy in descending order. None 
of them resembles any original source. In comparison with 
that ICA only provides as many ICs as demanded from 
the algorithm in the first place. In this case, we know that 
exactly three sources exist, and the results show very similar 
flow fields compared to the original sources. Only the polar-
ity and the absolute value are different, as expected.

More realistically, the number of relevant ICs is not 
known a priori. A parameter study of the number of ICs is 
shown in Fig. 4b. We see that if the number of ICs is smaller 
than the number of sources, ICA only finds one or two out 
of three sources, but not a mixture of the three. Repeating 
the calculation may yield one or two different ICs, but each 
is always a scaled version of one of the original sources. 
When the FastICA (Hyvärinen n.d.) algorithm searches for 
more than three ICs (here, 4), it simply returns only three 
matrices as a result.

3.3  Determination of the number of ICs

The synthetic example presented in Fig. 4 showed that ICA 
works in principle on flow fields and that the algorithm is 
able to extract flow fields that are very similar to the original 
sources. However, in real engine data two inter-connected 
challenges exist: first, it is not known a priori how many 
sources exist, and second, the data contains noise. The latter 
is minimized—at the cost of some temporal resolution—by 
calculating the moving average of five images for each single 
cycle before ICA is applied and by only using the lower-
order POD modes. The former—not knowing the “relevant” 
number of ICs—is addressed here by varying the number 
of ICs (1, 2, 3, 5, 8, 10, and 20) and comparing the results. 
For completeness, Table 2 shows the portion of the total 
energy within the POD modes used for the ICA with various 
numbers of ICs.

Fig. 4  (a) ICA and POD applied 
to synthetic flow fields with the 
number of ICs set to the known 
number of sources (three), (b) 
the ICs found by FastICA with 
different numbers of requested 
ICs
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Figure 5 shows some of the results of this parameter 
study. Because it is not possible to compare the absolute 
values of the ICs, the background color represents not the 
magnitude but the orientation of each vector. This simpli-
fies an initial visual inspection, which was used to manually 
sort the ICs for the purposes of this figure. For example, the 
first column of the first row (2 ICs requested) shows a flow 
directed to the intake side. The three ICs in the second row 
are arranged such that the first one shows a similar flow 
pattern, etc. With 10 calculated ICs the pattern is similar, 
but some smaller-scale structures appear. In this column, 
the flow in each field is predominantly directed toward the 
intake side. The ICs in the second column feature a large 
central vortex. As previously noted, the sign (polarity) of 
the ICs is arbitrary. Reviewing the second column provides 
a clear illustration of this. While in the first row (2 ICs) the 
vortex rotates clockwise, in the second row (3 ICs) it is 
counter-clockwise.

If 8 or 10 (or 20, not shown) ICs are calculated, some 
of the ICs show relatively small flow patterns. One reason 

might be turbulence. The ICA algorithm first filters the 
data set through a POD, and if the number of ICs is set 
to, e.g., 10, in a next step only the first 10 POD modes are 
used to approximate the original sources. The more POD 
modes are used for the ICA, the more turbulence is con-
tained by these higher-order POD modes. Furthermore, the 
repeatability of the ICA becomes less robust. Calculating 
8, 10, or 20 ICs several times results in more variations 
between runs than returned for a lower requested number 
of ICs. By calculating five or less ICs, larger flow pat-
terns are visible. Some of the ICs are visually similar to 
ICs found with eight requested ICs, which we take to be 
an indication of convergence. Requesting three ICs yields 
close to a subset of the five ICs below, and two yields a 
subset of three. Since we are mostly interested in large-
scale patterns and but want as much information as pos-
sible, we set the number of ICs to 5, noting that this choice 
remains somewhat arbitrary.

Applying ICA at a specific crank angle for the decreased 
data set of five POD modes from all 213 recorded cycles 
results in 70 sets (from the 70 crank angles) of five ICs 
each. As FastICA requires a scalar input, the two-dimen-
sional velocity field was rearranged. Each u- and v-com-
ponent of the velocity field with its 49 × 64 subregions 
was transformed into a 1 × 3136 vector. These two vectors 
were then combined into a single 1 × 6272 vector which 
was used for ICA. Reversing the re-arrangement, the out-
put ICs were then separated to obtain the two velocity 
components, resulting in two matrixes with the original 
dimensions of 49 × 64 subregions, i.e., two-component 
vector fields.

Table 2  Cumulative energy 
contained in POD modes for 
different numbers of ICs

Number of ICs % of energy in 
POD modes

2 78.8
3 85.1
5 91.6
8 95.3
10 96.3
20 98.7

Fig. 5  Parameter study with dif-
ferent numbers of requested ICs 
at −45°CA
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3.4  Post‑processing

This snapshot ICA finds a set (here, 5) of independent com-
ponents that are “typical” for the ensemble of flow fields at 
a given crank angle. Since the ICs are neither connected in 
time, nor sorted like, for example, modes of a POD, further 
post-processing is indispensable. In this study, two different 
methods are applied to the resulting data set: a persistence 
analysis and an analysis of correlation with combustion. The 
flowchart in Fig. 6 illustrates the post-processing. The basic 
idea behind sorting the ICs is to presume temporal coher-
ence or persistence. That is, for a flow feature occurring 
during the compression stroke to be relevant for the later 
combustion event it must persist for an extended period of 
time.

To identify whether an IC persists throughout the com-
pression stroke, the similarity of pairs of flow fields across 
time is quantified by the relevance index RI. Liu and 
Haworth (2011) presented this metric:

where at each point in the flow field (xA. xB) represents the 
dot product of the two velocity vectors xA and xB, and |x| 
is the magnitude of x. The resulting relevance index varies 
between −1 and 1, with 1 corresponding to perfect align-
ment and −1 to anti-polar alignment. Starting at ignition 
timing, we compare each  ICi,t at timestep t with each  ICi,t-1 
at timestep t-1, the metric for similarity being the spatial 
average of RI . However, since the polarity of each ICs is 
random, RI = −1 indicates similarity as much RI  = 1 does. 
Hence, the absolute value of |RI| is used to identify persis-
tence. An example of such a |RI| combination matrix is given 
in Fig. 7. As shown in the top-left table in that figure, the 

(2)RI =
(x

A
⋅ x

B
)

|x
A
||x

B
|
,

two ICs with the highest |RI| are first linked. Here, these are 
 IC3 at −20°CA  (IC3, -20°CA) and  IC1 at −21°CA  (IC1, -21°CA). 
These ICs are now marked as already paired when looking 
for the best correlation among the remaining pairs of ICs. 
The algorithm continues with descending |RI| (gray, large 
arrows between tables in Fig. 7) until every  ICt has either a 
predecessor or there is no remaining |RI| > 0.5. Below this 
threshold, the flow fields are considered not similar.

The pairing procedure is subsequently executed for the 
preceding time step (comparing −21°CA with −22°CA, then 
−22°CA with −23°CA, and so on) until no further pairs are 
detected. This results in five chains of ICs starting at igni-
tion timing back to the crank angle at which no combination 
of ICs can be found anymore. The table in Fig. 8 shows the 
chain starting back from  IC2 for the first few crank angles. 
An example is shown at the bottom of the figure (here, later 
crank angles are used for a wider FOV).

Now that we have identified persistent, typical “compo-
nents” of the flow occurring in the compression stroke, how 
can we find out if any of them are “responsible” for a certain 
outcome of the (cyclically variable) combustion? For that 
purpose, the link between combustion and flow is analyzed 
by a correlation between CA10 and the degree to which each 
flow field contains a specific IC. In the first step, each IC is 
compared with each flow field for each timestep—by calcu-
lating a pair’s dot product  (ICi ∙  xm). Since only one IC is 
being compared here with a set of flow fields, the magnitude 
of the respective IC can also be considered. Thereby, regions 
in the IC with strong flow are given more importance than 
those with weaker flow. The resulting scalar quantity for 
each IC and each timestep is then checked for its correlation 
with CA10. The correlation coefficient  Ra,b is a measure to 
what extent two parameters are linearly correlated (Holický 
2013):

Fig. 6  Flowchart of the post-
processing of the flow fields
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A potential physical correlation between the dot product 
(i.e., flow) and CA10 (i.e., combustion) may not necessarily 
be linear, but we will see that the scatter in the data does not 
warrant looking for a higher-order correlation.

(3)R
a,b =

∑n

i=1
(a

i
− a)(b

i
− b)

�∑n

i=1

�
a
i
− a

�2∑n

i=1

�
b
i
− b

�2
,

4  Results

Figure 9 shows the five ICs at selected crank angles. Since 
ICs are inherently unsorted, there is not necessarily (in 
fact, more likely not) a connection in time between the 
ICs in a given column. At -90°CA,  IC5 shows the tumble 
vortex with its center on the exhaust side.  IC4 shows a flow 

Fig. 7  Relevance index for all 
combinations of  ICis at −20°CA 
and −21°CA

Fig. 8  Example of the resulting 
persistence chain
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field with two vortices, and  IC1 to  IC3 show a flow pattern 
without dominant vortex. Here, the flow is mostly directed 
to the piston or the pent roof. At −60°CA, the field of view 
covers the whole combustion chamber, and in each IC, a 
single vortex is found, but located at different positions. 
At −40°CA, the vortices in each IC remain, but they are 
decreasing in size due to the compression. Furthermore, 
the vortex centers are located at different positions. Closer 
to ignition, at −30°CA, only three ICs contain a vortex. 
 IC2 contains two flow regions at the spark plug with flow 
directed against each other, and  IC5 shows a larger-scale 
flow pattern. At ignition timing at −20°CA,  IC2 to  IC4 
have relatively small flow structures and a simple pattern 
is not visible. However,  IC1 shows a strong horizontal 
flow, and  IC5 includes a vortex next to the spark plug.

To connect the ICs with each other and find flow pat-
terns that persist during the compression stroke, similar 
flow fields are linked based on their relevance index as 
described in Sect. 3.4. Figure 10 shows the outcome of this 
persistence analysis, as well as two example ICs. Note that 
the global polarity of the ICs does not carry any meaning; 
therefore, each temporal sequence is fixed to one polarity. 
The most persistent IC  (IC1) has high relevance indices not 
only shortly after ignition and but also between −40°CA 
and −55°CA. However, between −32°CA and −40°CA this 
IC shows significant changes in its |RI| . The other ICs only 
persist from ignition to −27°CA and −37°CA. Even though 
each IC has a different persistence in time, all of the con-
nected ICs show similar drops in their |RI| , e.g., at −27°CA 
and -36°CA. One reason for these drops may occur due to 
the formation of new flow patterns. The algorithm compares 
all ICs from two consecutive time steps and then arranges 
them based on their highest RI values. If two ICs become 
more similar over time, for example, due to the movement 

of vortex centers toward the center, and simultaneously new 
flow patterns occur, only one IC can be associated with the 
old pattern. The RI will then decrease.

The corresponding flow pattern of  IC1 and  IC3 is given 
on the bottom in Fig. 10. The vortex near the spark plug in 
 IC1 at earlier crank angles gradually disappears and leaves 
a nearly unidirectional flow from right to left at ignition. 
The other example IC in Fig. 10,  IC3, is less persistent. At 
−32°CA, it shows a vortex with its center on the intake side 
next to the spark plug. At −28°CA, a second smaller vor-
tex appears on the exhaust side, and toward TDC, this one 
becomes more prominent.

Next, to gain information about the relation between the 
speed of combustion and ICs, each IC is compared to each 
(moving-average time-filtered) snapshot at the correspond-
ing crank angle. The resulting dot product indicates how 
much of an IC is contained within a snapshot. This scalar 
quantity is then correlated with the pressure-based combus-
tion quantity CA10.

Figure 11a shows examples of the procedure. Since the 
magnitude is being taken into account by the dot product, 
color coding and vector length represent that magnitude. The 
flow field in cycle 7 has a vortex center on the exhaust side 
close to the pent roof, while the vortex in  IC1 is more cen-
tered in the horizontal direction. The dot product of  IC1 and 
 x7 is only 0.0037, i.e., these two flow fields have very little 
in common. In cycle 80, the vortex center is more centered 
horizontally, which better matches the IC with a dot product 
of −0.1533. However, the faster flow in the IC below the 
spark plug does not fit with the low velocities in the same 
region in cycle 80. Among the three example cycles here, the 
best fit between IC and snapshot has cycle 179. The vortex 
center is vertically more centered than it is in cycle 80 and 
that leads to higher velocities below the spark plug. The 

Fig. 9  ICs at selected crank 
angles (not sorted)
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corresponding dot product is −0.189. Figure 11b shows the 
correlation of combustion speed and dot product as a scatter 
plot for the whole data set at −55°CA. In this case, indeed, 
if much of  IC1 is contained in a snapshot, combustion tends 
to be faster (earlier CA10) and vice versa. Here, the overall 
correlation coefficient is 0.438.

Figure 12a now combines the persistence analysis from 
Fig. 10 and the correlation analysis from Fig. 11. Here, the 
absolute value of the correlation coefficient |R|, represent-
ing the degree of correlation between the dot product  (ICi ∙ 
 xm) and CA10, is plotted vs. CAD. The length of each trace 
indicates the persistence of an IC, while R indicates how rel-
evant the IC is for the speed of the subsequent combustion. 
Tracing the correlation from its individual starting point to 
ignition, the most persistent IC  (IC1) has a relatively high 
R value of 0.48 at −55°CA, slowly decreasing to 0.05 at 
−30°CA. At ignition (−20°CA), this IC has the second low-
est correlation coefficient. The correlation coefficients of  IC2 
and  IC3 are more constant but also low with ~ 0.05 and ~ 0.1, 
respectively.  IC5 starts at −28°CA with an R value of 0.1, 
increasing to about 0.25 between −25°CA and −22°CA, 
then decreasing toward ignition to 0.1.  IC4 has the highest 
R value and by this metric seems would be an important flow 
pattern for the combustion speed. This IC is shown in the 
first column of Fig. 12b for different CADs. At −35°CA, two 
vortices dominate and there is just a relatively weak flow on 
the intake side of the combustion chamber. This flow pattern 
remains until −27°CA. The vortex center on the exhaust side 
disappears at −25°CA, such that at ignition, there is a single 
vortex around the spark plug with a strong flow toward the 
piston on the exhaust side.

Our prior analysis of the same data set, which relied on 
conditional averaging as outlined in reference (Bode et al. 
2019), showed that in the 35 fastest-burning cycles, the pre-
combustion flow exhibited a vortex encircling the spark 
plug, whereas on average, a vortex on the exhaust side was 
linked to slower combustion. The corresponding flow fields 

Fig. 10  (top) Persistence analysis with absolute value of the average 
RI vs. CAD, (bottom)  IC1 and  IC3. The global polarity of the ICs is 
matched to the initial IC for a better comparison

Fig. 11  (a) Example of an 
IC and selected snapshots at 
−55°CA. The resulting dot 
product is given below each 
snapshot. (b) Corresponding 
correlation with CA10 over 
all 213 cycles at −55°CA. The 
results from the three example 
snapshots are marked in red
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are shown in the second (fast) and third (slow) column of 
Fig. 12b. In the present study,  IC4 has the strongest cor-
relation with combustion speed. This IC contains the two 
vortices, one centered around the spark plug and another 
on the exhaust side between −35°CA and −27°CA. Toward 
TDC, the IC shows only one vortex centered at the spark 
plug, which aligns only with the conditional average of the 
35 fastest cycles. This suggests that the more important flow 
pattern influencing combustion involves the vortex center 
around the spark plug and a strong flow on the exhaust side.

In the first column of Fig. 12c, the flow pattern of  IC1 
at −55°CA, which also correlates well with the com-
bustion speed, is shown. The main feature of  IC1 is a 
region of strongest lateral flow below the spark plug. In 

the corresponding conditional averages, the differences 
between fast and slow cycles are less obvious than in the 
later stages of flow development. For the slow cycles, 
the vortex center is on the exhaust side, while for the fast 
cycles, the vortex center is more horizontally centered. 
Visually,  IC1 has very little in common with conditional 
averages or the difference between them. This and the then 
following steady decline of this ICs correlation with com-
bustion may indicate that  IC1 contains a flow component 
that is important early on but is then gradually replaced 
by more than one other component. Some of this energy 
redistribution may also occur outside of the PIV plane, 
such that it is not detected in the experimental data.

Fig. 12  (a) Correlation coeffi-
cient of  (ICi ∙  xm) and CA10 vs. 
CAD, (b)  IC4—the IC with the 
highest correlation coefficient 
near ignition—and condition-
ally averaged flow fields at the 
same crank angles, (c)  IC1—the 
most persistent IC—and condi-
tionally averaged flow fields at 
−55°CA
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5  Conclusions

This work focused on identifying links between the flow 
and the speed of combustion in an optical internal combus-
tion engine operated on a slightly lean homogeneous iso-
octane/air mixture. In particular, the goal was to examine 
if ICA based on vector fields measured with high-speed 
PIV might provide an objective and quantitative analy-
sis of flow patterns to find such a link. While techniques 
based on POD had previously been used widely in flow 
analysis and combustion research, so far ICA had only 
been applied for a few examples of scalar combustion 
images (Bizon et al. 2013a, 2016b). The expected key dif-
ference between POD and ICA was that ICA would pro-
duce “source components,” i.e., flow structures that could 
be linked to other observables, while POD would do this 
only under exceptional cases, if at all (Chen et al. 2013). 
However, the independent components (ICs) identified by 
ICA are not inherently sorted by, e.g., energy (as in POD), 
requiring further post-processing to re-establish some of 
the temporal coherence that the original PIV data had.

To test the basic procedure, we initially applied ICA 
to a synthetic example in which the number of underly-
ing sources was known a priori. ICA was then employed 
to extract flow patterns from high-speed PIV data gath-
ered from 213 engine cycles. In such empirical data, 
the number of sources is not known. A parameter study 
suggested that for the current data set five ICs are suf-
ficient. A persistence analysis found that one independent 
component could be traced from −60°CA to ignition at 
−20°CA, while the other four ICs persisted at the most 
from −38°CA to ignition. As a metric of the speed of 
combustion progress, the pressure-based cumulative heat 
release, in particular CA10, was utilized. By quantify-
ing the correlation between the similarity of independent 
components and flow fields and CA10, we investigated 
the relationship between independent components and the 
speed of combustion. This examination showed that the 
combustion relevance of the most persistent IC mostly 
declines throughout the upper compression stroke, while 
the IC that correlates best with combustion speed is one 
of the less persistent ones. The latter also visually more 
resembles some of the flow features found in conditional 
averaging of fast-burning vs. slow-burning cycles (Lai-
chter and Kaiser 2022). The combination of ICA and the 
current implementation of a persistence analysis does not 
give a direct indication as to how any presumed underlying 
re-organization of the flow occurs.

This work presented an example of how ICA of veloc-
ity fields could be used to identify differences in the in-
cylinder flow that impact cycle-to-cycle combustion per-
formance in an internal combustion engine. A broader 

range of conditions and engine configurations needs to be 
studied to comprehensively characterize how ICA may to 
be used for this purpose and to develop guidelines for best 
practices, similar to what has been done for POD (Chen 
et  al. 2012, 2013). Furthermore, employing ICA on a 
three-dimensional numerical simulation could expand the 
restricted field of view offered by experimental data and 
provide deeper insights into the underlying flow patterns 
in an engine associated with CCV.
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