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Abstract
Lagrangian particle tracking experiments are a key tool to understanding particle transport in fluid flows. However, tracking 
particles over long distances is expensive and limited by both the intensity of light and number of cameras. In order to 
increase the length of measured particle trajectories in a large fluid volume with minimal cost, we developed a large-scale 
particle-shadow-tracking method. This technique is able to accurately track millimeter-scale particles and their orientations 
in meter-scale laboratory fluid flows. By tracking the particles’ shadows cast by a wide beam of collimated light from a high-
power LED, 2D particle position and velocity can be obtained, as well as their 3D orientation. Compared with traditional 
volumetric particle tracking techniques, this method is able to measure particle kinematics over a larger area using much 
simpler imaging and tracking techniques. We demonstrate the method on sphere, disk, and rod particles in a wavy wind-
driven flow, where we successfully track particles and reconstruct their orientations.

1  Introduction

Particle-laden flows in the environment are ubiquitous: 
examples include saltating sediments or aeolian transport, 
blowing snow, and falling ash. Laboratory experiments often 
offer the best way to study the transport of particles in these 
flows under controlled conditions, but tracking particles over 
long times in large facilities (i.e., with regions of interest 
(ROIs) on the order of 1 m 3 ) poses significant challenges, 
and existing methods have several limitations.

Currently, most experimental methods involve optical 
particle tracking with high-speed cameras, where illumina-
tion is provided by a laser, LED backlight, or ambient or 
volumetric lighting. A laser can be focused into either a 2D 
sheet for planar particle tracking velocimetry (PTV) or a 3D 
volume for Lagrangian particle tracking (LPT), which uses 
cameras viewing the ROI from multiple viewing angles. For 
example, 2D tracking over a relatively large ROI of 30 cm × 
30 cm was done by Petersen et al. (2019) using a laser sheet 
to track hollow glass microspheres in homogeneous isotropic 
turbulence in air. Gerashchenko et al. (2008) performed 2D 
tracking on particles in a turbulent boundary layer. They 

expanded a laser over a 3.5 cm3 volume and extended their 
particle tracking distance by mounting their camera and 
optics on a sled that moved with the freestream velocity for 
50 cm. A similar technique was used by Zheng and Long-
mire (2014) to track tracer particles moving through an array 
of cylinders in a turbulent boundary layer. Large-scale 3D 
particle tracking using a single camera was performed by 
Hou et al. (2021) using a technique based on particle glare-
point spacing.

Laser illumination is limited in spatial extent, and while 
a 2D laser sheet can illuminate a larger area than a 3D 
laser volume at a given intensity, particles only intersect 
the laser sheet for short amounts of time, resulting in short 
trajectories. An LED backlight solves this issue by light-
ing particles from behind throughout a volume of fluid. In 
this way, particle shadows can be measured with a camera 
placed opposite of the backlight. LED backlighting was 
used by Fong and Coletti (2022) and Fong et al. (2022), 
for example, to track glass particles in a riser over a length 
of 20 cm. It has also been used to track bubbles in water 
flows (Hessenkemper and Ziegenhein 2018; Bröder and 
Sommerfeld 2007; Tan et al. 2020). However, most LED 
backlights are also limited in size, and it can be difficult to 
diffuse the light enough to create a uniformly-lighted back-
ground. Imaging particles inside a 3D volume with ambi-
ent light is a third option. This is dependent on the parti-
cles having naturally strong contrast with the background, 
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and like LPT requires multiple camera viewpoints unless 
the particles are naturally limited to a nearly 2D plane, 
as may occur in bed transport of sediment, for example. 
Large-scale 3D tracking has been carried out on tracer 
particles inside a room using ambient lighting (Fu et al. 
2015) and over a large region of an atmospheric boundary 
layer (Rosi et al. 2014). In addition, pulsed and volumetric 
LED illumination has been used to perform large-scale 
measurements in air, including at volumes exceeding 10 
m 3 (e.g. Huhn et al. 2017; Godbersen et al. 2021; Schröder 
et al. 2022). Similar methods have also been used in water 
flows for sufficiently sized particles; Kim et al. (2022) used 
this technique to perform joint 3D tracking of bubbles and 
the fluid phase in a jet flow over a ∼(0.3 m)3 volume. Even 
larger-scale experiments have been performed to measure 
airflow around wind turbines using a spotlight and snow-
flakes as flow tracers (Toloui et al. 2014; Wei et al. 2021).

In the following, we present a large-scale shadow 
tracking (LSST) method for measuring the 2D transport 
and 3D orientation of particles in a flow. In this method, 
a light source shines through the transparent front wall of 
the experimental facility onto the back wall, projecting 
shadows of particles in the illuminated volume of fluid. 
The light source is collimated, so the shadow’s location 
exactly maps to the particle’s streamwise and vertical 
location (x and z), albeit with no spanwise (y) information. 
In other words, we can measure the 2D position and 
velocity components of particles in a large 3D volume. 
This method is less complex than other LPT methods 
because the particle shadows only need to be imaged by 
one camera. This techique works for any particles large 
enough to cast a shadow, and we demonstrate it here on 
particles as small as 2 mm in diameter. We use multiple 
cameras to increase the field of view and image resolution. 
In addition, if the particle geometry is known, then the 

particle’s orientation can be reconstructed from the 
geometry of the projected shadow.

We also demonstrate the LSST method in an experiment 
to simulate plastic particle transport near the free surface of 
the ocean by tracking spherical and nonspherical particles 
in turbulent wind-driven waves in a water tank. A large ROI 
is required because the flow facility must be large enough to 
create realistic waves, and particle motion must be tracked 
over several wave periods to get robust Lagrangian statistics. 
Microplastic particles are ubiquitous, but their transport and 
fate in the ocean is not well quantified (Geyer et al. 2017; 
van Sebille et al. 2015). Wind-mixing has been established 
as an important driver of vertical transport of these particles 
in the ocean and can submerge particles up to tens of meters 
(Kukulka et al. 2012; Thoman et al. 2021). While passive 
tracer species are often the focus of these studies, many par-
ticles in the ocean have variable size and shape, the effects of 
which have yet to be rigorously investigated in this context.

2 � Shadow tracking method

2.1 � Imaging

In order to track particles in both the vertical and streamwise 
directions, we constructed a facility to image particle 
shadows over a large region of interest in a wave tank. The 
method uses collimated light rays which shine spanwise 
horizontally through the water to produce shadows of the 
particles on the far sidewall of the tank. The shadows are 
imaged with an array of four cameras; see Fig. 1a and b for 
schematics depicting the setup.

The light source is a 4 W LED (Luxeon Star Saber Z5 
20-mm quad LED, wavelength 470 nm) powered by direct 
current from an LED driver to eliminate flicker (ThorLabs 

Fig. 1   Shadow imaging setup showing the LED light source, camera array, Fresnel lens, and projected light in the tank (a) and a top-view sche-
matic showing the collimation of the light rays and camera lines of sight (b)
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T-Cube driver). A monochromatic LED is used to minimize 
chromatic aberration due to wavelength-dependent indices 
of refraction when the light shines through the collimating 
lenses. The blue-green color of light is chosen by optimiz-
ing two competing constraints: blue wavelengths transmit 
through water with less scattering, but the camera sensor is 
more sensitive to red wavelengths. The blue-green 470 nm 
wavelength is chosen because it is the shortest wavelength 
to which the camera sensor is at least 80% sensitive. The 
LED has a light-emitting area of 2.6 mm x 2.6 mm, so it is 
effectively a point source relative to the region of interest. 
A 1 m × 0.7 m Fresnel lens (Knight Optical) is mounted 
against the glass sidewall of the tank, and the light source is 
placed at the lens’ focal length. The lens collimates the light 
rays so that they shine in parallel normal to the sidewalls of 
the tank. Because the light is collimated, particles that enter 
the illuminated area cast shadows on the far sidewall that 
are the same size as the particles themselves, regardless of 
their spanwise location. To maximize the intensity of the 
illumination, the light source is concentrated by reducing 
its spreading angle from 125◦ to about 60◦ with a plano-
convex spherical lens of focal length 25 mm (Edmund 
Optics) mounted at a distance of 3 mm from the LED. To 
fine-tune the collimation and achieve highly parallel light 
rays, the position of the light source was adjusted slightly in 
the y direction until the width of the rectangular illuminated 
region on the back wall of the tank matched the width of the 
Fresnel lens to within 0.1%.

A 4 × 1 array of monochrome machine vision cameras 
(Basler Boost boA4096-93cm, Sensory Labs) mounted with 
35 mm lenses take composite images of the ROI with a total 
image size of 8192 px × 4336 px at approximately 9 px/mm 
resolution. Each camera is focused on one quarter of the illu-
minated sidewall, and they are synchronized by a PC running 
StreamPix software (Sensory Labs). At the full frame rate, 
roughly 3 GB/s of image data are generated, necessitating 
the use of a frame grabber. A frame grabber reads images 
from the cameras to the PC, allowing for a frame rate of up 
to 90 Hz from all cameras simultaneously at full resolution. 
In these experiments, a frame rate of 30 Hz is used.

2.2 � Image rectification

To convert between the image coordinates and world coor-
dinates, we need to rectify the images. Ideally, the tank in 
the experiment has both a transparent front and back wall. 
This allows shadows to be projected from the front wall onto 
the back wall, on which translucent paper or plastic would 
be mounted to increase the contrast of the shadows. Finally, 
cameras would image the projected shadows straight-on from 
the back of the tank. However, in our experimental facility 
only the front wall is transparent, so the cameras must view 
the projected shadows through the front wall and thus they 

are mounted on either side of the light source at an angle (see 
Fig. 1). The oblique viewing angle of the cameras distorts 
the images, which can be corrected with a linear rectification 
transformation; however, the short focal length of the camera 
lenses also creates lens distortion, which requires a higher-
order transformation. To correct for both types of distortion, 
we apply a quadratic rectification transformation of the form

where (x, y) is a point in image coordinates, (X, Y) is a point 
in world coordinates, and b1, b2, ..., b14 are the transformation 
coefficients, adapted from the linear transformation described 
in Fujita et al. (1998). The coefficients are determined by 
finding a least-squares solution to the equation

where

Here, (x1, y1), ..., (xn, yn) and (X1, Y1), ..., (Xn, Yn) are the 
locations of a set of n calibration points in image coordinates 
and world coordinates, respectively. The least-squares 
solution to this equation is

Each of the four camera views is calibrated from a set of 80 
to 190 calibration points. To generate the calibration points 
directly on the back wall of the tank without any offset, 
a 0.9 m × 1.2 m transparent acrylic plate marked with a 
grid pattern of opaque 5 mm circles is mounted in the tank 
against the front wall. Shadows of the circles are cast on the 
back wall and imaged by the camera array, and their known 
locations in both image and world coordinates are used to 
determine B.
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(6)B = (ATA)−1ATZ.



	 Experiments in Fluids (2023) 64:52

1 3

52  Page 4 of 12

2.3 � Particle detection

The captured images appear bright with dark shadows cast 
by the plastic particles and by the free surface. Due to the 
position of the cameras, the real particles are sometimes 
visible in the images alongside the shadows. In order to 
avoid any effects from the real particles, we have made them 
white to minimize their contrast with the white background. 
We also focus the cameras on the back wall with the aperture 
fully open (producing a narrow depth of focus) so that the 
real particles will be out of focus. Example raw images are 
shown in Fig. 2, as well as a demonstration of the image 
processing method. The following steps are carried out to 
detect particle shadows in each image. First, the background 
is subtracted from the image. The background is obtained 
from a set of particle-free images taken before experiments 
start. The image intensity is then inverted so shadows show 
up as bright objects on a dark background. At this point, we 
use MATLAB’s adaptive binarization function to segment 
the image into bright and dark regions. Most of the bright 
regions are particle shadows, but there are some false 
positives: bubbles, shadows from the free surface, or actual 
particles captured in the camera view. The false positives 
are rejected by applying bounds on the object area and 
major and minor axis lengths; checking that its position is 
below the free surface; and checking that it is not a perfect 
double of an object right next to it, which can happen when 
a particle is near the back wall and the camera captures both 
the particle and its shadow.

Once the particle shadows are detected, five key points 
are extracted from each silhouette: the centroid and the end-
points of the major and minor axes. These key points cor-
respond to the shadow position in image coordinates. To 
convert the key points into world coordinates, we use Eq. 1. 
Finally, the key points, in world coordinates, are converted 
into physically meaningful centroids, major and minor axis 
lengths, and tilt angles of the major axis using trigonom-
etry. This process is repeated for the images from each of 
the four cameras taken at the same point in time. The data 
from all four cameras are then merged to obtain instanta-
neous particle silhouette information throughout the entire 
ROI. Because the camera views overlap slightly at the edges, 
duplicate overlapping particles sometimes exist; in this case, 
the particle farther from the edge of its image is kept, to 
ensure that we keep whichever particle is fully captured in 
the frame, and the other is discarded. This procedure is car-
ried out for the entire image series.

2.4 � Orientation measurement

This imaging setup is also capable of measuring the orienta-
tion of non-spherical particles. We consider rods and disks 
in this section, and define a three-dimensional orientation 

vector p as the unit vector passing through the particle’s axis 
of symmetry (Fig. 3). Our measurements are only in 2D, and 
thus we cannot measure p explicitly. Nevertheless, because 
we know the particles’ true length (for rods) or diameter (for 
disks) Dp , we can reconstruct the orientation of the detected 
particles from the tilt angle of the shadow’s major axis with 
respect to the horizontal, � , as well as the apparent major axis 
length d1 (for rods) or minor axis length d2 (for disks) of its 
shadow (Fig. 4). A similar method is described in Baker and 
Coletti (2022) and is summarized here.

One obstacle in accurately measuring d1 and d2 is that the 
particle shadows are blurred by optical aberration from both 
the Fresnel lens and the scattering of light passing through 
the water and suspended particulates. To obtain p , the blur is 
corrected by subtracting an offset � from d1 or d2 for rods or 
disks, respectively. The offset � is found by taking advantage 
of the fact that one lengthscale of the particles should always 
be a constant length in the projected shadows, regardless 
of particle’s orientation. For rods, � is calculated from the 
mean minor axis length of the shadows, i.e. d2 in Fig. 4a. 
The minor axis length should correspond to the actual rod 
thickness, regardless of orientation; thus, � is the difference 
between the measured d2 and known rod thickness. Similarly 
for disks, � is calculated from the difference between the 
mean major axis length of the shadows, d1 in Fig. 4, and the 
known disk diameter. PDFs of the original and corrected 
axis lengths are shown in Fig. 5(a) (10 mm rods) and (b) (7 
mm disks). If d1 − � or d2 − � is negative or greater than Dp , 
it is not included in the results. Then, the formulas in Table 1 
are used to compute the orientation p . Note that there will 
always be ambiguity in the out-of-plane orientation, and thus 
the sign of py cannot be determined from the 2D shadows.

2.5 � Tracking

Once the particle centroids are obtained, the centroids are 
tracked between frames using a nearest-neighbor method. 
We define a search radius corresponding to the maximum 
distance a particle is expected to move from one snapshot to 
the next, which is about 10 mm; the tracking algorithm then 
links particles in each snapshot with their nearest neighbor 
within the search radius in the next snapshot. Occasionally, 
a tracked particle will not be detected for one or more frames 
before showing up again. We repair most of these tracks if 
five or fewer frames are skipped: we find tracks that end 
in the middle of the ROI and use the particle’s last known 
position and velocity to predict where it should be in the next 
five frames. If a new track starts within the search radius of 
one of those predictions, it is assumed to belong to the same 
particle and the tracks are joined, interpolating the particle 
position and orientation in the missing frame(s).

To remove measurement noise from the tracks, the par-
ticle positions in each track are convolved with a Gaussian 
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smoothing kernel, G. They are also convolved with the first 
and second derivatives of the Gaussian kernel, Ġ and G̈ , 
respectively, to obtain velocities and accelerations (Tropea 

et al. 2007). The optimal width of the kernel tk is determined 
from the particle acceleration variance as a function of ker-
nel width: the smallest value for which the variance decays 

Fig. 2   Image processing steps to detect particle shadows: (a) a raw 
image from one camera (the right-most camera in this case); (b) 
image inversion and background subtraction; (c) adaptive binarization 

and particle detection, with the major and minor axes of the shadows 
shown with red and blue lines, respectively; (d) four simultaneous 
images covering the entire field of view; and (e) all detected particles
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exponentially with kernel width is corresponds to tk such 
that most of the noise is filtered out but most of the physical 
accelerations are not (Voth et al. 2002; Mordant et al. 2004; 
Gerashchenko et al. 2008; Nemes et al. 2017; Ebrahimian 
et al. 2019; Baker and Coletti 2021). Here, this corresponds 
to a duration of 5 successive snapshots, or 167 ms.

Similarly, p is smoothed and the time rates of change of the 
orientation vector ṗ and p̈ are obtained by convolving the com-
ponents of p in each track with the same G, Ġ , and G̈ kernels. 
A particle’s solid-body rotation rate is composed of a spin-
ning component and a tumbling component, � = Ωpp + p × ṗ , 
where spinning is rotation about the symmetry axis ( �s = Ωpp ) 
and tumbling is rotation of the symmetry axis ( �t = p × ṗ ). 

We are unable to measure spinning motion with our shadow 
tracking. However, the tumbling component of angular veloc-
ity, and similarly the tumbling component of angular accelera-
tion, can be calculated by

However, sign ambiguities can arise when the components 
of p wrap around the limits of their ranges given in Table 1, 
which must be resolved before smoothing and differen-
tiating to get ṗ and p̈ (see Baker and Coletti 2022). Sign 

(7)�t = p × ṗ

(8)�t = p × p̈

Fig. 3   Definition of the particle orientation vector for a rod (a) and disk (b) relative to the laboratory coordinate system

Fig. 4   Detail images of 
experimental data showing the 
measurement of particle ori-
entation from shadows: the tilt 
angle � and major axis length 
d1 and minor axis length d2 of 
a rod shadow (a) and a disk 
shadow (b)



Experiments in Fluids (2023) 64:52	

1 3

Page 7 of 12  52

ambiguities are identified by finding tracks where any of the 
components of p change sign or approach 0, 1, or -1, and 
are also a local minimum or maximum, which indicates a 
possible discontinuity. The ambiguity resolved by applying 
a minimum angular acceleration condition to the track. Four 
sets of sign changes are applied to the track after the discon-
tinuity: (1) flip only px and pz , (2) flip only py , (3) flip px , py 
and pz , and (4) no sign changes. We chose the case with the 
minimum tumbling angular acceleration magnitude p̈ ⋅ p̈ , 
and propagate the sign change forward in time along the 
remainder of the track. Even though there are four possible 
choices of sign changes, generally the p̈ ⋅ p̈ value associated 
with the correct set will be at least an order of magnitude 
lower than the other three.

3 � Experimental demonstration

3.1 � Experimental setup

Experiments are performed in the Washington Air-Sea Inter-
action Facility (WASIRF) (Long 1992; Masnadi et al. 2021), 
a long wave tank in which wind blows over the surface of the 
water (Fig. 6). The test section of the tank is 12.2 m long and 
0.91 m wide, and is filled with tap water to a depth of 0.6 m, 
leaving 0.6 m of headspace for airflow. The top of the tank 
is covered by removable panels except where instrumenta-
tion must pass through. Wind is generated by a suction fan 
(Trane) that drives air through the headspace in the test sec-
tion and recirculates it via an overhead duct; the windspeed 
is set to 16 m/s for these experiments. The water pump is not 
used; mean flow of the water is only due to the wind stress. 
A sloped foam beach is placed at the downstream end of the 
tank to prevent wave reflections. The region of interest (ROI) 
in which measurements are taken is centered on a fetch of 
7.0 m. The ROI is 1 m long in the streamwise direction and 
spans the full width and depth of the tank.

We add plastic rods, disks, and roughly spherical nurdles 
spanning a range of sizes into the wind-driven flow. Particles 
are all made of high-density polyethylene (HDPE), which 
is positively buoyant in water. Large nurdles (4 mm diam-
eter) are obtained from McMaster; small nurdles (2 and 2.5 
mm diameter) are obtained from Cospheric. The rods are 
cut from 1.75 mm thick 3D-printing filament using a razor 
blade. The disks are cut from a 0.79 mm thick sheet using 
circular dies mounted to an arbor press. The dimensions of 
the particles are defined in terms of their axis lengths: a is 
the length of the axis of rotational symmetry (i.e., the axis 

Fig. 5   Raw and corrected apparent major axis lengths for the 10 mm rods (a) and minor axis lengths for the 7 mm disks (b)

Table 1   Components of the particle orientation vector p from d1 , d2 , 
and � for rods and disks

Rods Disks Range

px
d1−�

Dp

cos(�)
sin(�)

(
1 −

(
d2−�

Dp

)2
)1∕2 [0, 1]

|py|
(
1 −

(
d1−�

Dp

)2
)1∕2 d2−�

Dp

[0, 1]

pz
d1−�

Dp

sin(�)
cos(�)

(
1 −

(
d2−�

Dp

)2
)1∕2

)

(
− sign(�)

)

[− 1, 1]
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through the length of a rod and through the thickness of a 
disk), and b is the length of the perpendicular axes. The 
major axis length (the larger of a and b) is denoted by Dp . 
Table 2 summarizes the dimensions of the particle types 
used in this experiment.

3.2 � Uncertainty analysis

The measurement error is estimated by imaging calibration 
particles which are glued to a glass plate. The images are 
analyzed using the algorithm described in sect.  2 to 
measure particle positions and orientations. Five particles 
of each type are glued to the plate. The plate is mounted 
at known orientations within the tank, giving the particles 
glued to the plate known orientations as well. These 
orientations are compared to those computed by the 

detection algorithm to obtain the uncertainties �px , �py , and 
�pz . The distances between the particles glued on the plate 
are also known, so we compare these with the detected 
interparticle distances to obtain an uncertainty on particle 
centroid locations �xp . The uncertainties on the centroid 
location and orientation are estimated as the mean absolute 
difference between measured and actual values. These 
measurement errors are reported in Table 3. Overall, the 
measurement error for the particle centroids is 0.25 mm, 
which is much smaller than the particle diameters ( 2 − 10 
mm) and the ROI ( ∼ 1 m). The largest errors are present 
in the y component of the rod orientations. This is likely 
due to the variation in rod lengths caused by hand-cutting 
them; the standard deviation of the rod lengths is about 1 

Fig. 6   Schematic of WASIRF. The red rectangle corresponds to the region of interest in the present experiment, which is 1 m across

Table 2   Physical properties of each particle type: nominally 2, 3, and 
4 mm nurdles (denoted by N2, N3, and N4); 10 and 20 mm rods (R10 
and R20); and 5, 7, and 10 mm disks (D5, D7, and D10). a is the 

symmetry axis length, b is the perpendicular axis length, and � = a∕b 
is the aspect ratio

N2 N3 N4 R10 R20 D5 D7 D10

a [mm] 2.0 2.5 3.9 10.7 20.2 5.0 7.0 10.0
b [mm] – – – 1.8 1.8 0.79 0.79 0.79
� 1 1 1 5.7 11.4 0.16 0.11 0.08

Table 3   Measurement error on 
the particle centroid location 
�xp , in SI units and normalized 
by Dp , and orientation 
components �px , �py , and �pz

Particle type N2 N3 N4 R10 R20 D5 D7 D10

�xp [mm] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
�xp∕Dp 0.15 0.13 0.083 0.025 0.013 0.050 0.036 0.025
�px – – – 0.18 0.28 0.03 0.03 0.14
�py – – – 0.46 0.53 0.10 0.05 0.08
�pz – – – 0.12 0.18 0.26 0.22 0.13
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mm, or 5 to 10% of the mean, which introduces error into 
the projected lengths captured by the cameras.

3.3 � Reconstructed tracks

With this method, we are able to successfully reconstruct 
2D projections of particle trajectories from a 3D volume 

and with 3D orientation information. A subset of the 
tracks of particle centroids is shown in Fig. 7.

This method returns long tracks, many of which span 
the entire 1-m field of view. Particles are temporarily 
undetectable near the wavy free surface, where the surface 
itself periodically blocks optical access; this breaks up 
many of the tracks that are near the surface, resulting in 

Fig. 7   A random sample of 100 tracks of the centroids of the 7 mm disks. The blue to red color scale indicates slower to faster instantanous par-
ticle speeds

Fig. 8   PDF of track lengths for a all tracks and b tracks with an observation at least 10 cm below the free surface for the 7 mm disks
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shorter tracks. Because the particles in the experiment are 
buoyant, they tend to rise to the free surface. The 
distribution of track lengths is shown in Fig. 8 for (a) all 
tracks and (b) tracks with at least one observation deeper 
than 0.1 m below the water surface (to avoid counting 

some of the tracks that are cut off by the wavy surface). 
Track length is computed by integrating particle speed 
over the duration of the track, ∫ tend

tstart
(u2 + w2)1∕2dt . Even in 

the challenging imaging conditions imposed by the free 

Fig. 9   Reconstructed tracks of disks (a, c, e) and rods (b, d, f). The blue to red color scale indicates the instantenous value of pz , where blue cor-
responds to pz = 0 (the particle axis p is perpendicular to the z axis) and red corresponds to pz = 1 ( p is parallel to the z axis)



Experiments in Fluids (2023) 64:52	

1 3

Page 11 of 12  52

surface, 56% of the deeper set of tracks were greater than 
0.2 m in total length.

Samples of these reconstructed tracks with 3D orienta-
tions for disks and rods are shown in Fig. 9. The tracks 
are subsampled so that every fifth snapshot is shown for 
clarity. The particle color corresponds to the instantane-
ous value of pz.

4 � Conclusion

We have presented a method for measuring 2D projections 
of particle position by tracking their shadows cast by a wide 
beam of collimated light. The novelty of this technique 
is its accurate tracking of particles and their orientations 
within a large volume with a relatively simple imaging setup. 
This method allows highly-resolved tracking of particles 
over long times and distances in a large volume (in this 
case a volume of 1 m × 1 m × 0.6 m), scales over which 
conventional methods of particle tracking struggle. The 
four-camera array also provides enough spatial resolution 
to reconstruct the 3D orientation of nonspherical disk and 
rod particles from the geometry of their shadows, even 
accounting for the blur due to the Fresnel lens.

The shadow tracking method is demonstrated with 
buoyant plastic particles of varying shape and size in a 
wind-wave tank. We demonstrated that we were able to 
track particles throughout almost the entire field of view, 
enabling long trajectories, and were only limited by when 
particles rose to the free surface where we were unable to 
image them. We were also able to successfully reconstruct 
their 3D orientations. This imaging method provides a new 
way to obtain robust Eulerian and Lagrangian statistics of 
quantities such as particle velocity, depth, and orientation, 
which is challenging for conventional imaging methods over 
large length and time scales.

We expect this technique to be useful in large tanks 
and channels with a working fluid of either air or water 
where particle behavior and transport are of interest. 
The demonstrated experiments have particle image 
densities of O(10 m −2 ). However, the method could be 
reliably extended to number densities of at least O(100 
m −2 ). Additionally, we anticipate that particles smaller 
than those tested here could also be tracked. Tracking 
smaller particles would be assisted by increasing the 
image contrast. Higher contrast could be enabled by 
using a brighter light source, more sensitive cameras, or 
highly-filtered water or air to reduce light scattering. In 
applications where particle orientation is not needed, less 
resolution is needed and thus fewer cameras are necessary, 
which would further reduce the complexity and cost of the 
experiment.
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