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Abstract
In this work, we present the application of wavelet-based optical flow velocimetry (wOFV) to tagging velocimetry image 
data. wOFV is demonstrated to compare favorably to cross-correlation on experimental two-dimensional Krypton tagging 
velocimetry (KTV-2D) images from a Mach 2.75 turbulent shock wave-boundary layer interaction. Results from both meth-
ods show good agreement for the mean velocity field, while wOFV has several advantages compared to cross-correlation 
including increased spatial resolution as well as robustness and simplicity of implementation. The performance of wOFV on 
tagging velocimetry images is evaluated quantitatively using a set of simulated data from a turbulent boundary layer including 
images and specified velocity fields. wOFV is found to produce accurate results for turbulence statistics using write images 
with parallel 1D lines and is relatively insensitive to moderate amounts of noise. Additionally, it can accurately calculate 
two-dimensional velocity fields over the entire image domain for images containing sets of intersecting write lines, as well 
as derivative quantities such as vorticity, as long as the line spacing is sufficiently small.

Graphical abstract

1 Introduction

Understanding the complex physics of turbulence in high-
speed flows is critical to enable the prediction of aerother-
modynamic loads on hypersonic vehicles. This is already 
a challenging task, and the presence of shock waves adds 
significant complexity to the problem. Shock wave/turbu-
lent boundary layer interactions (SWBLIs) are a common 
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example of this combination of phenomena that occur for 
many hypersonic vehicle geometries. SWBLIs are character-
ized by the unsteady separation of the boundary layer and 
increased turbulence fluctuations (Smits and Dussauge 2006; 
Clemens and Narayanaswamy 2014).

Experimental measurements of the flow velocity in high-
speed turbulent flows, and SWBLI in particular, are neces-
sary to fully characterize the complex phenomena that are 
present. Two of the most common velocimetry techniques 
for fluid flows are laser Doppler velocimetry (LDV) (Tropea 
1995) and particle image velocimetry (PIV) (Raffel et al. 
2018). Both of these methods rely on seeding the flow with 
small tracer particles, which are assumed to faithfully fol-
low the flow. It has been demonstrated, however, that this 
assumption can fail in low-density flows with large velocity 
fluctuations, such as turbulent hypersonic flows (Melling 
1997; Loth 2008), flows with sudden velocity changes due 
to shock waves (Williams et al. 2015), and supersonic-nozzle 
flows (Huffman and Elliott 2009).

Tagging velocimetry (TV) methods are an alternative 
to LDV and PIV for high-speed flows (Koochesfahani and 
Nocera 2007), and have been applied in low-speed flows in 
liquids as well (Park et al. 2000; Fort et al. 2020). Instead 
of seeding the flow with small solid or liquid particles, TV 
tracks the fluorescence of excited molecules (or atoms) in 
the flow. The excited molecules/atoms can be native, seeded, 
or synthesized, and because the tracer is a gas, or a dye that’s 
been dissolved into a liquid, there are no issues associated 
with particle lag as there are for LDV and PIV in high-speed 
flows. A multitude of TV methods exist depending on the 
excited species and the method of excitation. Although the 
experimental details can be quite different for the various TV 
techniques, the resulting images are similar and so the pro-
cessing methodology presented in this work could be applied 
to data from any TV method with minimal modifications. 
Much like PIV, TV methods produce an initial (“write”) 
image and a second (“read”) image of the excited gas mole-
cules separated by a short time interval Δt . The displacement 
of the molecules is determined from the image pair, and it 
is interpreted as a velocity by dividing by the prescribed Δt.

The specific TV method exemplified in this work is 
Krypton Tagging Velocimetry (KTV). First demonstrated 
by Parziale et al. (2015), KTV excites krypton atoms in a 
mixture of nitrogen and krypton. Typically, the krypton con-
centration is low, on the order of 1%, so that the flow can 
be considered pure nitrogen; any small changes in trans-
port properties may be easily calculated. Krypton atoms are 
excited using a laser, or more commonly, a single laser beam 
that has been split into several beams using a microlens 
array. The beams can be arranged into a variety of patterns, 
depending on the desired application, but the most widely 
used to date has been a series of parallel lines orthogonal to 
the principal flow direction. Only the component of velocity 

perpendicular to the lines is measured with this type of 
arrangement, and the method is referred to as KTV-1D. The 
current state of the art for computing the displacement of the 
lines in KTV-1D is described by Mustafa et al. (2019). The 
process is somewhat involved and consists of first finding the 
centers of the lines in each row of the read and write images 
by fitting a Gaussian profile to each line, and then computing 
the displacement of each line center row-by-row between the 
read and write images. While the produced velocity results 
are accurate, the procedure involves a significant amount of 
manual effort and is somewhat slow and painstaking.

Instead of arranging the lines parallel to one another, they 
can instead be formed into two sets of parallel lines that are 
oriented at opposite angles to one another such that they 
cross, forming a set of diamond-shaped intersections (cf. 
Fig. 2). In theory, this allows both of the in-plane compo-
nents of the velocity to be measured instead of just the com-
ponent perpendicular to the lines in KTV-1D. The image 
data from the resulting two-dimensional KTV (KTV-2D) 
method are substantially more difficult to analyze in order to 
extract velocity information compared to KTV-1D, however. 
Mustafa et al. (2018) use a complex procedure to identify 
the points of intersections in the grids in the write and read 
images, and then calculate the displacements by cross-cor-
relation. One velocity vector is produced for each intersec-
tion that can be clearly identified in both the write and read 
images. Besides the complexity of the procedure and the 
requirement for manual inspection of the data, spatial resolu-
tion is sacrificed because much more information concerning 
the displacement of tracers (and hence velocity) is present 
in the images than is extracted by calculating only the dis-
placement of the points of intersection on the grids. Other 
researchers have also sought solutions to finding the transla-
tion of grid intersections. This includes the peaking-finding 
algorithms (Hill and Klewicki 1996), “spatial correlation 
technique” from Gendrich and Koochesfahani (1996) and 
Bathel et al. (2011), the “template matching method” from 
Ramsey and Pitz (2011), the “Hough transform method” 
from Sánchez-González et al. (2015), and most recently, the 
work of Pearce et al. which provides continuous flow dis-
placement determinations by parameterization of the entire 
tagging velocimetry grid (Pearce et al. 2021). The method 
of Pearce et al. is able to determine displacements along the 
grid lines as well as at intersection locations for 2D grids, 
and has shown the potential for automation. Additionally, 
researchers have used gradient-based optical flow estima-
tion techniques that have incorporated a volumetric model of 
the liquid in a microchannel to account for non-ideal effects 
unique to studying microfluidics (Garbe et al. 2008; Brunet 
et al. 2013).

A potential improvement on these methods is to analyze 
the 1D or 2D TV images with wavelet-based optical flow 
velocimetry (wOFV). wOFV is a method that uses optical 
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flow to determine displacements between image pairs in 
fluid flows. It is applicable to any type of image, so long 
as they have identifiable features that are displaced by the 
flow. It has been successfully applied to particle images, 
such as those produced by PIV (Schmidt and Sutton 2019, 
2020; Schmidt et  al. 2020; Schmidt and Sutton 2021), 
as well as continuous scalar images in a simulated two-
dimensional flow (Schmidt et al. 2019). wOFV computes 
displacements by assuming the conservation of brightness 
(intensity) between images in an image pair and computing 
a two-dimensional displacement field that minimizes the 
difference between the image intensities. It is a so-called 
“dense” velocimetry method, meaning that it produces one 
velocity vector at each pixel in the images. It is noted that 
the accuracy at each pixel is not necessarily the same, as it 
depends strongly on the local image properties, particularly 
the image intensity gradient. In regions where the magnitude 
of the gradient is small, the computed velocity is strongly 
informed by neighboring regions. This allows spatial turbu-
lence spectra and derivative quantities, such as divergence, 
vorticity, and strain rate to be calculated directly.

wOFV analysis has the potential to extract substantially 
more information from the write and read images for KTV-
2D than previous approaches because it can use entire lines 
of the excited krypton which make up the grid rather than 
just the intersection points of lines. Furthermore, it obtains 
velocity information in the immediate vicinity of intersec-
tion points, rather than a single vector at the center of the 
intersection, because the intersection occupies several pixels 
in the write and read images. This could allow the computa-
tion of quantities such as vorticity at the intersection points, 
which would be of substantial value in understanding the 
turbulence characteristics in this flow. wOFV also is an auto-
mated procedure, much like PIV algorithms, requiring mini-
mal input from the user and hence substantially simplifying 
the workflow for processing both 1D and 2D TV images.

The objectives of this paper are to present wOFV as a 
method to process both 1D and 2D TV images, with a par-
ticular emphasis on 2D, and to evaluate its performance. We 
first present results from a KTV-2D experiment of a SWBLI. 
Experimental images are processed using the cross-correla-
tion-based method of Mustafa et al. (2018) and with wOFV, 
and the resulting velocity data are compared. We then pre-
sent simulated data for both 1D and 2D TV on a turbulent 
boundary layer and quantify the performance of wOFV to 
demonstrate its capabilities and assess its limitations.

2  Methods

2.1  Experiment

The experimental data in this work comes from the applica-
tion of KTV-2D to a SWBLI in a Mach 2.75 flow with a 24◦ 
compression corner. The KTV-2D method generates images 
to compare over a known time interval by seeding the flow 
with krypton and exciting the atoms with a grid of tunable 
laser light, as formed from a beam splitter and a microlens 
array. The beams enter the test section in the same plane 
and are oriented at ±20◦ relative to the vertical axis with a 
spacing of approximately 0.1� in the direction normal to the 
beams. The beams have an apparent width of 7–8 pixels in 
the write image. As the krypton is excited, the write image is 
captured. A short time after the write image is taken (500 ns 
in this case), the same krypton particles are re-excited by the 
read laser and the read image is captured. Based on the dis-
placement of the line crossings of the grids, the velocity at 
various points in the flow field can be determined. We note 
KTV (-1 D and - 2 D) has been performed in many different 
flows (Zahradka et al. 2016; Mustafa et al. 2017; Mustafa 
et al. 2018; Mustafa et al. 2019; Shekhtman et al. 2021), with 
recent improvements in the signal-to-noise ratio (SNR) with 
advanced write/read strategies (Mustafa and Parziale 2018; 
Mustafa et al. 2019; Shekhtman et al. 2020) and repetition 
rate with advanced laser technology (Grib et al. 2019, 2020, 
2021).

The experiments were performed in the AEDC Mach 
3 Calibration Tunnel (M3CT) in Silver Spring, MD. The 

Table 1  M∞ , P∞ , T∞ , �∞ , Reunit
∞

 , ReΘ , and U∞ are the Mach number, pressure, temperature, density, unit Reynolds number, momentum-thickness 
Reynolds number, and velocity for each experiment

Experiment M∞ (−) P∞ (Pa) T∞ (K) �∞ (kg/m3) Reunit
∞

 (1/m) ReΘ (−) U∞ (m/s)

M3 AEDC–19.1 mm OP 2.77 1010 118 0.030 2.30e6 1750 612

Fig. 1  Schematic of KTV-2D experimental setup. PDG is pulse-delay 
generator
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tunnel is comprised of a large vacuum tank attached to a 
converging-diverging nozzle (schematic in Fig. 1; more 
detail can be found in Zahradka et al. (2016). A flexible 
isolation bag was added upstream of the orifice to contain 
the 99% N 

2
/1% Kr gas mixture. The flexibility ensured that 

the mixture stayed at constant ambient pressure. A valve is 
cycled downstream of the nozzle to run the tunnel. Wind 
tunnel conditions are listed in Table 1.

The experiment was performed using two tunable lasers 
to provide the 214.7 nm (write) and 769.5 nm (read) laser 
beams required for KTV. The write laser consisted of a fre-
quency doubled Quanta Ray Pro-350 Nd:YAG laser and 
a frequency tripled Sirah PrecisionScan Dye Laser. The 
Nd:YAG laser pumped the dye laser with 1000 mJ/pulse 
at a wavelength of 532 nm. The dye in the laser was DCM 
with a dimethyl sulfoxide (DMSO) solvent, and the laser 
was tuned to output a 644.1 nm beam. Frequency tripling 
of the dye-laser output was performed using Sirah tripling 
optics (THU 205).

The write laser beam setup can result in approximately 
10–13 mJ/pulse; however, approximately 7 mJ was used for 
this experiment by reducing the Nd:YAG pump-laser power. 
The wavelength was 214.7 nm, with a linewidth of approxi-
mately 0.045 cm−1 , a pulsewidth of approximately 7 ns, and 
a repetition rate of 10 Hz. The write-laser beam was split 
into two beams with a beam splitter designed for use with a 
193 nm excimer laser (Lambda Research XPR-SWI-4002U-
50R-193-45U). To evenly split the laser beams, the beam-
splitter mount was rotated slightly about the vertical axis. 
The two beams were directed into the test section with 1 inch 
5th-harmonic Nd:YAG laser mirrors (IDEX Y5-1025-45) 
and focused to several narrow waists in the test section with 
a f = 100 mm fused-silica microlens array (SUSS Micro-
Optics Nr. 18-00127) to form the lines in the streamwise 
direction and a f = 100 mm fused-silica cylindrical lens to 
focus the lines in the spanwise direction. Neglecting losses 
from the mirrors, lenses, and windows, we estimate that the 
energy per write line is approximately 300 µJ/pulse.

The read laser consisted of a frequency doubled Quanta 
Ray Pro-350 Nd:YAG laser and a Sirah PrecisionScan Dye 
Laser. The Nd:YAG laser pumped the dye laser with 215 mJ/
pulse at a wavelength of 532 nm. The dye in the laser was 
Styryl 8 with a DMSO solvent, and the laser was tuned to 
output a 769.5 nm beam.

The read laser beam setup resulted in approximately 
5 mJ/pulse, with a wavelength of 769.5 nm, a linewidth of 
approximately 0.025 cm−1 , a pulsewidth of approximately 
7 ns, and a repetition rate of 10 Hz. The read laser beam 
was directed into the test section using 2 inch broadband 
dielectric mirrors (Thorlabs BB2-E02), and expanded to a 
beam of ≈ 40 mm diameter with a f = −400 mm fused silica 
cylindrical lens. This “read beam” re-excites the metastable 

krypton tracer atoms so that their displacement can be 
measured.

The laser and camera timing are controlled by a pulse-
delay generator (SRS DG645). The intensified camera 
used for all experiments is a 16-bit Princeton Instruments 
PIMAX-4 1024 × 1024 with an 18-mm grade 1, Gen III 
extended red filmless intensifier with P46 phosphor (PM4-
1024i-HR-FG-18-P46-CM). The lens used is a Nikon 
NIKKOR 24–85 mm f/2.8-4D in “macro” mode and posi-
tioned approximately 200 mm from the write/read loca-
tion. Two high-precision 800 nm long-pass filters (Thorlabs 
FELH0800, transmission of 3.5e-4% at the read-laser wave-
length of 769.5 nm) are placed in series between the lens and 
the intensifier to minimize the noise resulting from the read-
laser pulse reflection and scatter from solid surfaces. The 
gain is set to 100% with no pixel binning and only recording 
the read images to ensure a 10 Hz frame rate. A set of write 
images were recorded with the tunnel off prior to each run. 
The camera gate was opened for 50 ns immediately follow-
ing the read-laser pulse to capture the spontaneous emission 
of 5p[3∕2]

1
→ 5s[3∕2]o

1
 (829.8 nm) transitions.

2.2  Optical flow method

Optical flow is a well-known problem in computer vision 
that involves computing the motion of objects in an image 
sequence. Optical flow belongs to the class of ill-posed 
inverse problems and is typically solved by minimizing a 
constrained equation to yield the displacement field over the 
entire image domain. While solutions were originally formu-
lated to resolve the motion of rigid objects in a scene follow-
ing the seminal work of Horn and Schunck (1981), optical 
flow methods have since been applied to fluid flows (Toku-
maru and Dimotakis 1995; Yuan et al. 2007; Corpetti et al. 
2002, 2006; Chen et al. 2015; Liu and Shen 2008; Liu 2017; 
Cai et al. 2018). In these applications, optical flow solves for 
the displacement between two images separated by a known 
time interval Δt of some flow tracer. The time interval allows 
the displacement to be interpreted as velocity, and optical 
flow methods for fluid flow velocimetry are called optical 
flow velocimetry (OFV) methods. The flow tracer can be 
particles illuminated by a laser sheet as in PIV, a fluores-
cent dye or chemical species (i.e., PLIF), or some other flow 
marker.

OFV methods typically solve some version of a displaced 
frame difference (DFD) equation, given by

I
0
 and I

1
 are the first and second images in an image pair, 

pixel locations are represented by x , and the unknown two-
component velocity field is u

(

x
)

 . This equation simply states 
that, under stable lighting conditions, the only differences 

(1)I
0

(

x
)

− I
1

(

x + u
(

x
)

Δt
)

= 0.
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between I
0
 and I

1
 are due to the transport of image inten-

sity, or brightness, by u . Equation (1) has been shown to 
be equivalent to that of transport of a passive scalar in fluid 
mechanics by Liu and Shen (2008). As mentioned above, Eq. 
(1) is typically solved by forming a minimization problem 
and employing some constraint on the velocity field because 
of the ill-posedness of the inverse problem. Many forms of 
the constraint have been employed, depending on the appli-
cation, but most penalize first- or second-order derivatives 
of the velocity field.

A subset of OFV methods are wavelet-based OFV, or 
wOFV methods (Kadri-Harouna et al. 2013; Dérian et al. 
2013; Dérian and Almar 2017; Schmidt and Sutton 2019, 
2020; Schmidt et  al. 2020; Schmidt and Sutton 2021). 
wOFV methods apply an implicit constraint on the velocity 
field by solving for the wavelet coefficients of the velocity 
field �  , instead of the velocity field directly, and enforcing a 
degree of sparsity on the wavelet decomposition. The result-
ing minimization equation is

JD is a data term based on Eq. (1) that penalizes mismatch 
between the first image I

0

(

x
)

 and a warped second image 
I
1

(

x + u
(

x
)

Δt
)

 , JR is a regularization term that forces the 
solved velocity field to exhibit fluid-like motion by impos-
ing smoothness in an analogous way to viscosity, and � is a 
scalar parameter that balances the two terms. Further details 
on the wOFV algorithm applied in this work are given by 
Schmidt and Sutton (2020, 2021).

An important feature of OFV methods in general is that, 
unlike cross-correlation-based approaches or explicit feature 
tracking methods such as particle tracking velocimetry, OFV 
methods determine the velocity field that minimizes the mis-
match between successive images holistically over the entire 
image domain. Hence, OFV can be best thought of as pat-
tern matching method, and can accurately determine motion 
anywhere where the image intensity gradient is sufficiently 

(2)û = argmin
𝜓

JD

(

I
0
, I

1
,𝜓

)

+ 𝜆JR

(

𝜓

)

.

large in magnitude. Furthermore, the explicit regularization 
term JR used in Eq. (2) in the present work allows the estima-
tion of velocity in regions with small intensity gradients, as 
long as they are close enough to regions with large intensity 
gradients. How close they must be depends on the value 
of � , with larger values increasing the maximum allowable 
distance but also smoothing the gradients in the estimated 
velocity field and hence potentially sacrificing resolution 
of small flow features. This facet of wOFV is demonstrated 
on tracer particle images by Schmidt et al. (2021)]. In the 
present application, this means that wOFV may produce 
accurate results even in the regions between 2D TV write 
lines, if the line spacing is sufficiently small. This is explored 
in Sect. 3.4. An important caveat, particularly in the case of 
high-speed flows, is that large values of � result in greater 
smoothing in regions with poor image intensity information, 
which means that the ability to resolve features with sharp 
velocity gradients, such as shock waves and the near-wall 
region of boundary layers, is reduced.

2.3  Image preprocessing

For optimal processing with wOFV, the write and read 
images should be as similar as possible. Ideally, the only 
difference between them should be displacement produced 
by the flow, consistent with Eq.  (1). Unlike the write 
images, the read images in tagging velocimetry methods 
cannot be averaged to boost SNR, and so their quality is 
somewhat poor compared to the write images. This neces-
sitates substantial image pre-processing of the read images 
to apply wOFV. In this work, the read images are pro-
cessed by a series of steps which (1) denoise the images 
by smoothing the gradients in image intensity over the 
image via total variation regularization (TVR) using the 
Rudin–Osher–Fatemi (ROF) method (Rudin et al. 1992), 
(2) normalize the intensity along the height of the image 
(y-axis) to more closely match the write image intensity 
profile, and (3) set all pixels below a minimum light inten-
sity threshold to zero. This process balances eliminating 

Fig. 2  Example a write, b 
raw (unprocessed) read, and c 
processed read image used for 
wOFV analysis. � is the bound-
ary layer thickness measured 
in a separate experiment with 
schlieren imaging, and the point 
(x, y) = (0, 0) is defined as the 
tip of the compression corner. � 
= 10 mm
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noise with losing as little information as possible in the 
form of pixel intensities.

TVR is a variational image denoising method that is 
based on a total variation prior. In the ROF method, image 
denoising is performed according to Eq. (3) (Rudin et al. 
1992)

Î is the denoised version of the original image I, � is a scalar 
parameter that balances the first term, which penalizes dif-
ferences between I and Î , with the second term J, which is 
a prior function that enforces some degree of smoothness 
on Î to reduce noise. The total variation prior has the form

The total variation prior preserves edges in the image while 
reducing fine-scale noise. The minimization of Eq. (3) is 
performed using an efficient gradient descent algorithm. The 
smoothing parameter � is currently tuned using a manual 
process, based on qualitative image inspection. A balance 
is sought between reduction in image noise in the image 
regions away from the read lines and over-smoothing of the 
lines. Quantified metrics of the processed image may be 
analyzed in the future to automate the denoising procedure.

An example processed write, unprocessed read, and 
processed read image set from this experiment are shown 
in Fig. 2a, b, and c, respectively.

The write and processed read image pairs were analyzed 
with wOFV to determine the flow velocity field for each 

(3)Î = argmin
Î

1

2
‖I − Î‖2

2
+ 𝜎J(Î)

(4)J(Î) = ∫ ‖∇Î‖ dx.

time instance. Data from individual image pairs, as well 
as ensemble quantities such as the mean velocity and vor-
ticity, can then be calculated for the flow.

3  Results and discussion

This section is divided into two parts. In Sect. 3.1, images 
from the KTV-2D experiments of the turbulent SWBLI 
described in Sect. 2.1 are analyzed using wOFV and cross-
correlation. Subsequently, in Sect. 3.2, simulated KTV-
1D and - 2 D images are advected by velocity fields from a 
direct numerical simulation (DNS) of a flat plate turbulent 
boundary layer, and the resulting “read” and “write” image 
pairs are used to compute a velocity field with wOFV. The 
accuracy of wOFV is assessed by comparing the computed 
velocity fields against the true fields from the DNS.

3.1  Experiment

The velocity field was computed for a set of 354 read 
images from the experiment described in Sect. 2.1. The 
images are cropped to the region shown in Fig. 2, which is 
623 × 521 pixels, and a velocity vector is computed at each 
pixel. The instantaneous velocity field from the write and 
read images shown in Fig. 2 is shown in Fig. 3. The excita-
tion lines from the write image are overlaid to aid the eye. 
The velocity magnitude is represented by the coloration, and 
individual velocity vectors are shown in green. The vec-
tors are sub-sampled by a factor of 20 in both directions 
for clarity. The wOFV method produces velocity vectors 
even where there are no excited krypton atoms, so there is 
ambiguity at those points when considering only the image 
intensity data, because perturbations to the value of u

(

x
)

 in 
Eq. (1) do not produce significant variations in the inten-
sity mismatch between the read and write images at these 
locations. Velocities at these points are computed instead by 
enforcing smoothness on the velocity field via JR in Eq. (2), 
because changes to u

(

x
)

 will more strongly impact JR at 
these locations than JD . The balance of the magnitude of 
these two terms depends both on the local intensity pattern 
around each pixel location x , specifically whether or not the 
magnitude of JD changes appreciably when the velocity is 
perturbed during the computation of the solution, and the 
value of the scalar regularization parameter � . In practice, � 
is always small enough that points near locations with large 
image intensity gradients, i.e., near the write lines, that JR 
does not appreciably contribute to the estimation of u

(

x
)

 , 
and so the estimated velocity is effectively only influenced 
by the deformation of the lines. While erroneous away from 
the region in the bottom-center of the image, where there 
are no lines or intersections, the correct qualitative trend 
for a turbulent boundary layer of decreasing velocity as one 

Fig. 3  An instantaneous velocity field of the flow generated by the 
wOFV method. The excitation lines from the write image are shown 
overlaid on the velocity field to aid the eye. Coloration represents the 
velocity magnitude, and sub-sampled velocity vectors are shown in 
green. � = 10mm
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moves downward toward the wall is observed where the den-
sity of lines and intersections is high, 0.25 < y∕𝛿 < 1 and 
−0.5 < x∕𝛿 < −0.1.

The mean velocity field ū can be computed from the 
instantaneous velocity fields u , and the result is compared to 
the mean velocity field computed using the previous meth-
odology of Mustafa et al. (2018) in Fig. 4a. Only data from 
the valid intersection points as determined by the analysis 
of Mustafa et al. are shown for both methods for easier com-
parison. Good agreement is observed between the two pro-
cessing approaches, indicating that the vectors produced by 
wOFV, at least at the points of intersection, are as reliable 
as those computed by direct cross-correlation. The mean 
of the magnitudes of the vectors of the difference between 
the processing methods is 44 m/s, with a standard deviation 
of 34 m/s, and the mean relative difference (compared to 
the magnitudes of the vectors computed with correlation) is 
9.9% with a standard deviation of 8.0%.

More interesting are the fields of instantaneous and fluctu-
ating velocity u� = u − ū , which are shown for time instance 
represented by Figs. 2 and 3 in Fig. 4b and 4c, respectively. 
The vectors for u′ in Fig. 4c have been lengthened by a factor 
of 4 relative to Fig. 4a and b to aid visualization. While the 
instantaneous velocity fields again show good agreement, 
and there is agreement between wOFV and cross-correlation 
at a few points for the velocity fluctuations, significant dif-
ferences are observed between the two methods in general 
for u′ . The mean of the magnitude of the difference vectors 
when comparing the instantaneous velocity u is 103 m/s, 
and the standard deviation is 48 m/s. The mean relative dif-
ference is 26% with a standard deviation of 21%. The mean 
difference vector magnitude for u′ is similar: 72 m/s with a 
standard deviation of 56 m/s, which corresponds to a much 
larger relative difference: 130% with a standard deviation 
of 95%.

It is not especially surprising that the disagreement in 
the velocity fluctuations is larger than in the mean velocity, 
as the fluctuating streamwise velocity u′ and especially the 
wall-normal velocity v′ are challenging to measure accu-
rately in turbulent boundary layers, particularly for com-
pressible flows. Given the small number of samples, lack of 
convergence of the mean velocity may also be a contribut-
ing factor to the disagreement. Without further study, either 
using experiments in a well-characterized flow such as an 
incompressible turbulent boundary layer on a flat plate, or 
using synthetic data where the true instantaneous velocities 
are known, it is not possible to determine which velocime-
try algorithm produces more accurate results. The accuracy 
of wOFV on 2D TV images, including at locations some 
distance from the laser line intersections, is assessed quan-
titatively in the next section.

3.2  Synthetic data

To quantify the performance of the wOFV algorithm on TV 
images, synthetic 1D and 2D TV images were produced and 
advected using velocity fields from a DNS of a turbulent 
boundary layer. The DNS data was retrieved from the Johns 
Hopkins Turbulence Database (JHTDB) (Perlman et al. 
2007; Li et al. 2008), and the specific data set used was the 
“Transitional Boundary Layer” (Zaki 2013). Details regard-
ing the simulation can be found on the JHTDB website. The 
simulation is of a flat-plate boundary layer that is initially 
laminar but becomes turbulent as the flow proceeds down-
stream. Two-dimensional snapshots of the velocity field are 
retrieved for 0.891L < x < 0.947L and 0 < y < 0.0225L 
where x is the streamwise coordinate, y is the wall-normal 
coordinate, and L is the length of the plate in the simulation, 
for four spanwise locations equally spaced with Δz = 0.571L 
for 500 time instances, equally spread throughout the time 
domain of the simulation, which is tmax = 1.12

L

U∞

 . These 

(a) (b) (c)

Fig. 4  a Mean, b, instantaneous, and c fluctuating velocity fields 
produced by the previous correlation-based approach (Mustafa et al. 
2018) and the present wOFV results. The edge of the 24◦ compres-
sion corner is shown as a solid black line in the lower-right of the 

figure, and the estimated shock position, determined by schlieren 
imaging, is shown as a dashed line. Vectors in a and b represent 
velocity magnitudes 4 times larger than ones of equivalent length in 
c. � = 10mm
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locations are in the fully turbulent region of the simulation, 
which is x > 0.525L . The Reynolds number based on x at 
the start of the snapshot is 7.49 × 105 , and the 99%, displace-
ment, and momentum thicknesses at that location are 
1.4 × 10−2L , 2.3 × 10−3L , and 1.5 × 10−3L , respectively. The 
resulting 2000 velocity fields are discretized into 512 points 
in the x and y directions. The 99% boundary layer thickness 
� is used throughout the following sections to normalize spa-
tial coordinates. In the present simulations, � is approxi-
mately equal to 325 pixels, which is similar to the resolution 
in the experiments in Sect. 3.1 where � ≈ 360 pixels. Simu-
lated TV images are advected by each of these fields accord-
ing to Eq. (1) using two-dimensional spline interpolation and 
symmetric boundary conditions.

3.3  1D line images

Simulated 1D TV write images with a resolution of 
512 × 512 pixels were created using a set of vertical lines 
with Gaussian intensity profiles. The standard deviation was 
specified to be 3 pixels, to approximate the experimental 
images in Sect. 2.1, and those from previous studies (Zah-
radka et al. 2016; Mustafa et al. 2019). All 2000 DNS veloc-
ity fields are applied to a noise-free write image to produce 
2000 corresponding read images, with a simulated Δt such 
that the inter-frame displacement due to the free stream 
velocity is 7 pixels. The full two-dimensional velocity fields 
are used to advect the lines in the write images, but only 
the horizontal component of the velocity fields are used for 
comparison since wOFV can only provide an estimate of 

the velocity in the direction orthogonal to the write lines. 
To quantify the effect of noise on the velocity estimations, 
random Gaussian noise was independently applied to sepa-
rate copies of all of the write and read images, resulting in 
sets with signal-to-noise ratios of infinity (i.e., noise-free), 
17, 11, 5, and −1 dB. Using the peak-to-peak quantification 
of SNR common in the TV literature, e.g., in Ref. (Gendrich 
and Koochesfahani 1996), these values correspond approxi-
mately to SNR values of 26, 13, 6.5, and 3.2. The SNR in 
the experimental data in Sect. 3.1 is estimated to be between 
5 and 10 dB. Example write images are shown in Fig. 5. 
� is the 99% boundary layer thickness measured at x = 0 , 
which is the location of a central write line, corresponding 
to x = 0.917L in the simulation domain.

The mean and RMS horizontal velocity profiles computed 
from the wOFV results for each noise level are compared 
against the true profile for the line at x = 0 in the images 
in Fig. 6a and b, respectively. All profiles computed with 
wOFV agree very closely with the true result for the mean, 
and the RMS profiles are similar as well, particularly for 
image noise levels above 5 dB. Profiles are plotted against 
y+ , the distance from the wall normalized by the friction 
length scale �

�
 . For these images, each pixel represents 

approximately 4�
�
.

The relative error in each metric is computed as a func-
tion of y+ and is shown in Fig. 7. These data quantify the 

Fig. 5  Example write images with varying levels of added noise, � is 
the 99% boundary layer thickness at x = 0

(a) (b)

Fig. 6  Calculated a mean and b RMS velocity profiles for the line at 
x = 0 depicted in Fig.  5 for each noise level, compared against the 
true profiles

(a) (b)

Fig. 7  Relative error in the a mean and b RMS velocity profiles 
shown in Fig. 6 for each noise level
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evaluations made from Fig. 6. Except for very close to the 
wall ( y+ ≲ 100 ), the error is approximately 1% in the mean 
for all noise levels, and is under 0.1% in the noise-free limit. 
The relative error in the RMS is higher, approximately 10% 
for low to moderate noise and under 1% in the noise-free 
limit. It is furthermore noted that the wOFV solution is 
largely independent of the SNR, as long as it is above 5 dB. 
The relative error is high close to the wall for two reasons. 
First, the true local velocity becomes small, so the relative 
error increases significantly for small absolute errors. Sec-
ond, there are very few pixels in the viscous layer, and the 
velocity gradient is very high in the near-wall region. The 
condition u = 0 at y = 0 is not strictly enforced during the 
computation of velocity, so wOFV is unable to fully resolve 
the velocity profile within a few pixels of the wall. Other 
techniques such as PIV suffer from this same effect, except 
it is worse for PIV because of the finite size of interrogation 
windows.

Turbulence statistics are also extracted from the wOFV 
results for the full set of lines in the write and read images. 
The streamwise correlation coefficient R

11
 at y = 0.2� and 

the two-dimensional contours of correlation of the stream-
wise velocity are shown in Fig. 8a and b, respectively. Each 
are mean results for the entire 2000-sample data set. Simi-
lar to the results for the mean and RMS of the streamwise 
velocity, the calculated correlation coefficient curves are 
very close to the true profile for SNR levels above 5 dB. 
Specifically, the magnitude of the error in the correlation 
coefficient R

11
 is less than 0.05 at all write line locations. 

This is true for the contours of correlation as well, where the 
curves are observed to be essentially coincident for all but 
the lowest SNR. These results indicate that wOFV produces 
sufficiently accurate results to construct statistical turbulence 
quantities with confidence, with the key advantage of ease of 
use and repeatable, automated processing compared to more 
manual methods in the literature for 1D TV data.

3.4  2D line images

In addition to the 1D TV write images produced and ana-
lyzed in the previous section, sets of 2000 write images were 
produced with simulated 2D TV lines in crossing patterns 
similar to the experimental images shown in Fig. 2. Unlike 
1D TV images, 2D TV images potentially offer the possibil-
ity to not only measure both of the in-plane components of 
the velocity field distributed across the image, but also to 
acquire derivative quantities such as the out-of-plane compo-
nent of vorticity, and hence could be considered to be analo-
gous to PIV in terms of the data produced. The accuracy of 
a full-frame velocity field estimation from 2D TV images, 
particularly at points between line intersection locations, is 
likely sensitive to the line inclination and spacing. Therefore, 
a test matrix with varied line inclination angles of ±2◦ , ±10◦ , 
±20◦ , ±40◦ , ±50◦ , and ±65◦ to the vertical, and varied line 
spacings of 0.05� , 0.1� , and 0.2� (normal to the line direc-
tions) was created for evaluation. The inclination angle and 
line spacing in the experimental images are approximately 
20◦ and 0.1� , respectively. Different levels of noise were 
introduced to the set of images with a line inclination angle 
of ±20◦ and a line spacing of 0.1� to assess the effects of 
imaging noise on the accuracy of velocity estimation, as 
these are most similar to the parameters in the experimental 
images in Sect. 3.1. A subset of these synthetic images is 
shown in Fig. 9.

In addition, a set of 2000 simulated particle images, 
which represent what would be produced in a PIV experi-
ment, were created and processed with a commercial 

(a) (b)

Fig. 8  a Streamwise correlation coefficient R
11

 at y = 0.2� for each 
noise level. b Contours of correlation of the streamwise velocity for 
each noise level

Fig. 9  Example synthetic 2D TV write images for various line spac-
ings and inclination angles
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cross-correlation-based commercial PIV software (TSI 
Insight4G) for comparison with the 2D TV images pro-
cessed with wOFV. Simulated particle images were gener-
ated using the approach described by Schmidt and Sutton 
(2020). The particles have a mean diameter of 1 � m with 
a standard deviation of 0.5 � m, and the synthetic particle 
images are created assuming a magnification of M = 0.5 , 
a camera lens with f/4 and a pixel pitch of 4.5 � m, using 
the formulations given by Adrian (1991). The projected 
particle diameter is 2–4 pixels, and the particle density is 
0.25 particles per pixel, which results in 64 particles per final 
16 × 16 pixel interrogation window used in the PIV process-
ing. Processing was performed with a multi-pass scheme 
with deforming interrogation windows and an initial window 
size of 32 × 32 pixels, which is more than four times the 
maximum inter-frame particle displacement of 7 pixels. All 
of these parameters are well within the established experi-
mental guidelines for PIV prescribed in several reference 
texts, e.g., Raffel et al. (2018), and have been demonstrated 
to produce optimal results for PIV processing in the litera-
ture (Schmidt and Sutton 2019).

As mentioned elsewhere in the paper, the ability of 
wOFV to resolve small turbulent structures and vorticity 
depends on the line spacing compared to the relevant length 
scales in the flow. The most relevant length scale is likely 
the scale of the large eddies, which can be approximated 
by the integral scale in isotropic turbulence, although this 

is a subject for investigation in future work. Such a defini-
tion is not as straightforward in boundary layers, where the 
turbulence scales vary with the wall-normal coordinate y. 
However, since the outer length scale in boundary layers 
has been observed to scale with the boundary layer thickness 
� (Pope 2001), we feel that � is an appropriate length scale to 
characterize the line spacing in the present work.

The error in the velocity and vorticity fields is shown in 
Fig. 10. Throughout the remainder of this paper, “vorticity” 
and the symbol � refer to the out-of-plane component of 
the vorticity vector, as this is the only component that can 
be computed from a two-dimensional velocity field. Errors 
are reported as the root mean square error (RMSE), which 
is defined as

N is the number of points at which the error is evaluated. 
Equation (5) can be applied to the vorticity as well by replac-
ing u with � . The data points in Fig. 10 represent the mean 
RMSE over an entire 2000-image set, and the errorbars rep-
resent the standard deviation for the set. The vorticity is 
normalized by the mean vorticity for a given instantaneous 
velocity field. It is observed from both the RMSE of velocity 
and vorticity that the accuracy increases as the line spac-
ing is reduced, and the peak accuracy occurs for inclination 
angles close to 45◦ . If the lines are close enough together, for 
instance, the Δl = 5%� case, the error in velocity is nearly 
insensitive to inclination angle.

Also shown in Fig. 10a is the RMSE for the correla-
tion-based approach of Mustafa et al. (2018). As might be 
expected for noise-free images, the correlation results are 
highly accurate at the line intersection locations, although 
the accuracy of the two processing methods is very similar 
for small line spacing and inclination angles larger than 20◦ . 
It is also noted that the correlation procedure fails for the 
smallest line spacing of Δl = 5%� , and for small line inclina-
tion angle. The correlation procedure also had a processing 
time of 10–100 times longer than wOFV when performed 
on the same images and the same machine. It is also noted 
that the vorticity cannot be directly calculated from the cor-
relation results, because only one vector per line intersection 
is returned.

Several other, less intuitive conclusions are drawn from 
the data in Fig. 10. First, it is noted that both the estimated 
velocity and vorticity fields have approximately the same 
accuracy over the entire image as they do at the intersec-
tion points, except for Δl = 20% � , for large enough line 
inclination angle. This is because, unlike other methods 
found in the literature, wOFV does not specifically identify 
or track lines or intersections. Rather, it matches patterns 
as a whole, which incorporates the motion of the spaces 

(5)RMSE =

�

1

N

�

‖u − u
true

‖

2.

(a)

(b)

Fig. 10  Mean root mean square error (RMSE) in a velocity and b 
vorticity as a function of line inclination and angle for wOFV applied 
to TV images. Errorbars represent the standard deviation across a 
2000-image set. The RMSE in velocity for simulated PIV data is also 
shown for comparison, as well as RMSE in the velocity field at inter-
sections for a correlation-based approach. RMSE in � is normalized 
by the true mean vorticity for a given instantaneous velocity field
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between lines just as strongly as the motion of the lines 
and intersections themselves. As the line spacing becomes 
small, the Gaussian tails of the line intensity profiles con-
tribute small, but meaningful, image intensity information 
to the spaces between line centers, which improves the 
overall accuracy.

Second, wOFV applied to TV images is observed to be 
more accurate than correlation-based PIV applied to par-
ticle images for nearly all of the TV write patterns inves-
tigated. The RMSE in � for PIV is approximately 1.0, and 
so is not shown in Fig. 10b. There are several important 
caveats to this result, however. First, both the TV images 
and the particle images are noise-free, and wOFV has been 
observed to be more sensitive to noise than correlation-based 
PIV (Schmidt et al. 2021). Second, and more significantly, 

both the TV read images and advected particle images are 
produced by following Eq. (1), which exactly conserves 
image intensity at a pixel. Because Eq. (1) is also the equa-
tion that is used to estimate the velocity field in wOFV, cre-
ating the synthetic images in this way biases the result in 
favor of wOFV compared to PIV, which does not assume an 
explicit form of an intensity transport equation. Nonetheless, 
the results show that wOFV applied to TV images produces 
comparable accuracy to PIV, even in regions between write 
lines and intersections, particularly if the lines are closely 
spaced. Additionally, we speculate that wOFV would be 
especially effective in TV situations where dense grids can 
be made, as was done in Fort et al., where those researchers 
used Talbot-effect structured illumination (Fort et al. 2020).

The spatial distribution of the error magnitude is shown in 
Fig. 11. For larger line spacings (middle and bottom rows), 
the error is smaller in regions near the line intersections, and 
is around 1% of the free stream velocity, or about 0.07 pixels 
for the specified inter-frame displacement of this data set. 
For small line spacing, and when the line angle is closer to 
45◦ , however, (upper right quadrant of Fig. 11) the pattern 
of the write image disappears from the error map, indicat-
ing that wOFV is equally accurate across the entire image 
domain. The output of the measurement becomes analogous 
to that of PIV in this case, and the uncertainty is independent 
of the write image pattern.

The mean accuracy of the velocity field is not the only 
quantity of interest, also significant is the ability to calculate 
derivative quantities such as vorticity. The true vorticity and 
the vorticity calculated with PIV for a single realization of 

Fig. 11  Mean error magnitude 
for the write line spacings and 
inclination angles shown in 
Fig. 9. The error magnitude 
has been normalized by the 
free stream velocity, which 
corresponds to a displacement 
of 7 pixels

(a) (b)

Fig. 12  Vorticity for a single realization of a the true velocity field 
and b the velocity field computed with PIV. The magnitude of the 
vorticity has been normalized to the maximum magnitude of the true 
vorticity
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the velocity field is shown in Fig. 12. Vorticity is computed 
from each velocity field by approximating partial derivatives 
using the MaxPol method (Hosseini and Plataniotis 2017a, 
b). It is observed that PIV under-resolves the true vorticity, 
which is a well-known effect of the multi-pixel interrogation 
windows used during PIV processing. The present results 
were computed using 16 × 16-pixel interrogation windows 
with 50% overlap, so the resolution is reduced by 8 pixels 
in each direction.

The vorticity computed for TV images using wOFV for 
each of the write image patterns shown in Fig. 9 is shown in 
Fig. 13, using the same color scale as Fig. 12. The accuracy 
of the vorticity calculations is observed to be most sensitive 

to the line spacing, with only a weak dependence on incli-
nation angle. The vorticity fields for line spacings of 10%� 
and 5%� and inclination angles greater than 20◦ (i.e., the 
upper-right of Fig. 13) appear very similar to the true vor-
ticity field, and appear qualitatively similar or superior to 
the PIV result. This finding indicates that 2D TV imaging, 
combined with wOFV, can be used more or less as a direct 
substitute for PIV in high-speed flows, without sacrificing 
spatial resolution or suffering a detriment to the ability to 
compute derivative properties of the velocity field, as long 
as the line spacing is sufficiently small and the SNR is suf-
ficiently high.

Fig. 13  Instantaneous vorticity 
fields for the write line spacings 
and inclination angles shown 
in Fig. 9

Fig. 14  Left: RMSE for syn-
thetic noisy 2D TV images as a 
function of signal to noise ratio 
(SNR). Right: Sample vorticity 
fields for wOFV as a function of 
noise level, to be compared to 
the central panel of Fig. 13
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Finally, results from adding noise to the synthetic 2D TV 
images are shown in Fig. 14. As for the 1D TV images, 
the RMSE for wOFV is relatively insensitive to moderate 
levels of noise, to a SNR of 5, and wOFV and correlation 
show similar accuracy over this range, with the correlation 
results slightly more accurate than wOFV (RMSE of approx-
imately 0.033 compared to 0.040). For high levels of noise, 
the RMSE for wOFV increases and correlation fails to con-
verge to a solution, demonstrating a higher level of robust-
ness for wOFV compared to correlation-based approaches. 
Instantaneous vorticity fields for the wOFV results also are 
shown, and these can be compared qualitatively to the noise-
free result in the central panel of Fig. 13. The vorticity fields 
are qualitatively similar that of the noise free limit for SNR 
values of 11 and 17, and the ultimate effect of noise in these 
cases is a low-pass filtering of the vorticity field compared to 
the noise-free results. Increased levels of noise degrade the 
quality of the vorticity field estimation, as expected.

4  Conclusions

wOFV was applied in this work to two sets of tagging veloci-
metry (TV) image data to evaluate its performance. The first 
set of images were acquired in an experiment of a turbulent 
shock wave-boundary layer interaction in a Mach 2.75 free 
stream flow using KTV-2D. An image denoising procedure 
using total variation regularization (TVR) was applied to 
the experimental read images to boost the SNR and pro-
duce more reliable velocity estimations. Good agreement 
is observed between velocity estimations using wOFV and 
cross-correlation for the mean velocity field, but wOFV has 
several distinct advantages. First, as an automated process, 
wOFV is much simpler to implement and more adaptable 
than cross-correlation procedures commonly used in the lit-
erature, which require significant manual tuning to identify 
line intersection locations. Second, wOFV produces a veloc-
ity estimation at every point in the image domain, instead of 
only at line intersection points, and can therefore provide a 
more complete picture of the turbulent velocity field, as well 
as potentially enabling the straightforward computation of 
spatial turbulence spectra and derivative quantities such as 
vorticity. This advantage can only be realized if the spacing 
between lines is sufficiently small compared to the relevant 
turbulent length scale, as the accuracy of wOFV is depend-
ent on the magnitude of the image intensity gradient in the 
neighborhood of the location at which each velocity vector 
is computed. Less agreement is observed between wOFV 
and cross-correlation for the velocity fluctuations, but it is 
unknown at this time which method is more accurate for 
this experiment.

A second set of synthetic data was produced to more 
robustly quantify the accuracy of wOFV applied to TV 

images. A set of velocity fields from a direct numerical sim-
ulation of a turbulent boundary layer was used to advect both 
1D and 2D synthetic TV write images. Noise was added to 
the TV images to assess sensitivity, and it was found that for 
moderate noise levels such that the SNR is above 5 dB, the 
wOFV results are relatively insensitive to noise and produce 
very accurate estimations of the velocity profiles along the 
write lines as well as turbulence statistics. The chief advan-
tage in this case for wOFV compared to methods from the 
literature is ease of use and less user-defined inputs, which 
leads to less ambiguity in the results.

The line spacing and inclination angle were varied in the 
synthetic 2D TV images to assess their effect on the accu-
racy of the wOFV estimations. It was found that wOFV pro-
duces results that are at least as accurate as PIV for this flow 
for small enough line spacings ( < 10%𝛿 ) and that the accu-
racy is less sensitive to line inclination angle, but increases 
as the angle approaches 45◦ . The accuracy is found to be 
similar to direct cross-correlation of intersection locations 
using an advanced line-fitting procedure, except that wOFV 
is more robust to high levels of noise and more extreme line 
inclination angles and line spacings. Correlation was found 
to be more accurate than wOFV in the mean for low-noise 
images by about 25%. The velocity computed with wOFV 
is accurate across the entire image, however, not only at line 
intersection locations, which allows the vorticity to be com-
puted directly. This suggests that, for configurations with 
closely spaced write lines, 2D TV coupled with wOFV can 
be substituted directly for PIV in high-speed flows, and the 
full 2D velocity field, as well as derivative quantities, can be 
measured with similar accuracy as what would result from 
PIV. Hence, wOFV offers an additional advantage to most 
state-of-the-art processing routines in the literature, besides 
those noted for 1D write images, namely the ability to accu-
rately compute the velocity for the full image, rather than 
just at the line intersection locations, if the line spacing is 
sufficiently small.
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