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Abstract 
The drag wake of a dimpled sphere with Re = 105 is studied experimentally using Stereo Particle Image Velocimetry to a 
downstream distance of ∼ 90 diameters. The wake growth and velocity decay are analyzed and compared with previous 
dimpled sphere data for Re = 5 ⋅ 104 . Self-similar decay was observed with the ensemble mean axial velocity defect decaying 
as x−1 and the wake size growing as x1∕2 . Due to the difference in Reynolds number, the two spheres have different drag coef-
ficients (0.13 and 0.25, respectively), but these self-similar decay exponents were not observed to depend on drag coefficient 
or Reynolds number. The results suggest that the self-similar drag wake decay observed at laboratory scales may extrapolate 
to the larger Reynolds numbers typical of engineering and geophysical flows.

Graphical Abstract

1  Introduction

The spreading and decay of the drag wake of an object is 
relevant to many applications in geophysics and engineer-
ing. Examples include the wakes of mountains, seamounts, 
windmills, and buildings. Drag wakes are characterized by 
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their mean velocity defect as a function of distance x down-
stream from the generating body. For axisymmetric bodies 
such as spheres, disks, and slender cylindrical bodies, self-
similar decay of the wake is typically observed (Tennekes 
and Lumley 1972). In this case, the mean velocity defect 
u (the difference between the flow speed Um and the mean 
velocity component in the direction of travel x) has the func-
tional form

where x/D is the downstream distance (measured in units 
of the body diameter D) and r is the radial distance from 
the center symmetry axis of the body. In this self-similar 
form, the radial profile of the wake velocity defect has the 
same shape f(r/L) at any downstream distance when scaled 
by the appropriate velocity and length scales. The appropri-
ate length scale L grows with some power � of x/D, while 
the velocity scale Uo decays twice as rapidly, as required 
by momentum conservation (Tennekes and Lumley 1972).

The classical self-similar scaling law (Swain 1929; 
Tennekes and Lumley 1972), in which the wake spreads 
with downstream distance x as x1∕3 ( � = 1∕3 in Eqs. 1-3), 
has long been used to describe axisymmetric drag wakes. 
Although early experiments with spheres appeared to con-
firm this result (Bevilaqua and Lykoudis 1978), most recent 
experiments (Bonnier and Eiff 2002; Nedić et al. 2013; 
Obligado et al. 2016; Saunders et al. 2020) have demon-
strated that axisymmetric drag wakes have more rapid wake 
spreading (as x1∕2 , or � ≃ 1∕2 in Eqs. 1-3) and decay than 
the classical result of � = 1∕3 . Experiments with a sphere at 
a Reynolds number ( U

m
D∕� ) of Re ≃ 104 first demonstrated 

non-classical decay to a distance of ≃ 30 body diameters. 
Non-classical scaling was extended to ≃ 50 body diameters 

(1)⟨u(x, r)⟩ ≃ Uo(x)f
�
r

L

�

(2)L ∼
(
x

D

)�

(3)Uo ∼
(
x

D

)−2�

by Nedić et al. (2013). Although (Nedić et al. 2013) initially 
indicated that rough shapes (fractal plates) deviated from 
classical scaling while more smooth shapes (disks) did not, 
subsequent reanalysis in Obligado et al. (2016) found that 
all shapes studied had � ≃ 1∕2 . However, other experiments 
with disks (Johanssan et al. 2003) have yielded classical 
scaling. Experiments with a dimpled sphere at Re ≃ 5 ⋅ 104 
(Saunders et al. 2020) also found � ≃ 1∕2 to a downstream 
distance of ∼ 200 body diameters. High resolution numeri-
cal simulations have also reproduced the more rapid x1∕2 
wake spreading (Dairay et al. 2015; Pal et al. 2017; Chong-
siripinyo and Sarkar 2020; Nidhan et al. 2020), although 
(Nidhan et al. 2020) suggested a transition from x1∕2 to the 
slower x1∕3 growth at some downstream distance. While 
some questions remain, these results collectively appear to 
establish that non-classical ( � ≃ 1∕2 ) wake decay occurs for 
most axisymmetric bodies at laboratory Reynolds numbers 
( Re ∼ 104 ), at least over some initial distance downstream 
from the body.

Extrapolation of this laboratory scaling law to larger 
engineering applications with Reynolds numbers exceed-
ing 105 remains an open question, as no data are available 
on wake decay at these Reynolds numbers. For spheres, the 
drag coefficient (and hence possibly the wake) undergoes 
a transition at Reynolds numbers of ∼ 105 , known as the 
‘drag crisis’ (Achenbach 1972). As previous laboratory data 
were obtained at Reynolds numbers below this drag crisis, 
wake decay data in this transitional regime would provide 
insight into wake behavior at larger scales. To address this 
question, new Stereo Particle Image Velocimetry (SPIV) 
measurements of the decaying wake of a dimpled sphere 
with a Reynolds number of Re = 105 are compared to previ-
ous results for Re = 5 ⋅ 104 . Laboratory data from Achen-
bach (1974) indicate that the drag coefficient CD for a rough 
sphere decreases from 0.5 to 0.1-0.2 (the ‘drag crisis’) for 
Reynolds numbers in the range of ∼ 5 ⋅ 104 to ∼ 3 ⋅ 105 , 
with the transition point and minimum drag depending 
on surface roughness. As a consequence of the dimples 
on the sphere used here, the two Reynolds numbers com-
pared fall within the drag crisis regime, and have differ-
ent drag coefficients ( CD ≃ 0.13 for the new Re = 105 data, 

Fig. 1   The dimpled sphere (left) 
and the experimental configura-
tion (right)
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compared to CD ≃ 0.25 for Re = 5 ⋅ 104 in Saunders et al. 
(2020)). These new data have been obtained near the drag 
minimum ( CD ≃ 0.1 ), and hence approach the flow regime 
found in engineering applications. The goal of the present 
experiments is to determine if this change in drag results in 
a measurable difference in the wake decay. This will assist in 
determining the applicability of the laboratory wake decay 
data to larger scale engineering flows.

2 � Experimental approach

Experiments were conducted in the same tow tank as Saun-
ders et al. (2020) using a dimpled sphere with a diameter of 
D = 10 cm towed at a constant speed of Um ≃ 1 m/s. The 
sphere is a larger version of the one used in Saunders et al. 
(2020), and is shown in Fig. 1a. Figure 1b presents a sche-
matic overhead view of the experiment. The tank width was 
1.8 m and the water depth was 0.7 m. The blockage ratio (the 
square root of the ratio of sphere cross section to tank cross 
section) was ≃ 0.08 , well below the threshold at which drag 
is impacted by the tank walls (Achenbach 1974). The sphere 
depth was approximately midway between the tank bottom 
and free surface. Surface disturbances were not observed 
during the experiments, indicating that interactions between 
the wake and free surface did not occur. A laser sheet origi-
nating beneath the tank floor and oriented perpendicular to 
the sphere direction of travel illuminated the particles within 
the wake. Two cameras in submerged boxes were located 
within the tank, one on each side of the wake at the same 
depth, to image the illuminated particles.

Stereo Particle Image Velocimetry (SPIV) data were 
acquired immediately following the passage of the sphere 
until wake structures reached the edge of the field of view 
of the SPIV system. The components of the SPIV sys-
tem included the DaVis software (LaVision), two Imager 
sCMOS high speed cameras (LaVision), Camera Link HS 
Frame Grabber (LaVision), PTU-X Programmable Timing 

Unit (LaVision), and Litron Nano L 200-15 Pulsed Nd:YAG 
Laser. In addition, each camera was equipped with a 
Scheimpflug mount to correct for distortion due to the cam-
eras not being perpendicular to the image plane. For these 
experiments the cameras were set to an angle of 33◦ from 
the x-axis (see Fig. 1b) and were fitted with 20 mm focal 
length lenses, resulting in an overlapping FOV of 73 cm in 
the y direction and 64 cm in the z direction. This angle is 
within the optimum range for SPIV systems, as determined 
by Lawson and Wu (1997).

The tank was seeded with 50 � m neutrally buoyant par-
ticles with an average density of 1.03 g/cc. The Stokes drift 
time scale of the particles was �

p
= 68 � s (Raffel et al. 2018). 

For these experiments the timescale of the flow �f  is given 
by the ratio of the length scale to the largest velocities in the 
wake. Therefore the Stokes number St =

�p

�f
 , which is the 

ratio of these two scales, was approximately 3 ⋅ 10−7 between 
x∕D = 15 and x∕D = 90 . This Stokes number satisfies the 
requirement ( St ≤ 10−1 ) for the seeding particles to follow 
the turbulent motions of the flow within the range of down-
stream distances studied. The 50 � m particle size was 
smaller than the resolution of the PIV system, indicating that 
pixel locking effects would be present in the data. However, 
this pixel size was chosen to obtain the field of view neces-
sary to image the entire wake cross section at x∕D ∼ 90 . 
Pixel-locking effects were reduced by both defocusing the 
cameras and by the subpixel interpolation scheme (Michae-
lis et al. 2016). Any remaining bias errors were further 
reduced by azimuthally averaging the resulting velocity 
fields before quantifying the mean and fluctuating velocity 
fields. The tank was seeded such that each interrogation 
region contained on average 8–10 particles. A dual-head 
Nd–Yag laser (Litron, 200 mJ/pulse, 532 nm wavelength) 
was used to illuminate the particles. This system contains 
two pulsed lasers which were aligned such that their optical 
paths were nearly identical. The laser sheet thickness was 
approximately 3 cm, ensuring the out-of-plane displacement 
was less than one-quarter of the light sheet thickness. The 

Table 1   SPIV parameters

Re = 1 ⋅ 105 corresponds to present study. Previous paremeters used in Saunders et al. (2020) are included 
as well corresponding to Re = 5 ⋅ 104

Re Laser pulse 
rate (Hz)

Image pair time 
spacing � t (ms)

Min in plane 
velocity (cm/s)

Max in plane 
velocity (cm/s)

Uncer-
tainty 
(cm/s)

No. of runs

1 ⋅ 105 
(Present 
data)

15 10 1 16 0.6 65

5 ⋅ 104 
(Saun-
ders et al. 
2020)

10 10 0.8 13 0.2 42
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lasers can be pulsed simultaneously or with a time delay 
between pulses. This time delay �t , combined with the 
desired spatial resolution and camera FOV, determines the 
range of flow velocity scales which can be measured.

Table 1 details the parameters used for the SPIV meas-
urements. The SPIV processing was performed using an 
open-source MATLAB code called UVMAT (xxxx). The 
algorithm first performs PIV processing of the images from 
a single camera using a dual-pass method, where the first 
pass determines lower-resolution estimates of the veloc-
ity field within an interrogation region, while the second 
pass uses the estimates from the first pass to obtain more 
precise measurements of the velocity field at a higher reso-
lution. The velocity fields from the two cameras are then 
combined using SPIV to determine all three velocity com-
ponents within the plane of data. The first-pass PIV analysis 
was performed with 128 × 128 pixel interrogation regions, 
a search-box size of 147 × 147 pixels, a shift of (0,0) pixels, 
and a 50 % overlap of the interrogation regions. The second-
pass analysis was performed with interrogation regions of 64 
× 64 pixels and a 50 % overlap, resulting in a velocity vector 
every 32 pixels in the y and z directions. These window sizes 
ensured that particle displacements were limited to 1/4 of the 
interrogation window, corresponding to a maximum in-plane 
velocity of 26 cm/s. Subpixel accuracy was obtained using 
the thin plate spline method. This is a multi-dimensional 
generalization of spline interpolation and is an optimum way 

to interpolate data with minimal curvature of the interpolat-
ing function (UVMAT xxxx).

While the Stokes numbers indicated the particles would 
accurately follow turbulent motions within the fluid, the 
errors in detecting particle positions and ultimately fluid 
velocities were also quantified. Given the size of the parti-
cles ( ≤ 1 pixel), we estimate a measurement uncertainty on 
the order of 0.3 pixels (Raffel et al. 2018). This corresponds 
to a velocity error of up to 0.6 cm/s. Typical particle dis-
placements were from 3 to 6 pixels, corresponding to wake 
in-plane velocities from 7 to 11 cm/s. Additionally, the typi-
cal shear across the interrogation window was less than 0.02 
pixels. Displacement estimates with correlations above 50% 
were kept and the remaining values were discarded.

Sixty-five runs were performed so that the results could 
be combined to produce estimates of the ensemble mean and 
fluctuating velocity fields. The SPIV settings for the present 
Re = 105 experiments were sufficient to collect accurate 
velocity data in the downstream range of 15 ≤ x∕D ≤ 90 . 
The prior experiments of Saunders et al. (2020) also yielded 
acceptable velocity data in this range, allowing direct com-
parison of the two Reynolds numbers. To obtain the mean 
axial velocity, the measured axial velocity fields from each 
experiment at a given x/D were averaged. The velocity fluc-
tuation field is defined as the standard deviation of the veloc-
ity components over the ensemble of experiments at each 
x/D. The tow speed varied by less than 1 cm/s between runs 
so all SPIV velocities were normalized by the nominal tow 

Fig. 2   Wake ensemble mean velocity components (u, v, and w) and fluctuations q at x∕D = 25
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Fig. 3   Individual realizations of the axial velocity defect u at x∕D = 25

Fig. 4   Ensemble mean axial velocity defect ⟨u⟩∕U
m
 at 4 down-track locations
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speed of 1 m/s. There is also a variation in the depth and 
horizontal position of the wake center from run to run, due 
to slightly nonzero drift velocities which vary from run to 
run. This effect was mitigated by averaging the runs.

3 � Results

Figure 2 presents the SPIV ensemble mean velocity field 
(averaged over 65 runs) measured at x∕D = 25 . The upper 
left panel shows the mean axial velocity defect u normalized 
by the sphere tow speed Um . The wake appears as the yellow 
region in the center of the panel. This view demonstrates the 
approximately axisymmetric shape of the mean axial veloc-
ity defect. The upper right and lower left panels present the 
mean horizontal and vertical velocities, respectively. These 
components are an order of magnitude smaller than the mean 
axial velocity defect. Note that the ensemble mean veloci-
ties for the v and w components ( ∼ 3 mm/s) at x∕D = 25 are 
smaller than the SPIV accuracy for an individual run. Aver-
aging the 65 runs reduces the effective error of the ensemble 
mean by a factor of 1∕

√
65 ∼ 1∕8 , for an error of ∼ 0.8 mm/s 

in the ensemble mean.
The lower right panel of Fig. 2 presents the root-mean-

square fluctuation velocity q for the ensemble of runs. Here 
q is defined as

At this x/D, the magnitude of these fluctuations is compa-
rable to the mean axial velocity. The axial velocity defects 
of four individual runs at x∕D = 25 are illustrated in Fig. 3. 

(4)q2 ≡ 1

2
⟨(u − ⟨u⟩)2 + (v − ⟨v⟩)2 + (w − ⟨w⟩)2⟩

There are large variations in axial velocity defect from run 
to run, and individual runs do not appear axisymmetric. As a 
result, no individual wake realization closely resembled the 
mean flow field. The variations from run to run are respon-
sible for the magnitude of q seen in the lower right panel 
of Fig. 2. These variations also necessitate the large num-
ber of experimental runs (65) conducted to obtain quality 
ensemble-mean data.

The decay of the mean axial velocity defect is illustrated 
in Fig. 4, which presents the wake defect at four x/D loca-
tions from 15 to 90. The wake grows in size and its peak 
velocity decays with distance, as expected (note changing 
color scales). Observed deviations from axisymmetry tend to 
increase with downtrack distance, but remain modest even at 
x∕D = 90 . This asymmetry is attributed to a relative increase 
in wake fluctuations at greater x/D, requiring more runs to be 
averaged to obtain a quality estimate of the mean.

To explore self-similar decay, the wake size and mean 
axial velocity defect scales are characterized as a function of 
x/D using the same approach as Saunders et al. (2020). The 
SPIV ensemble mean axial velocity data in a small range of 
x/D are binned into radial segments (based on distance from 
the sphere center) and averaged over azimuth to produce pro-
files of ⟨u(x, r)⟩ . This azimuthal averaging procedure exploits 
the expected axisymmetry of the wake. Here, radial bins of 
0.1D and x/D bins of ±0.1x∕D were used. Radial profiles 
of ⟨u⟩ at 5 locations are presented in Fig. 5, demonstrating 
the spreading of the wake mean axial velocity defect as x/D 
increases.

Fig. 5   Ensemble mean axial velocity defect U
m
 as a function of radius 

r/D at 5 down-track locations Fig. 6   Self-similar profiles of the mean axial velocity defect U
o
 as a 

function of radius r∕L
u
 at the same locations as Fig. 5, using the simi-

larity scales computed from Eqs. 7 and 8
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From the profiles in Fig. 5, the first two moments are 
computed at each x/D:

In practice, the integration range is limited to r < 2.5D , to 
avoid contamination by measurement noise far from the 
wake center. Using these moments, the wake size Lu and 
mean axial velocity scale Uo are computed from

(5)Mo(x) ≡ �
∞

0

⟨u(x, r)⟩rdr

(6)M2(x) ≡ �
∞

0

⟨u(x, r)⟩r3dr These represent the typical length and velocity scales of 
the wake, based on the measured profiles in Fig. 5. This 
approach makes no assumption regarding the shape of the 
mean axial velocity defect profile. Figure 6 presents the 
mean axial velocity defect profiles from Fig. 5 normalized 
by the length scale Lu(x) and velocity scale Uo(x) computed 
using Eqs. 7 and 8. The results demonstrate that the mean 
axial velocity defect profile is approximately self-similar 

(7)L2
u
≡ M2

Mo

(8)Uo ≡ M2
o

M2

Fig. 7   Mean axial velocity decay (colored symbols) as a function 
of x/D, along with best-fit scaling exponents (black lines). Present 
Re = 105 data are shown in red; Re = 5 ⋅ 104 data from Saunders et al. 
(2020) are shown in blue. Each panel presents a different method for 

estimating the velocity scale: Left: Moments (Eqs. 5 and 6) Center: 
Gaussian fit Right: Maximum of the ensemble mean axial velocity 
defect

Fig. 8   Wake growth as a func-
tion of x/D, along with best-fit 
growth exponents
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when normalized by these scales. Also shown in Fig. 6 is a 
Gaussian fit to the profile (black line), which is found to be 
a reasonable approximation to the profile shape to r ≃ 2Lu.

The decay of the mean axial velocity defect scale Uo 
with x/D is presented in Fig. 7. The data were binned in 
distance x/D using a logarithmic scale with a bin width of 
log10(x∕D) = 0.05 . Logarithmic scales are used in Fig. 7 so 
the power law decay (Eq. 3) yields a straight line. Data from 
the present Re = 105 experiments are shown in red. The pan-
els present three independent measures of the velocity scale, 
all of which are expected to decay with the same exponent 
due to self-similarity. The left panel presents the result of 
Eq. 8, as in Saunders et al. (2020). This is the velocity scale 
that produced the self-similar collapse in Fig. 6. The center 
panel presents the velocity magnitude for a Gaussian fit to 
the profile at each x/D (as in Fig. 5), and the right panel 
shows the maximum of the ensemble-mean velocity defect 
at each x/D, as in Bonnier and Eiff (2002). The error bars in 
Fig. 7 represent one standard deviation of values within each 
logarithmic bin. The best-fit power law for each measure 
of the velocity scale is shown as a black dash-dot line. All 
three measures yield a best-fit decay exponent −2� (Eq. 3) 
of approximately −1 . Also shown in blue in each panel are 
the Re = 5 ⋅ 104 data from the previous dimpled sphere 
experiments of Saunders et al. (2020) for the same range 
of x/D. The wake ensemble mean axial velocity defect data 
for the two different values of Re closely align, with similar 
decay exponents of ∼ −1 for both the moments (left panel) 
and Gaussian fit (center panel) methods. The maximum 
of the mean velocity defect (right panel) for the previous 
Re = 5 ⋅ 104 data (blue) yielded a slower decay (exponent 
∼ −0.9 ) but also exhibited greater scatter. However, the full 

data set in Saunders et al. (2020) for maximum mean veloc-
ity defect (covering a greater range of x/D) yielded a best-fit 
exponent of ≃ −1 , consistent with the other methods. The 
agreement between the two Reynolds numbers suggests that 
the observed wake mean axial velocity decay exponent of 
−1 may not change as Re increases from laboratory to engi-
neering scales.

Spheres with different drag coefficients generate wakes 
with different total momentum fluxes, and this must be 
reflected in the mean wake velocity defect and/or length 
scales. The total momentum flux defect in the wake (found 
by integrating the mean velocity defect at any x/D and 
multiplying by Um ) is proportional to U2

m
Mo , and the drag 

coefficient can be estimated from the integrated mean axial 
velocity defect using

The drag coefficient has been estimated here from the mean 
axial velocity data for 15 ≤ x∕D ≤ 30 . For the present data 
with Re = 105 , the result is CD = 0.13 ± 0.01 , while the cor-
responding result for the Re = 5 ⋅ 104 dimpled sphere data of 
Saunders et al. (2020) is CD = 0.25 ± 0.01 . This reduction in 
drag coefficient with Reynolds number is consistent with the 
‘drag crisis’ for a rough sphere seen in the laboratory data 
of Achenbach (1974). The difference in drag coefficients 
between the two Reynolds numbers requires that the product 
UoL

2
u
 for the two cases differ. The new Re = 105 data in Fig. 7 

have a velocity scale Uo∕Um that is 10–15 percent less than 
the previous Re = 5 ⋅ 104 values for a given x/D. Because 
of this small difference between the two values of Uo∕Um , 
it is expected that the length scale Lu∕D must be larger for 
the larger CD case, due to the greater total momentum of 
the wake.

Figure 8 presents the length scale Lu (Eq. 2) of the wake 
mean axial velocity defect as a function of x/D as computed 
from the mean axial velocity defect profiles in Fig. 5. The 
left panel presents the result from the moments (Eq. 7) of the 
profiles yielding the self-similar collapse in Fig. 6, while the 
right panel presents the result of a Gaussian fit to the profiles 
in Fig. 5. Present results for Re = 105 are again shown in red, 
while prior results for Re = 5 ⋅ 104 are in blue (Saunders 
et al. 2020). The vertical axis is shifted by log10

√
CD to 

approximately compensate for the difference in drag between 
the two cases, as suggested by Eq. 9 with Uo∕Um being 
approximately independent of CD . The error bars represent 
one standard deviation of values within each logarithmic 
bin. The wake growth exponent is � ≃ 1∕2 , as expected for 
consistency with the velocity decay exponent of −2� ≃ −1 
in Fig. 7. The two Reynolds numbers have the same growth 
exponent, but the wake is smaller for the larger Re, lower 

(9)CD =
16Mo

UmD
2
= 16

(
Uo

Um

)(
Lu

D

)2

Fig. 9   Self-similar profiles of the mean axial velocity defect 
< EmphasisType = εUnderlineε > ∕Uo as a function of radius r∕L

u
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drag case, with the reduction factor given approximately by 
the square root of the drag coefficient ratio.

Some previous studies (Johanssan et al. 2003; Nedić et al. 
2013; Obligado et al. 2016) have utilized a virtual origin in 
x/D for the estimation of the wake growth and velocity decay 
exponents, while others (Bonnier and Eiff 2002; Saunders 

Fig. 10   Velocity fluctuations q∕U
m
 at 4 down-track locations

Fig. 11   Self-similar profiles of the velocity fluctuation q∕Q
o
 as a 

function of radius r∕L
q
 at 5 down-track locations

et al. 2020) have not. The method of Obligado et al. (2016) 
has been applied to both data sets for Uo and Lu (not shown). 
In all cases, virtual origins were found to be less than 1.5D 
in magnitude, and the best-fit exponents within 0.05 of the 
values shown here. The modest impact of the virtual origin 
is attributed to the starting point being downstream (larger 
x/D) from the starting point of previous studies (Johanssan 
et al. 2003; Nedić et al. 2013; Obligado et al. 2016).

Figure 9 compares the mean axial velocity defect shape 
functions f (r∕Lu) from Eq. 1 for the two Reynolds numbers. 
Here the velocity and radial distance are scaled by Uo and 
Lu , respectively. The shape function shown in red is an aver-
age of the shape functions at different x/D from Fig. 6 for 
Re = 105 . Blue presents the corresponding average shape 
function from Saunders et al. (2020). The larger Reynolds 
number case appears to have a modestly larger shape func-
tion for r∕Lu between ∼ 0.5 and ∼ 2 , but the error bars over-
lap so this observation is not conclusive.

Other wake characteristics, such as velocity fluctuations 
and Reynolds stress, are also expected to demonstrate self-
similar decay. The fluctuation q (Eq. 4 and Fig. 2, lower right 
panel) from the ensemble-mean wake velocity defect should 
follow a self-similar decay:

(10)q(x, r) ≃ Qo(x)g

(
r

Lq

)
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where Qo scales with some power of x/D. The spreading 
and decay of the velocity fluctuations q at four x/D loca-
tions are presented in Fig. 10. Like the mean axial velocity 
defect (Fig. 4), the q field spreads and decays with down-
track distance (note changing color scales). Quality statistics 
for this quantity require more runs than are needed for the 
mean axial velocity defect, and the number of runs required 
increases with x/D. The present data yield approximately 
axisymmetric results for q to x∕D ∼ 60 , and as can be seen 
in the lower panels of Fig. 10, symmetry is imperfect for the 
larger values of x/D shown. Self-similar decay of velocity 
fluctuations q is studied here only within this more limited 
range of x/D.

The characteristic scales of the velocity fluctuations q are 
computed as in Saunders et al. (2020) by replacing ⟨u⟩ with 
q in the moment equations (Eqs. 5 and 6) to yield a second 
length scale L2

q
 and velocity scale Qo . Figure 11 presents the 

self-similar fluctuation profiles q(r∕Lq)∕Qo for five values of 
x/D. Error bars, indicating the standard deviation in q within 
each data bin, are larger than in Fig. 6 due to the larger vari-
ability in this quantity than in the mean axial velocity defect. 
Although consistent with self-similarity, the larger error bars 
make it difficult to discern with confidence how well the 
profiles at different x/D collapse.

The decay of the fluctuation velocity scale Qo is presented 
in the left panel of Fig. 12. In addition, the maximum fluctu-
ation velocity in each x/D bin is included as Qmax in the right 
panel. For the present data (shown in red), the fluctuation 
velocity scale Qo decays more slowly with x/D than Uo , with 
a decay exponent of ∼ −0.4 . Again, two differing approaches 
(the moment calculation and the maximum of q) are used to 
confirm the scaling, but the Gaussian fit is not used here as 
the shape profile is not Gaussian (see Fig. 11). Also shown 
in blue in Fig. 12 are previous results for Re = 5 ⋅ 104 from 

Fig. 12   Velocity fluctuation ( Q
o
 ) decay (colored symbols) as a function of x/D, along with best-fit decay exponents (black lines)

Fig. 13   Growth of Q
o
∕U

o
 as a 

function of x/D for the two Re 
values tested
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Saunders et al. (2020). The best-fit exponents for the two 
Reynolds numbers are both ≃ −0.4 , and the difference in 
the magnitude of the velocity fluctuations between the two 
experiments is less than ten percent at each x/D.

A key observation regarding the fluctuation scale Qo is 
that it decays much more slowly with x/D than the mean 
axial velocity defect scale Uo . This is illustrated in Fig. 13, 
which presents the ratio of the two velocity scales. As x/D 
increases, the wake is increasingly dominated by fluctua-
tions. By x∕D ∼ 60 , the fluctuations are nearly an order of 
magnitude larger than the mean axial velocity defect. This 
is true for both Reynolds numbers tested.

Figure 14 presents the length scale Lq , along with its 
best-fit scaling exponent. The vertical axis shows Lq∕

√
CD 

for consistency with the presentation of Lu in Fig. 8. For 
self-similar wake decay it is expected that the length scales 
Lu and Lq for mean and fluctuating velocity are propor-
tional. The velocity fluctuation scale Lq increases with x/D 
with an exponent of 0.57 ± 0.04 , while Lu (Fig. 8) has a 
similar value of 0.55 ± 0.03 . Self-similarity requires that 
these two exponents are equal, as there should be only one 
length scale (up to a constant of proportionality), and the 
data are consistent with this expectation. The fluctuation 
length scale Lq is typically about 60 percent larger than 
Lu , but the growth exponents are comparable. Figure 14 
also shows the comparable result for Re = 5 ⋅ 104 in blue. 
These data have a similar growth exponent but a length 
scale (normalized by diameter) that is nearly twice as large 
as the Re = 105 case. The smaller range of x/D shown for 
the Re = 5 ⋅ 104 case reflects the limitation of the smaller 
SPIV field of view in the earlier experiments.

The Reynolds stress is another wake characteristic 
expected to demonstrate self-similar decay. Data were 
analyzed for the radial component of the Reynolds stress 
Rxr , defined as

where vr is the radial velocity and ⟨...⟩ again denotes an 
average over the ensemble of experimental runs. For self-
similar wake decay, this component of Reynolds stress can 
be expressed in terms of a magnitude Ro and a length scale 
LR as

(11)Rxr ≡ ⟨uvr⟩ − ⟨u⟩⟨vr⟩

Fig. 14   Wake growth as a function of x/D based on velocity fluctua-
tions, along with best-fit growth exponents

Fig. 15   The radial component 
of the Reynolds stress. Upper 
left: Measured Reynolds stress 
at x∕D ∼ 36 . Upper right: Self-
similar profiles of Reynolds 
stress at four x/D. Lower left: 
The length scale L

R
 used to nor-

malize the self-similar profiles, 
along with the length scale for 
the mean velocity defect L

u
 . 

Lower right: The magnitude R
o
 

used to normalize the self-sim-
ilar profiles, along with a line 
with exponent −1.42
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This is analogous to Eq. 1 for the mean velocity defect and 
Eq. 10 for the velocity fluctuations. This stress compo-
nent has previously been shown to decay self-similarly to 
x∕D = 50 in lower Reynolds number experimental (Nedić 
et al. 2013) and numerical (Obligado et al. 2016) studies of 
disks and fractal shapes, but the Re = 5 ⋅ 104 sphere experi-
ments of Saunders et al. (2020) did not include a sufficient 
number of runs to obtain quality statistics on this quantity.

Figure 15 presents data from the present Re = 105 experi-
ments on the decay of the Reynolds stress component Rxr . 
The upper left panel presents Rxr at x∕D = 36 , averaged over 
a range of ±0.1x∕D . The azimuthal symmetry is apparent, 
although imperfect as more data would likely be needed for 
better statistical convergence. Deviations from azimuthal 
symmetry were observed to increase with x/D. The stress is 
zero at the center of the wake, and has a maximum value at a 
radius of ≃ 1.5D . The maximum value is ≃ 10−4U2

m
 , approx-

imately a quarter of the velocity fluctuations q2 at this x/D. 
The magnitude is smaller than q2 because the radial velocity 
vr is smaller than the axial velocity (see Fig. 2), which also 
makes Rxr a more challenging measurement than q2.

The upper right panel of Fig. 15 presents azimuthally 
averaged self-similar profiles for Rxr(r) at four x/D loca-
tions. As with the previously analyzed quantities, data are 
binned in x/D with a bin of ±0.1x∕D to improve the sta-
tistics. The magnitude Ro and length scale LR at each x/D 
were computed from the azimuthally averaged profiles 
using the moment method (Eqs. 5 and 6) analogous to the 
other quantities presented. The Reynolds stress from these 
locations approximately collapse, as expected. The shape 
is similar to that reported in Nedić et al. (2013); Obligado 
et al. (2016), with an off-center peak at r ∼ 0.8LR . The length 
scales LR and magnitudes Ro computed for the self-similar 
profiles are shown in the lower panels of Fig. 15. The length 
scale LR (lower left) is expected to be proportional to Lu and 
Lq . The dashed line, corresponding to 2Lu , shows that the 
computed values of LR are consistent with self-similarity. 
According to self-similar theory (Nedić et al. 2013; Obli-
gado et al. 2016; Saunders et al. 2020), the magnitude Ro 
should obey Ro ∼ UoUmdLu∕dx . For the measured best-fit 
scaling exponents of Uo ( −0.97 ) and Lu (0.55), this yields 
a scaling exponent of −1.42 . The black dashed line in the 
lower right panel of Fig. 15 shows that the computed values 

(12)Rxr(x, r) ≃ Ro(x)h

(
r

LR

)
.

of Ro are consistent with this exponent. Best-fit values of 
the scaling exponents for LR and Ro were not computed due 
to the relatively small range of x/D for which adequate sta-
tistics for Rxr were obtained. The data presented for Rxr are 
consistent with self-similar theory, but are not sufficient to 
show that the Reynolds stress obeys self-similar theory for 
the full range of data collected (to x∕D ≃ 90).

4 � Discussion

This is the first experimental study of self-similar drag wake 
decay at a Reynolds number (based on diameter) of Re = 105 
extending to a downstream distance of x∕D = 90 . The mean 
axial velocity defect decayed with an exponent of ≃ −1 while 
the wake size grew with exponent ≃ 0.5 . The results are con-
sistent with prior data for a sphere at Re = 5 ⋅ 104 (Saunders 
et al. 2020) as well as recent results from other axisymmetric 
shapes (Bonnier and Eiff 2002; Nedić et al. 2013; Obligado 
et al. 2016) at lower Re, but differ from the long-standing 
and previously accepted classical self-similar scaling expo-
nents of −2∕3 and 1/3, respectively (Swain 1929; Tennekes 
and Lumley 1972). Table 2 summarizes the wake scaling 
exponents found in the present study compared to previous 
experiments at a lower Reynolds number. Scaling exponents 
for the wake size, mean axial velocity magnitude, and veloc-
ity fluctuation magnitude are all identical to within error 
estimates for both Re. The similarity in wake decay between 
the two Reynolds numbers occurred despite a difference in 
drag coefficients of nearly a factor of two, owing to the flow 
transition associated with the ‘drag crisis’ at these Reynolds 
numbers (Achenbach 1974). This consistency in observed 
wake decay exponents despite the change in flow regime 
suggests that these laboratory results may pertain to larger 
Reynolds number engineering flows. (Note that the expo-
nents for Re = 5 ⋅ 104 in Table 2 differ slightly from those 
reported in Saunders et al. (2020) because a larger range of 
x/D, obtained using multiple SPIV settings, was used. Here 
the fitting range of x/D was restricted to match the present 
Re = 105 data, so that the best-fit exponents would reflect 
the same x/D range.)

Another observation common to both Reynolds numbers 
is the increasing importance of fluctuations relative to the 
ensemble mean as x/D increases. The fluctuation velocity 
scale decreases with an exponent of ≃ −0.4 , less than half 
of the decay rate of the mean axial velocity defect. The ratio 

Table 2   Exponent comparison Quantity Size (L
u
) Mean velocity (U

o
) Velocity fluctuations (q)

Re = 105 (present) 0.55 ± 0.07 −0.97 ± 0.04 −0.38 ± 0.03

Re = 5 ⋅ 104 (Saunders 
et al. 2020)

0.57 ± 0.07 −0.98 ± 0.05 −0.43 ± 0.05



Experiments in Fluids (2022) 63:71	

1 3

Page 13 of 13  71

of fluctuations to the ensemble mean therefore grows with 
x/D. Individual realizations of the wake appear less and less 
like the ensemble mean as x/D increases.
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