
Vol.:(0123456789)1 3

Experiments in Fluids (2022) 63:22 
https://doi.org/10.1007/s00348-021-03369-3

RESEARCH ARTICLE

Assimilation and extension of particle image velocimetry data 
of turbulent Rayleigh–Bénard convection using direct numerical 
simulations

C. Bauer1  · D. Schiepel1 · C. Wagner1,2

Received: 19 April 2021 / Revised: 8 November 2021 / Accepted: 11 December 2021 / Published online: 4 January 2022 
© The Author(s) 2022

Abstract 
A novel method for assimilating and extending measured turbulent Rayleigh–Bénard convection data is presented, which 
relies on the fractional step method also used to solve the incompressible Navier–Stokes equation in direct numerical simula-
tions. Our approach is used to make measured tomographic particle image velocimetry (tomo PIV) fields divergence-free and 
to extract temperature fields. Comparing the time average of the extracted temperature fields with the temporally averaged 
temperature field, measured using particle image thermometry in a subdomain of the flow geometry, shows that extracted 
fields correlate well with measured fields with a correlation coefficient of C

TT̃
= 0.84 . Additionally, extracted temperature 

fields as well as divergence-free velocity fields serve as initial fields for subsequent direct numerical simulations with and 
without feedback which generate small-scale turbulence initially absent in the experimental data. Although the tomo PIV 
data set was spatially under-resolved and did not include any information on the boundary layers, the here-proposed method 
successfully generates velocity and temperature fields featuring small-scale turbulence and thermal as well as kinetic bound-
ary layers, without disturbing the large-scale circulation contained in the original experimental data significantly. The latter 
is underpinned by high vertical and horizontal velocity correlation coefficients—computed from velocity fields averaged in 
time and horizontal x-direction obtained from the measurement and from the simulation without feedback—of C

vṽ
= 0.92 

and C
ww̃

= 0.91 representing the large-scale structure. For simulations with feedback, the generated velocity fields resemble 
the experimental data increasingly well for higher feedback gain values, whereas the temperature fluctuation intensity devi-
ates noticeably from the values obtained from a direct numerical simulation without feedback for gain values � ≥ 1 . Thus, a 
feedback gain of � = 0.1 was found optimal with correlation coefficients of C

vṽ
= 0.96 and C

ww̃
= 0.95 as well as a realistic 

temperature fluctuation intensity profile. The xt-averaged temperature fields obtained from the direct numerical simulations 
with and without feedback correlate somewhat less with the extracted temperature field ( C

TT̃
≈ 0.6 ), which is presumably 

caused by spatially under-resolved and temporally oscillating initial tomo PIV fields reflected by the extracted temperature 
field.

 * C. Bauer 
 christian.bauer@dlr.de

1 Institute of Aerodynamics and Flow Technology, German 
Aerospace Center, Bunsenstraße 10, 37073 Göttingen, 
Germany

2 Institute of Thermodynamics and Fluid Mechanics, 
Technische Universität Ilmenau, Helmholtzring 1, 
98693 Ilmenau, Germany

http://orcid.org/0000-0003-1838-6194
http://crossmark.crossref.org/dialog/?doi=10.1007/s00348-021-03369-3&domain=pdf


 Experiments in Fluids (2022) 63:22

1 3

22 Page 2 of 17

Graphical abstract

1 Introduction

Rayleigh–Bénard convection (RBC) is the buoyancy-driven 
flow of fluid between a heated bottom plate and a cooled 
top plate and serves as a canonical problem for the more 
complex thermal convection systems appearing in nature and 
engineering applications (Lohse and Xia 2010; Chillà and 
Schumacher 2012). This type of flow is usually characterised 
by the Prandtl number

reflecting the ratio of momentum diffusivity and thermal 
diffusivity, and the Rayleigh number

representing the ratio of buoyancy and diffusive forces, 
with �̂� the kinematic viscosity, �̂� thermal diffusivity, �̂� the 
thermal expansion coefficient, ĝ the gravitational accelera-
tion, Ĥ the convection cell height, and ΔT̂  the vertical tem-
perature difference. Note that the dimensional quantities 
are denoted with circumflex and the dimensionless with-
out. RBC can be investigated experimentally (Chavanne 
et al. 1997; du Puits et al. 2007; Schiepel et al. 2021) or 
numerically (Shishkina and Wagner 2008; Kaczorowski 
and Wagner 2009; Shishkina et al. 2010, 2013; Wagner and 
Shishkina 2013; Scheel et al. 2013; Stevens et al. 2018). 
Direct numerical simulations (DNS) provide temporally and 
spatially fully resolved velocity and temperature fields but 
are, due to computational limitations, restricted to moder-
ate Rayleigh numbers and short observation times. Experi-
ments, on the other hand, allow for high-Rayleigh number 
studies and long observation times, yet often lack parts of 

(1)Pr =
�̂�

�̂�
,

(2)Ra = �̂�ĝĤ3ΔT̂

�̂��̂�
,

the data such as the boundary layers in measurements using 
particle image velocimetry (PIV) due to reflection of the 
laser light sheet and the lower tracer particle densities in the 
boundary layers. Further, turbulent small-scale structures 
are often filtered out since each velocity vector represents a 
surface- or volume-averaged representative obtained from 
a correlation step. However, highly resolved velocity fields 
can be measured accurately further away from the walls by 
means of PIV, whereas the temperature field is much more 
difficult to capture.

Being originally introduced in the field of meteorology, 
the assimilation of experimentally obtained data has become 
a significant instrument in the fluid dynamics community in 
general in recent years (Talagrand et al. 1987; Evensen 1994; 
Carrassi et al. 2018; Clark Di Leoni et al. 2020). A com-
mon approach is to generate a pressure field from a meas-
ured velocity field by solving the pressure Poisson equa-
tion (Fujisawa et al. 2005; van Oudheusden 2013; Pan et al. 
2016; Schneiders et al. 2016; van Gent et al. 2017). Pan et al. 
(2016) estimate the error in assimilated pressure fields as 
well as its relation to the boundary condition, the dimension 
of the flow domain, and the flow type. In particular, Pan et al. 
(2016) point out that the error in the pressure calculation is 
dominated by the error inside the domain for large domains 
and by the error on the data boundary for small domains. 
Additionally, Gesemann et al. (2016) introduce the flow 
reconstruction tool FlowFit, where Cartesian velocity and 
pressure fields are reconstructed by minimising a cost func-
tion that accounts for the freedom of divergence in incom-
pressible flows—as well as its derivative—and is applied to 
B-spline curves interpolated from particle tracking veloci-
metry data consisting of velocities and accelerations. Here, 
the minimisation problem—being a nonlinear, weighted 
least-square problem—is solved via the limited-memory 
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Broyden–Fletcher–Goldfarb–Shanno algorithm described 
by Nocedal (1980). Evaluating their reconstruction method 
using synthetic data of forced isotropic turbulence provided 
by Li et al. (2008) by analysing vorticity iso-contours of the 
reconstructed fields and signal-to-noise ratios, Gesemann 
et al. (2016) show that their method improves with respect to 
simpler algorithms that penalise the divergence of velocity 
only or those that do not penalise divergence at all. Ehlers 
et al. (2020) further improve FlowFit by introducing addi-
tional virtual particles to the flow field between single-time 
particle measurements. Advecting these particles between 
the flow fields achieves temporal coupling and adds temporal 
constraints to the data. Comparing the resulting flow fields 
by means of DNS-based virtual experiments of forced iso-
tropic turbulence and turbulent plane-channel flow, Ehlers 
et al. (2020) show that the reconstruction of the flow field 
improves significantly with respect to the original method 
by Gesemann et al. (2016).

By adapting a data assimilation scheme for Bénard con-
vection from Farhat et al. (2016, 2020) present a data assimi-
lation scheme for noisy temperature measurements of large 
to infinite Prandtl number RBC flows based on Newtonian 
relaxation. Evaluating their data assimilation scheme ana-
lytically and by means of two-dimensional direct numerical 
simulations of moderately turbulent flow, Farhat et al. (2020) 
establish that their scheme successfully assimilates tempera-
ture fields if the number of projected modes and the relaxa-
tion parameter relative to the Rayleigh number are large 
enough. More often than not, only the measured velocity 
fields are available, whereas pressure, temperature, or other 
scaler fields are also required to fully characterise the flow 
phenomenology. Assimilating three-dimensional velocity 
fields of homogeneous isotropic turbulence from scattered 
local velocity measurements of numerically generated data, 
Clark Di Leoni et al. (2020) present a so-called nudging 
algorithm where the right-hand sides of the Navier–Stokes 
equations are expanded by an additional forcing term that 
accounts for the difference between the actual flow field 
and the measured reference field. The full velocity field is 
obtained by integrating the modified equations in time by 
means of a DNS solver. A similar approach is introduced by 
Suzuki and Yamamoto (2015), where time-resolved particle 
tracking velocimetry (PTV) measurements of the planar-
jet problem are assimilated by means of two-dimensional 
DNSs. Here, the additional feedback term is updated with 
PTV data at times PTV snapshots are available. Aiming at 
the assimilation of measured, spatially under-resolved, three-
dimensional velocity fields from RBC, we present a novel 
approach that involves the additional numerical generation 
of the corresponding temperature fields as representatives 
of scalar fields. Our approach comprises the generation of 
small-scale fluctuations—initially lacking the measure-
ment data—using a DNS solver with and without feedback 

term. Finally, the results obtained with the two methods are 
compared.

2  Experimental set‑up

The experimental data is acquired in a rectangu-
lar RBC sample with dimensions L̂x = 250mm and 
L̂y = L̂z = Ĥ = 500mm , as presented in Fig. 1, where the 
heating and the cooling plates are indicated in red and blue, 
respectively. The measurement volume is highlighted with 
dashed white lines.

The top and bottom of the experiment are embedded in an 
insulation mantle, indicated by (a) in Fig. 2. The temperature 
difference is generated by the cooling and heating elements, 
(b) and (f), whose temperatures are controlled by a water 
circuit and a resistive heating, respectively. The flow to be 
measured develops between two anodised black aluminium 
plates, (c) and (e), enclosing the sample. The four side walls 
(d) are made of 10 mm thick glass yielding high optical 
accessibility to the measurement volume. The set-up is sup-
ported by polyoxymethylene spacers, (g), installed within 
the insulation. These spacers are insulators good enough 
to avoid high heat fluxes, while simultaneously allowing 
for a horizontal alignment of the set-up within 0.01◦ due to 
their high stability. Moreover, the spacers are fixed on the 

Fig. 1  Picture of the rectangular RBC cell. The heating and cooling 
plate are indicated in red and blue, respectively. The measurement 
volume is highlighted with dashed white lines.
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hardened aluminium ground plate (h) to ensure long-term 
stability.

The heating and cooling plates are made of 1 cm alu-
minium. In order to minimise the heat loss through the side 
walls, the surrounding air temperature is controlled by an 
environmental control system to maintain the mean sample 
temperature within ±0.5 K. 45 Pt1000 resistance tempera-
ture detectors were used to monitor the temperatures in the 
heating and cooling plates as well as in the surroundings 
during the experiments. 16 of these sensors were installed 
in both the top and bottom plates with just 1 mm of alu-
minium between them and the fluid. These sensors exhibit 
a temperature standard deviation of 0.06 K, thus providing 
nearly isothermal boundary conditions for the heating and 
cooling plates.

The experimental data was acquired at an average sample 
temperature of T̂0 = 18 ◦

C employing a water glycol-mix-
ture with Pr = 18. Additionally, the temperature difference 
was regulated to ΔT̂ = 4K , leading to a Rayleigh number of 
Ra = 7.0 × 109 . For this parameter combination, the devel-
oping 3D-3C flow fields were measured using tomographic 
PIV (tomo PIV, Elsinga et al. 2006) and simultaneous 3D 
particle image thermometry (PIT, Dabiri and Gharib 1991; 
Schiepel et al. 2021) with the objective to investigate the 
velocity and temperature fields associated with the large-
scale circulations (LSC). For the tomo PIV, four black-and-
white (b/w) PCO1600 CCD cameras with a resolution of 
1600 × 1200 pixels were utilised to monitor the convection 
sample from different perspectives. An additional PCO Pix-
elfly colour camera with a resolution of 1392 × 1024 was 
installed to record the colours of thermochromic liquid 

crystal particles reflecting the temperature. With these five 
cameras, the velocity fields were measured in the entire 
sample volume and the temperature fields in a subvolume 
with approximate height of 200 mm, width of 420 mm, and 
depth of 220 mm. For the latter, the observation volume 
was reduced due to the imaging limitations of the thermo-
chromic liquid crystal particles which had to be imaged on 
multiple pixels of the Bayer-filter of the colour camera and 
with a sufficiently high intensity. All cameras were equipped 
with 21 mm Nikon lenses and tilted in accordance with the 
Scheimpflug condition. The sample was illuminated by an 
LED array consisting of 15 × 15 LEDs of the type Osram 
Platinum Dragon LW W5SNA with a broad wavelength dis-
tribution covering the entire visible light spectrum. The LED 
array was triggered by a high-current power supply that pro-
vided defined light pulses. Focusing optics were positioned 
in front of the LEDs to decrease the divergence of the light, 
and thus, to generate a homogeneous intensity distribution 
within the measurement volume with light intensity fluctua-
tions below 10%. This set-up allowed for a reliable image 
recording rate of 6.6 Hz.

The images from the four cameras were evaluated 
using a simultaneous algebraic reconstruction technique 
(Atkinson and Soria 2009) to determine 3D intensity 
maps employing 1000 × 1000 × 500 voxels the volume 
in physical space. Afterwards, a cross-correlation algo-
rithm with grid refinement was applied to determine the 
velocity fields. The interrogation windows started with a 
size of 1443 voxels and were refined to 503 voxels with an 
additional overlap of 60% yielding 119 × 119 × 57 vectors.

Using simultaneous tomo PIV-PIT, 1000 instantane-
ous velocity and temperature fields were determined. 
This number was chosen to obtain resolved velocity and 
temperature time series while assuring convergence of 
statistics. Assuming a circular path of the LSC within 
the volume and using the velocity magnitude of the time-
averaged field, the measurement time frame corresponds 
to half a LSC turn-around or 26.55 free-fall times, respec-
tively. Moreover, uncertainties of 𝜎v̂ ≤ 0.66 mm/s for the 
velocity and 𝜎T̂ ≤ 0.095 K for the temperature measure-
ment were estimated (Schiepel et al. 2021).

The spatial and temporal resolution realised in the 
measurement are compared to the corresponding Kol-
mogorov scales so as to decide if the measurements are 
under or over-resolved. According to Ahlers et al. (2009), 
the Kolmogorov length scale can be estimated by

 with �̂� the fluid kinematic viscosity and v̂
ref

 the refer-
ence velocity. The reference velocity can be approximated 
with the maximum velocity of the mean velocity field 

(3)�̂�K ≈

(
�̂�
3Ĥ

v̂3
ref

)4

,

Fig. 2  Schematic of the RBC sample along Z-direction. a marks the 
insulation layer, b and f indicate the cooling and heating elements, 
and c and e mark the anodised aluminium plates enclosing the sam-
ple. The glass cube, d the polyoxymethylene spacers, g and the 
hardened aluminium ground plate, h are labelled. The characteristic 
length of the sample is indicated by l 
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max{(⟨‖�̂(t)‖⟩t)} = 0.0055 m/s or the mean RMS velocity 
⟨(⟨�̂2(t)⟩t)1∕2⟩xyz = 0.0033 m/s, yielding flow Reynolds num-
bers of Re = 1228 or Re = 735, respectively. In agreement 
with Zürner et al. (2019), the Reynolds number based on 
the maximum mean velocity representing the LSC exceeds 
the Reynolds number based on the mean RMS velocity rep-
resenting small-scale fluctuations. Since the former charac-
teristic velocity is more restrictive for the estimation of the 
Kolmogorov scale as well as the boundary layer thickness, 
and thus, for the estimation of the computational grid in 
chapter 4, it will be used hereinafter. Furthermore, Ahlers 
et al. (2009) present the estimated Kolmogorov time scale as

where the Nusselt number is obtained by relations provided 
by Ahlers et al. (2009) based on the Grossmann–Lohse (GL) 
theory (Grossmann and Lohse 2000, 2001, 2002),

where

with Rec = 3.4 , c1 = 8.05 , c2 = 1.38 (Stevens et al. 2013), 
and the flow Reynolds number Re = v̂

ref
Ĥ∕�̂� . For the present 

tomo PIV data set, the Nusselt number is estimated as

The ratio of the estimated Kolmogorov scales and the spatial 
and temporal measurement resolution, Δĥ and Δ𝜏 , respec-
tively, leads to

Thus, the measured velocity fields are spatially under- and 
temporally over-resolved. This and the fact that the bound-
ary layers near the cooled and the heated plate are not cap-
tured in the tomo PIV are taken into account in the following 
analysis.

Regarding the orientation of the LSC, studies of RBC in 
cubic boxes, such as those of Bai et al. (2016), Foroozani 
et al. (2017), or Giannakis et al. (2018), report a meta-
stable diagonal alignment of the LSC that switches the 
diagonal discretely. In the present case, the orientation of 
the LSC is evaluated via the resulting xy-planar velocity 

(4)�̂�
𝜏
≈

√
Ĥ4

Pr
2

�̂�2(Nu − 1)Ra
,

(5)Nuest = 1 +
Pr

2

Ra

(
c1Re

2

g
+ c2Re

3

)
,

(6)g =

√
Rec

Re

[
1 +

(
Rec

Re

)2
]1∕4

,

(7)Nuest = 129.

(8)�̂�K∕Δĥ =0.24 and

(9)�̂�
𝜏
∕Δ𝜏 =14.

vector � above the heated and below the cooled plate, as 
depicted in Fig. 3.

For the present case with Lx∕Ly = 1∕2 , a diagonal align-
ment would reflect in absolute angles of |�| = 26.56◦ . In the 
measurement data, however, only angles up to |�| ≈ 9◦ are 
captured. In the beginning of the measurement interval, the 
flow angle fluctuates between −1◦ and 4◦ above the heated 
and between −3◦ and 1◦ below the cooled plate. Around 
t̂ ≈ 60 s, the angle above the heated plate shifts towards 
larger negative values and the angle below the cooled plate 
shifts towards positive value, which indicates a diagonal 
switching event. To further characterise the diagonal switch-
ing of the LSC—which is out of the scope of the present 
investigation—a longer measurement interval would be 
required.

3  Velocity field assimilation 
and temperature field generation

In order to assimilate the under-resolved, three-dimensional 
velocity field from the tomo PIV, a fractional step method is 
applied, which is described hereinafter. It is derived from the 

Fig. 3  Angle between the y-axis and the average planar velocity vec-
tor � = arctan (⟨u⟩xy∕⟨v⟩xy) at z∕H = 0.1 (a) and z∕H = 0.9 (b)
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transport equations for mass, momentum, and temperature for 
an incompressible fluid and the Boussinesq approximation,

with � = (ux, uy, uz) the velocity, p the pressure, T the tem-
perature, and �z the unit vector in vertical direction. Note that 
bold symbols indicate vector quantities. Equations (10)–(12) 
govern the problem of RBC in a rectangular box with a 
heated bottom plate ( T = Tw ), a cooled top plate ( T = Tc ), 
and adiabatic side walls depicted in Fig. 4.

Velocities have been non-dimensionalised with the free-
fall velocity û

ref
= (�̂�ĝΔT̂Ĥ3

)
1∕2 , spatial coordinates with the 

cell height x̂
ref

= Ĥ , the time coordinate with the correspond-
ing reference time t̂

ref
= x̂

ref
∕û

ref
 , and the pressure with the 

reference pressure p̂
ref

= �̂�û2
ref

 , where �̂� is the fluid density. 
The temperature is non-dimensionalised by T = (T̂ − T̂0)∕ΔT̂  
with ΔT̂ = T̂w − T̂c and T̂0 = (T̂w − T̂c)∕2 . At all walls, no-
slip and impermeability boundary conditions are applied. In 
addition, the top and bottom plate are modelled isothermal, 
whereas the side walls are modelled adiabatic. In agreement 
with the experimental set-up (Sect. 2), the width of the box 
equals its height Ly = Lz = H , and the aspect ratio is set to 
Γ = Lx∕Lz = 0.5.

To solve the above problem numerically, Eq. (10) is discre-
tised in time using equation (12), yielding for a Leapfrog time 
discretisation scheme (Wagner et al. 1994)

(10)
��

�t
+ � ⋅ ∇� = − ∇p +

√
Pr∕Ra∇

2
� + T�z,

(11)
�T

�t
+ � ⋅ ∇T =

√
1∕(PrRa)∇2T ,

(12)∇ ⋅ � =0,

(13)
1

2Δt
(�

n+1
− �

n−1
) + �

n
⋅ ∇�

n

= −∇pn +
√
Pr∕Ra∇

2
�
n−1

+ Tn
�z,

where n is the number of the time step, Δt is the temporal 
increment between two time steps, and �j

i
 is the Kronecker 

delta. To integrate Eq. (13) in time, in numerical flow sim-
ulation, a common approach is to apply a fractional step 
algorithm as the one introduced by Chorin (1967, 1968), the 
latter consisting of three steps. In the first step, an auxiliary 
velocity field �∗ is estimated from Eq. (13) neglecting the 
pressure term,

Subsequently, the following pressure Poisson equation is 
solved for the auxiliary field

wi th  �
n
= 2Δtpn  and  the  boundar y  condi t ion 

( � ⋅ ∇�
n
)|
��

= 0 . Finally, the velocity at time step n + 1 is 
updated as follows:

In the present study, we enter the second step (15) directly 
with the measured velocity field as auxiliary field. Hence, we 
implement the Poisson solver to make the measured velocity 
fields divergence-free. Subsequently, temperature fields are 
extracted from the divergence-free velocity field using the 
discretised vertical momentum equation.

3.1  Velocity field assimilation

So as to obtain divergence-free velocity fields, first, the 
divergence is computed from the measured velocity fields, 
which are provided on an equidistant grid with dimensions 
Nx × Ny × Nz = 57 × 119 × 119 . Then, a pseudo-pressure 
is computed from the velocity fields via the algorithm 
described in the following. Finally, the velocity field is 
corrected via the pseudo-pressure � . Here, we utilise 
the Poisson equation (15) with �∗ being the experimen-
tally obtained velocity field. The numerical solution of 
the Poisson equation requires the terms in Eq. (15) to be 
approximated by means of a second-order central finite-
difference scheme on the equidistant measurement grid. In 
the following, the finite-difference approximation of the 
right-hand side of Eq. (15) in a grid cell centred around 
(xi, yj, zk) is denoted as qijk and the corresponding discre-
tised pseudo-pressure as �ijk . Using the separation of 
variable approach, the three-dimensional discrete Poisson 
equation can be divided into Nz two-dimensional problems 
as follows:

(14)
1

2Δt
(�

∗
− �

n−1
) + �

n
⋅ ∇�

n

=

√
Pr∕Ra∇

2
�
n−1

+ Tn
�z.

(15)∇
2
�
n
= ∇ ⋅ �

∗,

(16)�
n+1

= �
∗
− ∇�

n.

(17)Dxy�ijk + Dz�ijk = qijk,
Fig. 4  RBC cell with volume V = LxLyLz . All walls are no-slip 
boundaries; top and bottom walls are isothermal and side walls are 
adiabatic
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with Di�i = (�i+1 − 2�i + �i−1)∕Δi
2 and Dxy = Dx + Dy . 

Moreover, Dz is subject to the eigenvalue problem,

with Nz eigenvalues �l , and Nz eigenvectors �l = ( vl
1
 , vl

2
 , ..., 

vl
Nz

 ). Then, the pseudo-pressure � and the right-hand side of 
the Poisson equation are decomposed to

Substituting (19) and (20) back to equation (17) leads to

For Nz linearly independent eigenvectors, a set of Nz linearly 
independent, two-dimensional equations is obtained,

The right-hand sides for the above equation are obtained 
from the three-dimensional, right-hand sides via

The algorithmic execution of the Poisson solver works as 
follows: 

1. The eigenvectors �l and eigenvalues �l are computed a 
priori.

2. Then q̂l
ij
 is computed (23).

3. Nz independent systems of expression (22) are solved.
4. The �ijk field is recomposed (19).

The measured and the divergence-free v velocity component 
are compared in Fig. 5a, b. Furthermore, the divergence of 
the measured velocity field is presented in Fig. 5c.

By applying the divergence-free condition to the meas-
ured velocity fields (Fig. 5a), local unphysical disconti-
nuities have been removed, which results in the smoother 
velocity fields displayed in Fig. 5b. Discontinuities in the 
measured velocity field are reflected by strong local val-
ues—positive or negative—in the divergence field in 
Fig. 5c. The discontinuous structure in the v velocity field 
at ( y∕H ≈ 0.5,z∕H ≈ 0.95 ) in Fig. 5a, for instance, leads to 
a high divergence at the same location (Fig. 5c), while in 

(18)Dz�
l
= �l�

l, l = 1,… ,Nz,

(19)𝜙ijk =

Nz∑

l=1

�̂�
l
ij
vl
k
,

(20)qijk =

Nz∑

l=1

q̂l
ij
vl
k
.

(21)
Nz∑

l=1

(
Dxy�̂�

l
ij
+ 𝜆l�̂�

l
ij

)
�
l
=

Nz∑

l=1

q̂l
ij
�
l.

(22)Dxy�̂�
l
ij
+ 𝜆l�̂�

l
ij
= q̂l

ij
, l = 1,… ,Nz.

(23)q̂l
ij
=

(
Nz∑

k=1

Δzkqijkv
l
k

)/(
Nz∑

k=1

Δzkv
l
k
vl
k

)
.

the divergence-free velocity field, the structure disappears 
(Fig. 5b).

The extraction of the temperature field from the momentum 
equation requires both spatial and temporal derivatives of the 
velocity field. As stated above, the measurement was spatially 
under- and temporally over-resolved. Therefore, the measured 

Fig. 5  v̂ velocity at x∕H = 0.25 before (a) and after (b) divergence 
has been removed. (c) Divergence of the measured velocity field
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velocity signal—represented by the blue line in Fig. 6a showing 
the vertical velocity at (x∕H = 0.25, y∕H = 0.5, z∕H = 0.5)

—exhibits temporal oscillations. The latter lead to strong arti-
ficial fluctuations in the finite-difference approximation of the 
temporal vertical velocity derivative. Consequently, temporal 
filtering is applied to the series of the divergence-free velocity 
fields using a filter length corresponding to the Kolmogorov 
time scale, the latter being one order of magnitude larger than 
the temporal measurement resolution (see Sect. 2). Thus, only 
unphysical scales, which are smaller than the Kolmogorov 
time scale, are cut off. A time series of the vertical velocity 
signal at (x∕H = 0.25, y∕H = 0.5, z∕H = 0.5) after filtering 
(red line) corresponding to the unfiltered signal (blue line) is 
displayed in Fig. 6a.

Figure 6b illustrates box-averaged, frequency–velocity 
spectra of the measured PIV data. Here, the high-frequency 

region of the v- and w-spectra show an artificial oscillation 
caused by the above-mentioned resolution issues. These 
oscillations are below the frequency that corresponds to the 
estimated Kolmogorov time scale of �t = 1.5 s. Therefore, a 
sharp spectral cut-off filter with a filter length corresponding 
to the Kolmogorov time scale is applied to the raw velocity 
data (indicated by the straight line in Fig. 6).

3.2  Temperature field extraction

Finally, the temperature fields are extracted from the diver-
gence-free velocity fields via a fourth-order central finite-
difference approximation of the z-component of Eq. (13), i.e.

for snapshot n with Δt the time interval between two con-
secutive snapshots. In addition to the temporal discretisation, 
spatial derivatives in Eq. (24) are also discretised by means 
of a fourth-order approximation. Furthermore, the absence 
of velocity data near the boundaries in the experimental data 
set requires special treatment. At the solid boundaries, no-
slip and impermeability boundary conditions are applied to 
the velocity field. For the temperature field, Dirichlet bound-
ary conditions are applied to the top and bottom plate and 
Neumann boundary conditions to the sidewalls. Since both 
the kinetic and the thermal boundary layer are located within 
layers near the top and bottom plate where no experimental 
data is available, the thickness of these layers is estimated 
via the expressions

with �u the kinetic and �
�
 the thermal boundary layer, which 

have been derived by Shishkina et al. (2010) based on the 
Prandtl–Blasius equations for the fluid flow over a flat plate. 
Considering the kinetic boundary layer of the initial field, 
velocities are linearly interpolated along a wall-normal line 
from zero at the wall to the value of the first experimentally 
measured velocity point away from the wall. In terms of 
the thermal boundary layer, the boundary layer thickness 
is approximated using expression (26). Then, the tempera-
ture is set constant between the location of the first value 
of the extracted temperature field away from either the bot-
tom or the top wall and the limit of the estimated bound-
ary layer away from the wall, i.e. a wall distance of �

�
 . The 

temperature in the latter region is set to the value of the 
first grid point of the extracted temperature field away from 
the wall. Between a wall distance of �

�
 and the boundaries, 

(24)
T =

wn+2
− 8wn+1

+ 8wn−1
− wn−2

12Δt
+ �

n
⋅ ∇wn

+ �pn∕�z +
√
Pr∕Ra∇

2wn
,

(25)𝛿u∕H ≈0.509Nu−1Pr1∕3 = 0.016, for Pr > 3 and

(26)𝛿
𝜃
∕H ≈0.5Nu−1 = 0.0058, for Pr > 3,

Fig. 6  a Time series of the velocity components before and after 
filtering. b Box-averaged velocity spectra of the PIV data plotted 
against the frequency domain. Straight vertical line indicates the filter 
cut-off frequency.
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the temperature value is linearly interpolated with tempera-
ture boundaries being set to T1 = − 0.5 and TNz

= 0.5 . An 
extracted temperature field at measurement time t̂ = 15 s 
including interpolated boundaries at x∕H = 0.25 is depicted 
in Fig. 7 together with the divergence-free velocity field.

According to the above-described procedure, temperature 
fields are calculated by solving Eq. (24) using 1000 con-
secutive tomo PIV velocity snapshots. To assess the quality 
of the extracted temperature fields, the average extracted 
temperature field is compared to the corresponding average 
temperature field obtained from PIT measurements that have 
been carried out simultaneously with the tomo PIV measure-
ment (Schiepel et al. 2021). Figure 8 portrays a comparison 
of the average measured (a) and extracted temperature field 
(b) in a yz-plane at x∕H = 0.25.

Since the measurement is restricted to a subdomain of the 
flow geometry, only the corresponding cutout is shown. In 
order to perform the comparison, the corresponding spatio-
temporal mean temperature has been subtracted from both 
fields which are then normalised by their root mean square 
temperature value. The resulting average temperature fields 
displayed in Fig. 8 show comparable structures with a posi-
tive temperature fluctuation in the bottom left and a negative 
temperature fluctuation in the top right of the depicted sub-
domain. Additionally, the extracted average temperature field 
is less smooth and appears to contain smaller scales than the 
measured one. To compare the coherence of the measured 
and the extracted temperature field qualitatively, we compute 
the correlation coefficient between the two fields as

(27)C
𝜓�̃�

=

COV(𝜓 , �̃�)

RMS(𝜓)RMS(�̃�)

,

with

and

where � denotes the measured normalised temperature and 
�̃� denotes the extracted normalised temperature. Angled 
brackets indicate averaging with respect to the coordinates 
stated in the subscript. A correlation coefficient of 0.84 is 
obtained, reflecting that the extracted temperature field gen-
erally resembles the measured temperature field well, even 
though they somewhat differ in detail.

(28)

COV(𝜓 , �̃�) =

H

∫

y=0

H

∫

z=0

(𝜓(y, z) − ⟨𝜓⟩yz)(�̃�(y, z) − ⟨�̃�⟩yz) dy dz,

(29)RMS(�) =

������

H

∫

y=0

H

∫

z=0

(�(y, z) − ⟨�⟩yz)2 dy dz,

Fig. 7  Extracted temperature field at x∕H = 0.25 as pseudo-colour 
image; Planar velocity (v, w) as vector plot.

Fig. 8  Average measured (a) and average extracted temperature field 
(b) at x∕H = 0.25 as pseudo-colour image.
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4  Direct numerical simulation

Extracted temperature fields and the divergence-free velocity 
fields serve as initial conditions for DNSs with and without 
feedback term as presented in Table 1. The governing equa-
tions are the transport equations for mass, momentum, and 
temperature for an incompressible fluid as well as the Bouss-
inesq approximation (see Eqs. 12, 10, and 11). Following the 
approach of Suzuki and Yamamoto (2015) and Clark Di Leoni 
et al. (2020), the momentum equation is expanded by a feed-
back term that penalises the deviation of the computed velocity 
field from the experimentally obtained, divergence-free veloc-
ity field, yielding

where � denotes the feedback gain and �
ref

 is the experimen-
tally obtained divergence-free velocity field (reference field). 
For � = 0 , a conventional DNS without feedback is carried 
out, whereas for � ≠ 0 , the feedback term is taken into 
account with the reference field being updated every time 
a PIV snapshot has been taken. In the following, numerical 
simulations with different � are evaluated and compared to 
the pure DNS case ( � = 0 ). The DNSs of RBC require the 
full spatial resolution of the smallest velocity and tempera-
ture scales. These are the Kolmogorov and the Batchelor 
length scale

(30)

��

�t
+ � ⋅ ∇� = −∇p +

√
Pr∕Ra∇

2
� + T�z + �(�

ref
− �),

(31)�K =

(
�
3

�u

)
,

where �u = �⟨�ui∕�xj⟩ is the kinetic dissipation rate. For the 
present case of Pr > 1 , the Batchelor length scale is smaller 
than the Kolmogorov length scale, and thus, more restrictive 
with respect to the grid resolution. According to Grötzbach 
(1983), the minimum grid spacing in the bulk flow region 
can be estimated via the following approximation of the 
Batchelor scale

Additionally, for the minimum grid spacing in the thermal 
and viscous boundary layers, Shishkina et al. (2010) pro-
vide the following estimation based on the Prandtl–Blasius 
boundary layer theory

where E ≈ 0.982 and a ≈ 0.482 . Moreover, Shishkina et al. 
(2010) recommend minimum numbers of nodes in the ther-
mal and kinetic boundary layer of

Inserting the estimated Nusselt number from Eq.  (7) in 
Eqs. (33) and (34) results in a minimum grid spacing of 
0.0065 in the bulk flow region and 5.1 × 104 in the boundary 
layers. Moreover, the minimum number of nodes in the 
boundary layers—Eqs.  (35) and (35)—is estimated to 
Nmin

�
�

= 8 and Nmin

�u
= 20 for the thermal and kinetic boundary 

layer, respectively. As shown in Table 1, the present simula-
tion case fulfils the above-described grid requirements in the 
boundary layers as well as in the bulk flow.

Based on the parameters above, DNSs initialised with 
extracted temperature and velocity fields with and without 
feedback were carried out. Starting with an under-resolved 
velocity field and the corresponding extracted temperature 
field, the DNS without feedback requires time to over-
come an initial transient phase forming turbulent small 
scales. Figure 9 illustrates instantaneous temperature field 
realisations at t = 21.6 . Since the experimental data did 
not contain information on the boundary layers, spatially 
fine turbulent structures evolve in the temperature field 
during the simulations, particularly from the top and bot-
tom boundaries (Fig. 9). These structures feature a higher 
temperature intensity than visible in the initial extracted 
temperature field (Fig.7). Furthermore, the initially 

(32)�B =

(
��

2

�u

)
= �KPr

−1∕2,

(33)hbulk∕H ≤
𝜋

Γ

1

((Nu − 1)Ra)1∕4
, for Pr > 1.

(34)hBL∕H ≤ 2−3∕2a−1E−3∕2
Nu

−3∕2, for Pr > 3,

(35)Nmin

𝛿
𝜃

=

√
2aNu1∕2E3∕2, for Pr > 3,

(36)Nmin

𝛿u
=

√
2aNu1∕2Pr1∕3E1∕2, for Pr > 3.

Table 1  RBC simulation case

Ra is the Rayleigh, Pr the 
Prandtl number. N

x
 , N

y
 and N

z
 

are the number of grid points 
in x, y, and z direction, respec-
tively. Δz

min
 is the grid spacing 

at the plates, Δz
max

 is the grid 
spacing at the centre of the box. 
N
�
�

 is the number of grid points 
in the thermal, N

�
u
 in the kinetic 

boundary layer. � is the feed-
back gain

Ra 7 × 109

Pr 18
N
x
× N

y
× N

z
256 × 384 × 384

Δz
min

∕H 4.1 × 10−4

Δz
max

∕H 3.9 × 10−3

N
�
�

12
N
�
u

27
� 0,0.01,0.1,1,10
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sharp-edged-appearing structure of the temperature field 
has smoothened out after the integration of time.

When taking into account the feedback term, the structure 
of the simulated temperature field depends on the feedback 
gain � . Since the measured velocity field lacks fine-scale 
turbulent structures, the temperature field structure in the 
bulk region becomes increasingly coarse as the feedback 
term increases (Fig. 10).

Moreover, the temperature intensity outside the thermal 
boundary layer above the heated plate and below the cooled 
plate appears to be higher for large � . To evaluate the simu-
lated temperature and velocity fields for different � , the flow 
quantities are statistically averaged hereinafter and compared 
to statistical averages of the measured velocity field as well 
as to statistical averages obtained from a DNS without feed-
back term. While the comparison of the mean velocity with 
the experiment assesses how well the simulated velocity 
field resembles the measured LSC of the flow, the compari-
son of RMS values with the DNS without feedback reveals 
how well small-scale fluctuations are captured in both the 
velocity and the temperature field. In order to detect when 
the DNSs have overcome the initial transient, the temporal 
evolution of the average Nusselt number at the heated and 
the cooled plate,

representing the average vertical heat flux is depicted in 
Fig. 11.

According to Fig. 11, the DNS without feedback reaches 
a statistically stationary state at approximately t0 = 10 with 
Nu

w
≈ 120 (blue line). While the heat flux time series 

(37)Nuw = −
1

2

�
�⟨T⟩xy
�z

���z∕H=0
+

�⟨T⟩xy
�z

���z∕H=1

�
,

obtained from the DNS with feedback collapses well with the 
one from the DNS without feedback for � = 0.01 (red line), 
it differs only marginally from the DNS without feedback for 
� = 0.1 (green line). Deviating even more for � = 1 (yellow 

Fig. 9  Instantaneous temperature field from DNS without feedback at 
x∕H = 0.25 and t = 21.6 as pseudo-colour images.

Fig. 10  Instantaneous temperature fields from DNS with feedback 
at x∕H = 0.25 and t = 21.6 as pseudo-colour images. a � = 0.01 ; b 
� = 0.1 ; c � = 1.
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line), the estimated heat flux is still fluctuating around the 
expected value. For � = 10 , however, Fig. 11 reflects heat 
flux values of 𝜕⟨T⟩xy∕𝜕z < 100 , which are below the val-
ues obtained from the DNS without feedback. The deviation 
of the simulated velocity field � from the experimentally 
obtained reference field �

ref
 is evaluated by means of the 

temporal evolution of the mean absolute difference between 
the simulated and the reference field, as depicted in Fig. 12.

For the DNS without feedback, the mean absolute dif-
ference between the simulated and the experimental veloc-
ity increases up to a value of approximately 0.024 at t ≈ 19 
where it saturates (blue line). For the DNS with feedback, 
the difference between the simulated and the experimental 
velocity field decreases as � increases. Using a feedback 
gain of � = 10 , the mean absolute difference stays below 
a value of approximately 10−3 during the integration time 
(magenta line). In this case, the feedback term in Eq. (30) 

is so dominant that it effectively suppresses large deviations 
from the reference field. In the following, numerical statis-
tical quantities are obtained by averaging over time from 
t0 = 10 as follows:

with � the quantity of interest and t1 the end time of the tem-
poral averaging interval. Additionally, averaging over one or 
several of the spatial directions is defined as

Applying the averaging operation (38) as well as an addi-
tional plane-average in x and y according to equation (39), 
the vertical profile of the v velocity is compared to the x-, 
y-, and t-average of the v velocity measured in the PIV data 
in Fig. 13.

The averaged profiles show good general agreement 
although the DNS has generated small-scale turbulence that 
was initially lacking in the experimental data. On average, 
however, the LSC that was visible in the experimental data 
appears to sustain in the DNSs with and without feedback 

(38)⟨�⟩t =
1

(t1 − t0)

t1

∫
t=t0

�l(t) dt,

(39)⟨�⟩i =
1

Li

Li

∫

i=0

�(i) di, i = x, y, z

Fig. 11  Temporal evolution of Nuw representing the plane-averaged 
heat flux at the heated and the cooled plate for DNSs with different 
feedback gains α. Blue line, � = 0 ; red line, � = 0.01 ; green line, 
� = 0.1 ; orange line, � = 1 ; pink line, � = 10

Fig. 12  Mean absolute deviation of the simulated from the reference 
velocity field for different feedback gains. Blue line, � = 0 ; red line, 
� = 0.01 ; green line, � = 0.1 ; orange line, � = 1 ; pink line � = 10

Fig. 13  Comparison of spatio-temporally averaged velocity profiles 
⟨v⟩xyt between PIV and DNS with different feedback gains. Blue line, 
� = 0 ; red line, � = 0.01 ; green line, � = 0.1 ; orange line, � = 1 ; pink 
line, � = 10;..., PIV data.
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gain. As Fig. 13 indicates, the profile obtained from the 
simulation without feedback tends to shift the asymmetric 
experimental profile (dashed black line) towards a symmet-
ric profile (blue line). Introducing the feedback term to the 
simulations leads to less deviation of the mean vertical v 
velocity profile from the experimentally measured profile. 
The best agreement between experimental and simulated 
mean velocity profiles is obtained for � = 1 . More precisely, 
the latter can be seen in the x- and t-averaged planar veloc-
ity depicted as vector plots in Fig. 14 for both PIV data 
(Fig. 14a) and DNS data (Fig. 14b–d).

In the PIV data (Fig. 14a) as well as in the DNS data with 
and without feedback (Fig. 14a), the LSC is clearly visible. 

The DNS without feedback, however, shows a LSC ori-
ented around the centre of the cell ( y∕H ≈ 0.5 , z∕H ≈ 0.5 , 
Fig. 14b), whereas for the PIV data as well as for DNSs 
with � ≥ 0.1 the LSC is oriented around y∕H ≈ 0.55 and 
z∕H ≈ 0.6 (Fig. 14a, c, d). Besides, the structure of the aver-
age extracted temperature field agrees reasonably well with 
the one integrated in time from the DNSs with and with-
out feedback. The temperature levels are in the same order 
of magnitude in the extracted temperature field (Fig. 14a) 
and in the temperature field of the DNS without feedback 
(Fig. 14b). With increasing feedback gain � , the average 
temperature field becomes more intense (Fig. 14c, d). In 
addition to the PIV data, the DNS data encompasses both 

Fig. 14  Spatio-temporally averaged velocity vector plots �yz = ⟨v⟩xt�y + ⟨w⟩xt�z and temperature fields ⟨T⟩xt from PIV (a) and DNSs with and 
without feedback gain ( � = 0 , b; � = 0.1 , c; � = 1 , d).
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the kinetic boundary layer, where velocities decay to zero 
near solid walls, and the thin thermal boundary layer near 
the heated bottom and the cooled top plate. In order to com-
pare the coherence of the average flow structure between the 
tomo PIV measurement and the DNSs qualitatively, we com-
pute the correlation coefficient between the flow field seen 
in Fig. 14a and each of the fields presented in Fig. 14b–d 
as well as the fields obtained from DNS with � = 0.01 and 
� = 10 (figure omitted). The correlation coefficient is defined 
as in Eq. (27) with � denoting quantities obtained from the 
DNSs and �̃� denoting quantities obtained from the tomo 
PIV measurement. Accordingly, we obtain correlation coef-
ficients of Cvṽ = 0.92 for the xt-averaged horizontal velocity 
component, Cww̃ = 0.91 for the xt-averaged vertical velocity 
component, and CTT̃ = 0.6 for the xt-averaged temperature 
when considering the DNS without feedback. Correlating 
the averaged PIV velocity field with the averaged velocity 
field obtained from DNS with feedback results in correla-
tion coefficients that further increase with the feedback � . 
For � = 0.1 , we obtain Cvṽ = 0.96 and Cww̃ = 0.95 ; for � = 1 , 
Cvṽ = 0.995 and Cww̃ = 0.984 . The averaged extracted tem-
perature field, on the other hand, remains less correlated 
with the averaged temperature field from DNSs involving 
feedback without a clear tendency. When increasing � from 
0.1 to 1, the correlation coefficient increases from CTT̃ = 0.6 
to CTT̃ = 0.65 , before it drops to CTT̃ = 0.57 when increasing 
the feedback gain further to � = 10 . In summary, the aver-
age temperature field is less correlated between PIV and 
DNS data than the velocity field is. The temperature fields 
are extracted from measured velocity fields involving both 
temporal and spatial derivatives of the latter. Since the PIV 
velocity fields were spatially under-resolved and temporally 
treated with cut-off filtering because they showed temporal 
oscillations, the extracted temperature fields might be lack-
ing information. During the DNSs, more intense temporal 
structures evolve, which is projected in the average tem-
perature fields depicted in Fig. 14b–d that show somewhat 
less correlation with the PIV field (Fig. 14a) than the cor-
responding velocity fields do. To further evaluate the tem-
perature field of the DNSs with and without feedback, RMS 
temperature profiles as depicted in Fig. 15 are taken into 
consideration.

As Fig. 15 indicates, the RMS temperature profiles exhibit 
peaks in the thermal boundary layers near the heated and 
cooled plate where T

rms
≈ 0.09 , while their value in the bulk 

flow region remains on a much lower niveau ( T
rms

< 0.02 ). 
The profile for the DNS without feedback collapses well 
with the one involving � = 0.01 , and there is only little varia-
tion with respect to the case with a feedback gain of � = 0.1 . 
The profile of � = 1 collapses well with those involving 
lower � near the heated and the cooled plate ( z∕H ≲ 0.05 
and z∕H ≳ 0.95 ), whereas the temperature fluctuations are 
overestimated by approximately 40% elsewhere. For � = 10 , 

the profile overestimates the temperature fluctuation inten-
sity up to 94% around z∕h ≈ 0.05 and z∕H ≈ 0.95 with only 
little variation between z∕H ≈ 0.3 and z∕H ≈ 0.7 . The over-
estimation of the temperature fluctuation intensity for � ≥ 1 
corresponds to instantaneous observations of the tempera-
ture field depicted in Fig. 9, where more intense temperature 
structures mitigate from the thermal boundary layers.

In summary, the DNS with feedback results in an average 
velocity profile that resembles the experimental data well. 
However, introducing the feedback term to the momentum 
equation decreases the deviation of the velocity field from 
the experimental data further as the feedback gain increases, 
implying that high feedback gain values � are suitable. On 
the other hand, the temperature fluctuation intensity profiles 
deviate conspicuously from profiles of a DNS without feed-
back for � ≥ 1 . For high � , the feedback term in Eq. (30) 
becomes dominant with regard to the buoyancy term and 
effectively decouples the temperature from the momentum 
equation. Thus, the temperature field acts more like a pas-
sive scalar as its influence on the velocity field diminishes. 
Overall, a feedback gain of � = 0.1 has been proven to show 
good results, i.e. a high correlation of the simulated veloc-
ity field with the experimentally measured data as well as 
realistic temperature field fluctuations. Altogether, the good 
agreement between the LSC in the DNSs with and without 
feedback and in the PIV data confirms the validity of the 
present method of numerically extracting the temperature 
field from the measured data as well as using a DNS solver 

Fig. 15  Comparison of spatio-temporally averaged RMS temperature 
profiles T

rms
=

�
⟨T �T �⟩xyt between and DNSs with different feed-

back gains. Blue line, � = 0 ; red line, � = 0.01 ; green line, � = 0.1 ; 
orange line, � = 1 ; pink line � = 10.
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to generate the small-scale turbulence, which has been lack-
ing in the experimental data set.

5  Conclusion

In the present work, we employ methods drawn from the 
DNS of RBC—i.e. the Poisson solver and the discretised 
momentum equation—to extract information out of the 
under-resolved measured velocity fields of RBC that are 
not directly accessible. With the aid of the Poisson solver, 
we managed to successfully remove discontinuities from 
the measured velocity data. Moreover, we extracted tem-
perature fields from the velocity data by means of the dis-
cretised vertical momentum equation. Comparing the aver-
age extracted temperature field with measured temperature 
fields in a subdomain of the flow geometry, the high corre-
lation coefficient CTT̃ = 0.84 ) underlined that the extracted 
temperature field reflects the physics of this experiment.

Since the measured velocity fields were spatially under-
resolved and did not contain any information at the bound-
aries, we used DNSs with and without feedback involv-
ing divergence-free velocity fields and corresponding 
extracted temperature fields as initial conditions to gener-
ate small-scale turbulence as well as thermal and kinetic 
boundary layers. After an initial transient, the DNS with-
out feedback features small-scale temperature and velocity 
fluctuations while the LSC still agrees well with the initial 
experimental data, which is proven by large correlations 
between averaged flow fields from DNS and tomo PIV. 
Here, correlation coefficients of Cvṽ = 0.92 and Cww̃ = 0.91 
are obtained for the vertical and horizontal velocity com-
ponent averaged in time and in the horizontal x-direction, 
the latter components representing the LSC.

For simulations with feedback, the generated velocity 
fields resemble the experimental data increasingly well 
for higher values of � , which reflects in correlation coef-
ficients larger than Cvṽ = 0.995 and Cww̃ = 0.98 for � ≥ 1 . 
Nonetheless, for � ≥ 1 , the temperature fluctuation profile 
differs significantly from the one obtained from a DNS 
without feedback, which suggests that the governing 
equations—i.e. the temperature equation and the vertical 
momentum equation—decouple resulting in a temperature 
field acting like a passive scalar. Hence, a feedback gain of 
� = 0.1 is found to be optimal when considering the feed-
back term, since large correlation coefficients of Cvṽ = 0.96 
and Cww̃ = 0.95 are achieved for the velocity field and the 
temperature fluctuation intensity profile matches the pro-
file from a DNS without feedback well.

Note that the xt-averaged temperature field obtained 
from the DNS with and without feedback correlates some-
what less with the extracted temperature field ( CTT̃ ≈ 0.6 ), 
which is presumably caused by spatially under-resolved 

and temporally oscillating initial tomo PIV fields used to 
extract the temperature field.

In brief, the proposed method proved successful in 
extracting additional information out of an experimental 
RBC data set, even though the experimental data was under-
resolved and lacked information at the boundaries.

In the future, the same approach can be applied to other 
flow problems like mixed convection (Mommert et al. 2020) 
or in cylindrical domains (Paolillo et al. 2018).
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