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Abstract 
We propose a seeding particle-based color-to-depth calibration methodology for three-dimensional color particle tracking 
velocimetry (3D color PTV) using a single camera and volumetric rainbow gradient illumination. The use of sheet-color 
illumination from a liquid crystal display projector enables in situ calibration, namely the color-to-depth relationships of 
particles seeded in a fluid are determined without inserting any calibration equipment or taking a different optical setup. 
That is, in this methodology, the calibration and application can be performed using the same optical configuration, and 
only the digital illumination patterns need to be changed. Adopting this calibration allows evaluating actual color-to-depth 
relationships of the particles in measurements. The calibration is conducted regarding the relationship between spatially 
distributed particle colors and their depth coordinates by support of an artificial neural network. By combining conventional 
PTV with the depth estimated by the color, particle trajectories in 3D real space can be reconstructed from the calibration. 
The performance of the proposed method was evaluated using a rotating flow in a cylindrical tank by comparing its results 
with the flow fields measured by conventional particle image velocimetry. Good accordance in the comparison at the highly 
3D flow suggests the applicability of the present methodology for various flow configurations.

1 Introduction

The range of applications of volumetric flow field measure-
ment through tomographic particle image velocimetry (PIV) 
(e.g., Elsinga et al. 2006; Westerweel et al. 2013) is increas-
ing. The shake-the-box method (Schanz et al. 2016) greatly 
reduced ghost particle problem arising in tomographic PIV, 
yielding dense Lagrangian particle tracking. These tech-
niques measuring three-dimensional, three-component (3D-
3C) velocity fields are now regarded as standard techniques 
in fluid flow measurements. However, these require careful 
optical arrangements of at least four cameras to acquire reli-
able particle displacements, and thus the cost of a tomo-
graphic system may not be affordable for many applications.

To tackle the complexity arising in such optical settings, 
as well as their high cost, some alternatives using only a 
single camera have been proposed in the last few decades. 
Especially under the limited measurement environments 
of microfluidics, the necessity of implementations on 

microscopes has motivated developments of such single-
view approaches as advanced methods of micro-PIV. Single-
view approaches require to record particle depth positions as 
additional information to planer images; astigmatism parti-
cle tracking velocimetry (PTV) utilizes particle distortions 
(e.g., Cierpka et al. 2010a, b), and three-pinhole aperture 
PIV uses geometric relationships of triplet particle images 
(e.g., Pereira et al. 2007; Tien et al. 2014). These tech-
niques yielded a particle image density of O(10−4) particles 
per pixel (ppp) with a measurable depth of O(10–100 μ) m. 
For larger measurable depth without microscopes, holo-
graphic PIV increased the particle image density to O(10−3
–10−2 ppp) , as well as the measurable depth to O(1–10 mm) 
(e.g., Salazar et al. 2008; Sheng et al. 2008). Recently, light-
field PIV has been introduced as a new type of technique 
(e.g., Shi et al. 2018) and allows a rather easier implemen-
tation than the techniques described above with yielding a 
higher particle image density of O(10−2 ppp) with the meas-
urable depth of O(10 mm) . These various volumetric meas-
urement techniques using a single camera, however, often 
require additional special optics.

The simplest solution for locating particles seeded in a 3D 
space without special optics may be the use of color gradi-
ent information imposed along the depth (view) direction of 
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a single camera (Matsushita et al. 2004; Prenel and Bailly 
2006; Ruck 2011; McGregor et al. 2007; Bendicks et al. 
2011; Watamura et al. 2013; Xiong et al. 2017, 2018; Park 
et al. 2021). This technique is called color PTV or rain-
bow PTV. Recently, Aguirre-Pablo et al. (2019) proposed a 
method called intensity PTV using a structured monochro-
matic illumination. The only required optical equipment is 
a single camera and a light source that can emit light of 
multiple wavelengths such as a liquid crystal display (LCD) 
projector. The optical arrangements are thus substantially 
less complex than those used in tomographic PIV and other 
single-view methods. A conceptual image of color PTV is 
shown in Fig. 1. An LCD projector displays a rainbow gradi-
ent, changing the color in the depth direction (the y-direction 
in the illustration) of the camera. Because the LCD projec-
tor is originally designed to illuminate a large space, the 
light emitted from the LCD projector diverges. Hence, the 
light is collimated by a collimation lens (a linear Fresnel 
lens is used in the present study) to form a parallel color 
beam. This ensures that the relationship between the color 
and depth coordinate is fixed. The color beam illuminates 
particles seeded into a test fluid, and a camera captures the 
particle images. If light with a color gradient is used, as 
shown in Fig. 1, the particles scatter light, and the color of 
that light reflects the depth. The particle positions in the in-
plane coordinates (x and z) and out-of-plane coordinate (y) 
thus can be determined from the image coordinates (i and j) 
and the color, respectively. The concept of color PTV is sim-
ple and allows a large measurable depth of O(≥ 10 mm) and 
the particle image density of O(10−2 ppp) . However, many 
issues must be addressed to ensure reasonable accuracy in 
the practical application of this technique.

To practically apply color PTV in actual flow field 
measurements, a feasible method for calibrating the color-
to-depth relationship is required. McGregor et al. (2007) 
utilized a microscope slide containing a low-density chalk 
dust having the same size as the particles for the calibration 
as shown in Fig. 2a. By placing the slide obliquely in the 
illuminated region in the x-y plane, color changes in the y 

direction could be tracked in the x direction of the image 
plane. Aguirre-Pablo et al. (2019) used a 3D laser-engraved 
calibration cube that contains micro-cracks that mimic 
spatially distributed particles as illustrated in Fig. 2b. The 
known 3D crack positions inside the cube can be used for 
calibration. Note that, they used a monochromatic illumina-
tion instead of rainbow illumination, while Fig. 2b illus-
trates rainbow colors for easier comparison with the others. 
They demonstrated successful results for a rotating flow of 
index-matched fluid in an open tank. The need to use a cali-
bration cube, however, may not be user-friendly and is far 
from wide applications, as the calibration cube needs to be 
index-matched with the test fluid. It is therefore not realistic 
to produce a unique calibration cube for a variety of flow 
conditions. The light scattering characteristics of seeded par-
ticles, however, are not necessarily the same as those of such 
chalk dust and glass cracks. This is the difficulty in consider-
ing the particle color or intensity as additional information to 
the conventional calibration adopted in the stereoscopic and 
tomographic PIV, requiring only the relationship between 
the real and image coordinates.

Watamura et al. (2013) tried to calibrate the color-to-
depth relationship in a particle-seeded fluid using a rain-
bow gradient illumination within the image plane as shown 
in Fig. 2c. In the calibration step, the particle images were 
obtained in the x-z plane. The color-to-in-plane relationships 
obtained in the special optical arrangement only for calibra-
tion are used to compute the calibration curves. The curves 
then are used to convert particle colors to depth positions in 
the actual measurements which illuminates a rainbow gradi-
ent in the depth direction. This calibration, however, requires 
a strong and unreasonable assumption that the colors scat-
tered by the particles do not change in the two different opti-
cal arrangements.

These calibration methods proposed earlier cannot guar-
antee the actual accuracy in detecting the depth positions 

Fig. 1  Conceptual image of the optical setting for LCD-based-color 
PTV Fig. 2  Calibration methods for the color PTV: a oblique slide 

(McGregor et  al. 2007); b calibration cube (Aguirre-Pablo et  al. 
2019); c in-plane rainbow (Watamura et al. 2013); and d sheet-color 
(the present study)
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of particles seeded in the fluids, because the actual color-
to-depth relationships of the particles are not directly used. 
For these reasons, there are two requirements for an in situ 
method for color-to-depth calibration as follows. One is to 
obtain the actual relationships between particle depth posi-
tions and their scattered colors in the flow conditions to 
be measured. Another is to conduct the calibration in the 
same optical arrangement as the measurements. That is, 
the color-to-depth calibration needs to be conducted in the 
particle-seeded fluid used for the actual measurements to 
satisfy these requirements. The aim of the present study is 
to establish such a reliable calibration methodology for color 
PTV that solves these issues. To do this, we adopt three 
different illumination measurements, full-color, sheet-color, 
and dark illumination. The conceptual image of the proposed 
calibration method is shown in Fig. 2d for comparison with 
the others. The use of an LCD projector allows such flexible 
illumination (within the resolution of the LCD projector) 
without changing the optical arrangement. We then propose 
a color-to-depth calibration method for particle-seeded flu-
ids with series of supporting image processing and artificial 
neural network (ANN) to solve the multi-regression problem 
on the calibration. The method was tested in a highly 3D 
rotating flow generated by an impeller and was validated 
through comparison with conventional PIV to show reason-
able accuracy of the proposed method.

2  Methodology

For the calibration and application of color PTV, all meas-
urements need to be performed using an identical experi-
mental setup. Only the illumination light is changed for the 
calibration step, as detailed in Sect. 2.2. Thus, the measure-
ment target is used in the first step of the measurements 
(Sect. 2.1). The methodology comprises four parts: three 
different illumination measurements (Sect. 2.2), a series of 
image processing operations (Sect. 2.3), color-to-depth cali-
bration supported by ANN (Sect. 2.4), and particle tracking 
in the 3D real space (Sect. 2.5). A simplified flowchart of 
the proposed method is shown in Fig. 3 for the convenience 
of readers to facilitate their understanding of the subsequent 
discussion. The section numbers are given above the cor-
responding processes. A complete flowchart showing the 
details of each process is provided in the supplementary 
material.

2.1  Experimental design

We employed a rotating flow in a cylindrical fluid layer 
driven by an impeller as the measurement target, as schemat-
ically illustrated in Fig. 4. Water was used as the test fluid, 
and a rectangular vessel was filled to a height of 150 mm . 

An annulus with an inner diameter of 200 mm was inserted 
into the rectangular vessel to form a cylindrical fluid layer. 
Both the rectangular vessel and annulus were filled with 
water to reduce unwanted optical refraction. Tracer parti-
cles (HP20, mean diameter 0.5 mm , mean density 1.01 g/
cm3, Mitsubishi Chemical Co.) were seeded in the fluid only 
inside the annulus. The fluid in the annulus was driven by 

Fig. 3  Flowchart of the proposed method

Fig. 4  Schematic of the experimental setup for the rotating flow 
measurements
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a propeller-type-impeller with a diameter of 60 mm com-
prising four small wings with an attack angle of 30° and 
rotated constantly at � = 30 rpm in a clockwise direction. 
The rotational axis of the impeller was located at the center 
of the annulus ( x = y = 0 ) and the bottom of the impeller 
was placed at half the height of the fluid, z = 75 mm.

A rainbow gradient pattern was projected from an LCD 
projector ( 3000 lm , 1280 × 800 pixels EB-W420, Seiko 
Epson Co.) and collimated by a linear Fresnel lens (focal 
length 150 mm ) set in front of the projector. The collimated 
volumetric beam had a thickness of δy = 60 mm in the depth 
(y) direction. A color CMOS camera (DFK33UP5000, The 
Imaging Source Co.) equipped with a lens (focal length 
35 mm , aperture F#8, estimated depth of field ∼ 80 mm , 
Nikkor, Nikon) was set perpendicular to the collimated 
beam and acquired particle images in the x-z plane. The 
original images had Bayer patterns and were processed by 
an advanced linear interpolation method for demosaicing 
(Malvar et al. 2004). The illuminated volume was 200 ×  60  
× 150  mm3 in the x-y-z directions. The measurement volume 
in the annulus was slightly smaller than this and is shown 
as the region enclosed by red dashed lines in Fig. 4. The 
arrangement illustrated in Fig. 4 shows a scheme in which 
the collimated beam illuminates the fluid layer in the range 
of y = − 50 mm to 10 mm.

Various illumination patterns have been proposed for 
single-camera 3D PTV based on an LCD projector. For 
example, Watamura et al. (2013) used an illumination that 
cycles through multiple hues over time and Aguirre-Pablo 
et al. (2019) demonstrated the efficiency of a brightness-
changing animation illumination. The employment of such 
animation effects in the illumination patterns may increase 
the flexibility of the post-processing, improving the accu-
racy of depth coordinate estimation. In contrast, the qual-
ity of an animation projected by an LCD projector may 
strongly depend on its specifications, such as refresh rate 
or time required for color stabilization (transition time), 
and these mechanical restrictions limit the measurement 
targets to slowly moving fluid flows, as discussed in Agu-
irre-Pablo et al. (2019). Thus, we attempted to use a fixed 
rainbow illumination during measurements so that the 
generalization of the color PTV method does not depend 
on the LCD projector. This approach also reduces the com-
plexity arising in the post-processing steps. The rainbow 
gradient pattern used as an input to the LCD projector in 
the present study is presented in Fig. 5. The color pattern 
shown in Fig. 5a is projected by the LCD projector to 
change color in the depth direction, and the correspond-
ing brightness values of three color channels, R, G, and B, 
each in 8-bit format, are shown in Fig. 5b. The maximum 
resolution of the projector, 800 pixels , corresponds to the 
thickness of the collimated beam δy = 60 mm . The bright-
ness values in the RGB domain are shown in Fig. 5c. The 

solid lines shown in Fig. 5a, b represent the used color 
values. It is clear that the employed rainbow gradient can 
be well separated in the 3D-RGB domain, and the depth 
coordinates of the seeded particles should be determined 
using all three brightness values. Details of the color-to-
depth calibration method are addressed in Sect. 2.4.

2.2  Measurement procedure

The measurement procedure comprises measurements 
under three different illuminations: full-color, sheet-color, 
and dark illumination. These measurements are used for 
the subsequent image analyses. During these three meas-
urements, only the projection images are changed while 
the optical arrangements of the experimental equipment 
are fixed, and all the measurements can be conducted in 
the particle-seeded fluid.

2.2.1  Full‑color illumination measurements

The full-color illumination pattern, as illustrated in Fig. 4, 
is the main type of measurement for investigating flow 
fields. Because the LCD projector illuminates particles 
seeded in water with a full-color pattern having a thick-
ness of δy = 60 mm , the depth coordinates of the particles 
y within the thickness are represented by the colors scat-
tered by the particles in the acquired color images. The 
total depth of the illuminated volume varied less than 
1 mm ( < 2% ) across the field of view. In the present study, 
rotating flows provoked by the impeller set in the mid-
dle of the cylindrical tank were recorded as consecutive 

Fig. 5  Details of the projected color pattern for full-color illumination 
measurements. a Original color pattern projected by the LCD projec-
tor, b brightness values of each RGB channel in 8-bit format, and c 
3D-Cartesian plots of the illumination colors. The maximum height 
in pixels of the LCD projector δy = 800 pixels corresponds to the 
thickness of the collimated color beam δy = 60 mm . The solid line 
in c represents the used colors; the colored circles are plotted every 
4 mm for reference
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color images with 90 fps for 2 minutes (60 rotations of 
the impeller).

2.2.2  Sheet‑color illumination measurements

To obtain the relationships between the particle color and 
depth information for color-to-depth calibration, it is nec-
essary to predetermine these relationships under known 
conditions. To do this, we illuminate particle-seeded fluid 
by sheet-color patterns, as illustrated in Fig. 6. The digi-
tally segmented sheet-color patterns illuminate particles 
at known depth positions without changing the optical 
arrangements. This reduces any mechanical error that could 
arise in the traversal of the calibration plates. In the present 
study, we segmented the full-color projection pattern used 
in the actual measurements into 40 sheet-color patterns by 
placing black digital slits in front of the full-color pattern. 
Each sheet possessed a thickness of 20 pixels in the pro-
jected pattern resulting in a 1.5-mm-thick sheet beam in the 
real dimensions, as the thickness of the full-color pattern 
was δy = 800 pixels = 60 mm . Each sheet yielded a slight 
color change within the thin thickness. The regions outside 
the sheet in the sheet-color patterns were filled with black 
( R = G = B = 0 ), so as not to illuminate particles outside 
the sheet region. In principle, particles illuminated by a cer-
tain sheet-color pattern exist within a thin sheet region at a 
known depth coordinate. For all the sheet-color patterns, the 
sheet thickness varied much less than 5% across the field 
of view.

We utilized large particles with a mean diameter of 
0.5 mm for better color scattering. Suppose that the particles 
scatter colors when a part of the particle enters the sheet illu-
mination. Then, the depth positions of particles are detected 
with an accuracy of ± (0.75 + 0.25) mm = ± 1.0 mm , 
which is half of the sheet thickness and particle radius. By 
recording particle images illuminated by the 40 sheet-color 

patterns, particle colors can be identified at different 40 
depth levels with at least this accuracy of ± 1.0 mm . In the 
color-to-depth calibration step detailed in Sect. 2.4, this 
original accuracy given by the system is the target value for 
the optimization. For each illumination, we recorded more 
than 1,000 images to obtain a sufficient number of colored 
particles present in the thin sheet regions. Note that, these 
sheet-color illumination measurements using 40 patterns can 
be fully automated by projecting a slowly changing anima-
tion of the sheet-color patterns.

Thinner sheet-color patterns can obtain more accurate 
relationships between the colors and the known depth coor-
dinates. In principle, the thickness of a sheet-color pattern 
can be as thin as 1 pixel , corresponding to 0.075 mm in the 
present condition, if the brightness of the colored particles 
can be distinguished from those of the non-illuminated par-
ticles. At this time, the diameter of the seeded particles also 
becomes important when capturing scattered color informa-
tion from the seeded particles, and this needs to be consid-
ered when selecting tracer particles.

2.2.3  Dark illumination measurements

Ideally, the full-color and sheet-color illumination measure-
ments only record particles illuminated by the color beams. 
However, the LCD projector illuminates the space corre-
sponding with the black pixel regions of the sheet-color pat-
terns with weak light intensity. Particles in the black regions 
are hence recorded on particle images as spots with low 
brightness and without a strong saturation, as illustrated 
in Fig. 6. Moreover, such dark particles appear on particle 
images recorded during the full-color illumination measure-
ments, as the projector leaks light with weak light intensity 
at the peripherals of the illumination volume. It may not 
be possible to fully exclude such low-brightness particles 
during the image acquisition steps. For these reasons, we 
recorded non-illuminated particles by projecting a fully 
black pattern of the same size as the full-color image. Dur-
ing this dark illumination measurement, we recorded more 
than 1000 images as in the sheet-color illumination meas-
urements, to obtain a sufficient number of non-illuminated 
particles.

2.3  Image processing for colored‑particle detection

In the three measurements using different projection pat-
terns described in Sect. 2.2, color images �c were origi-
nally acquired in 24-bit format (8 bits for each R, G, and 
B channel). To track particle motions in the 3D real space, 
the seeded particles must be detected along with their color 
information with excluding non-illuminated particles. We 
show a series of image processing steps to detect colored-
particles combining particle images obtained in the three 

Fig. 6  Sheet-color illumination measurement for color-to-depth cali-
bration
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measurements and standard image processing techniques. 
Examples of these procedures are shown in Fig. 7. The same 
image processing scheme for the full-color (Sect. 2.2.1) and 
sheet-color (Sect. 2.2.2) illumination measurements ena-
bles the detection of colored particles, as shown in Fig. 7a, 
b, respectively. Color patterns projected for the full-color 
and sheet-color illumination measurements are shown in 
the first column of Fig. 7, and these have resolutions of 
1280 × 800 pixels , which corresponds to the resolution of 
the LCD projector. When these illumination patterns were 
adopted, original particle images were recorded as color 
images �c , as shown in the second column of Fig. 7. Here, the 
particle images are magnified views of small 100 × 100 pixel 
regions so that the particles are easily visible. The details of 
these procedures for colored-particle detection are presented 
in the following.

2.3.1  Pre‑processing

First, color images �c are converted to grayscale images �g , 
as shown in the third column of Fig. 7. Because the original 
images �c or �g contain static artifacts such as light scat-
tered from the tank, background subtraction is performed 
for grayscale images �g to identify only the particles. Back-
ground images �bg are generated by temporally averaging 
the grayscale images in each measurement, which is for-
mulated as �bg = �g  . A background-subtracted image is 
then obtained as �g − �bg , as shown in the fourth column 
of Fig. 7. Only the seeded particles are now visible in the 
background-subtracted images; however, some particles with 
small brightness and hue values also exist. These uncolored 
particles should not be included in the particle detection 
because they do not provide informative color values and 

should be excluded from the subsequent analyses. Therefore, 
it is necessary to predetermine a threshold brightness value 
for excluding non-illuminated particles.

In the dark illumination measurement (Sect. 2.2.3), non-
illuminated particle images have already been obtained. For 
these images, the background subtraction is performed in 
the manner described above. To determine thresholds for 
excluding non-illuminated particles, a pathline image �pl of 
the non-illuminated particles is compiled by taking the pixel-
wise maxima of stacked a number of background-subtracted 
images. This operation is formulated as �pl = fmax(�g − �bg) , 
where fmax represents a pixelwise operation for taking the 
maximum values of a stacked lot of background-subtracted 
images. Since the pathline image only contains the non-
illuminated particles, it is considered to represent the pix-
elwise brightness values for the non-illuminated particles 
in the full-color and sheet-color illumination measure-
ments, which are typically much darker than the colored 
particles. To ensure spatially homogeneous distribution of 
the pathline brightness, a Gaussian blur with a kernel size 
of 15 × 15 pixels ( �G ) is performed. The blurred pathline 
image of the non-illuminated particles is called a foreground 
image �fg = �pl ∗ �G hereafter, where ∗ represents a convolu-
tion operation.

The common foreground image �fg is subtracted from 
the background-subtracted images of the full-color and 
sheet-color illumination measurements. The image is 
then binarized by a global threshold value after the fore-
ground subtraction to filter out the non-illuminated parti-
cles. This is written as �bin = fbin(�g − �bg − �fg) , where fbin 
is the step function for binarization. The binarized images 
�bin are shown in the fifth column of Fig. 7. The regions of 
the colored particles remain after this binarization because 
they are typically brighter than those of the non-illuminated 

Fig. 7  Series of image processing steps for colored-particle detection, 
performed for a full-color illumination and b sheet-color illumination 
measurements. Images in the first column represent the projection 
color patterns ( 1280 × 800 pixels ) used for the two measurements. 
Images from the second to seventh columns are magnified views of 
100 × 100 pixel regions of original color images, grayscale images, 

background subtracted images, binarized images after background 
and foreground subtraction, mask images, and masked color images, 
respectively. Detected particle positions are indicated by circles with 
central dots in the far-right column, and each circle is colored by 
the averaged particle color within a region of 3 × 3 pixels . Particle 
images in a show the case of ∼ 0.007 ppp
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particles. Tiny defects in �bin are padded by a closing pro-
cess (kernel size 3 × 3 pixels ), and each particle region is 
dilated by a kernel of 5 × 5 pixels to ensure the regions are 
large enough for the subsequent particle detection step. 
After these procedures, we obtain mask images �m as shown 
in the sixth column of Fig. 7. The mask images are used 
for masking the original color image �c to extract only the 
colored-particles. Finally, we obtain masked color images 
�mc = �m ⊙ �c , where ⊙ represents the Hadamard product, 
as shown in the seventh column of Fig. 7.

Comparing the original color image �c (the second col-
umn) and the masked color image �mc (the seventh column), 
only colored particles are successfully identified in both the 
full-color and the sheet-color illumination measurements 
through identical image processing steps. Particle colors at 
the same depth positions obtained in the full-color and the 
sheet-color illumination measurements were regarded as 
statistically the same because the masking procedure fully 
filtered out particles with insignificant colors.

2.3.2  Colored‑particle detection

Particle detection is performed on the masked color 
images �mc through various methods, as �mc only contains 
the colored-particle regions. Here, we utilized the particle 
mask correlation method (Takehara and Etoh 1998) using a 
Gaussian brightness distribution as a template. This method 
can detect particles allowing for slight particle overlaps and 
determines particle positions P(i, j) at sub-pixel level.

Color extraction from the detected particles may be per-
formed by a variety of methods. Watamura et al. (2013) 
proposed seven algorithms for determining the hue val-
ues of colored particle images, such as the average hue or 
saturation-weighted hue of a particle region. Park et al. 
(2021) attempted to identify representative particle colors 
from intentionally defocused images to minimize color 
deviations within the particle regions. The best values may 
change in each experimental condition, and it is necessary 
to select the optimal one through case studies. However, 
use of a representative color value may not fully represent 
the color information originally recorded in 24-bit format. 
In the present study, we do not reduce the color informa-
tion to hue values but instead use all the RGB values at the 
central pixel (the closest pixel to the sub-pixel center) and 
its surrounding eight pixels. Thus, we use RGB values in the 
3 × 3 pixels , resulting in 27 brightness values for a single 
particle, to determine its depth coordinate. For convenience, 
this 3 × 3 × 3 matrix is represented as a color matrix � here-
after. This systematic color identification will provide the 
robustness of the proposed method by excluding empirical 
decisions required for seeking an optimal color identifica-
tion scheme unique to the measurement environment. With 

this, the particle position in the masked color image �mc is 
represented as P(i, j,�) , where � should correspond to depth 
coordinate y.

In the far right column of Fig. 7, the positions of the 
detected colored particles are plotted by circles with central 
dots. Each circle is colored by the average color of color 
matrix � . The colored particles are successfully detected, 
even those that slightly overlap, by the particle mask correla-
tion. Each color is thus well extracted for both the full-color 
and the sheet-color illumination measurements.

2.4  Color‑to‑depth calibration based on artificial 
neural networks

Using the particle images obtained in the sheet-color illu-
mination measurements (Sect. 2.2.2) and subsequent image 
processing presented in Sect. 2.3, particle colors � at a cer-
tain depth coordinate y are obtained. These known color-
to-depth relationships are used to obtain the color-to-depth 
calibration. As the color matrix of a particle � possesses 27 
values, this calibration procedure becomes a multi-regres-
sion problem, and thus we employ an artificial neural net-
work (ANN) to solve this problem. Similar efforts to solve 
multi-regression problems have been performed recently in 
the color-to-temperature calibration of thermochromic liquid 
crystals (Moller et al. 2020; Anders et al. 2020).

2.4.1  Construction and training of an ANN

First, the known relationships between the particle position 
P(i, j,�) and the depth position y are summarized for all 
images obtained in the 40 sheet-color illumination meas-
urements. For each sheet position, 5000 colored-particles 
are randomly selected, and 200,000 ( = 5000 × 40 ) items of 
particle information in total are compiled as training data 
for the ANN calibration. In addition to the training data, 
the same number of colored-particle data are stored in the 
same manner as the test data for later evaluation. Here, we 
consider both the image coordinates (i, j) and color matrix 
at position �i,j as input values for the ANN calibration. This 
is because the particle color may depend on the position in 
the image plane, as the color beam from the LCD projector 
attenuates in the x-direction and diverges to the z-direction 
in real coordinates corresponding to the i- and j-directions of 
the image coordinates. Further, color divergence (unwanted 
mixing of colors) leading to positional dependence of colors 
may occur as the color beam from the LCD projector was 
not fully focused across the field of view. Thus, we have 
29 values (i, j,�i,j) in an input of the ANN to determine a 
single output y, and this depth coordinate estimation based 
on the ANN is conceptually formulated as y = F(i, j,�i,j) . 
We examined various ANN structures, e.g., the number of 
nodes and number of hidden layers, in preliminary trials. 
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We determined that an ANN structure with two hidden lay-
ers, each containing 800 and 400 nodes, was empirically 
optimal with respect to accuracy for estimating the depth 
coordinate from the input values. The training process (opti-
mization of the weight matrices) of the constructed ANN is 
conducted using the adaptive momentum estimation pro-
posed by Kingma and Ba (2017) with mini-batch training. 
For the activation function, we employed the rectified linear 
unit (ReLU).

In Fig. 8, the root-mean-squared error RMSE for the train-
ing and test data during the learning process are illustrated. 
Here, the RMSE value is defined as

where N, ypred , and ytrue represent the number of data 
( N = 200, 000 ), the depth coordinate predicted by the ANN, 
and the true depth coordinate (the known y coordinate in 
the sheet-color illumination measurements), respectively. To 
construct an optimal ANN system, the performance should 
be evaluated on the test data. Otherwise, the ANN fits only 
the training data, which is the so-called over-learning prob-
lem, whereas the RMSE for the training data decreases over 
1,000 epochs, that for the test data stays almost constant, at 
slightly below 1 mm . This indicates that the ANN may have 
over-learned the training data. We therefore chose the weight 
matrices obtained after 100 epochs as the optimal ones for 
the constructed ANN system. This selection keeps accu-
racy RMSE < 1 mm sufficiently high because the original 
accuracy of this experimental configuration is ± 1 mm (half 
of the sheet thickness and particle radius), as mentioned in 
Sect. 2.2.2.

(1)RMSE =

√√√√ 1

N

N∑

k

[
ypred(k) − ytrue(k)

]2
,

2.4.2  Evaluation of depth coordinate estimation

Performance of the calibration supported by ANN was 
evaluated using the test data which has a known relation 
between the actual depth coordinates and colors. This thus 
reflects actual accuracy for determining the depth coordi-
nates of the particles seeded in the fluids. The RMSE val-
ues shown in Fig. 8 represent a global trend for the whole 
measurement volume δy = 60 mm . Furthermore, the depth-
dependent deviation between the estimated depth and the 
true depth at each reference point is required to evaluate 
the depth coordinate estimation. In Fig. 9, the mean devia-
tion ⟨ypred − ytrue⟩ for the test data at each reference point is 
shown with the corresponding one standard deviation range 
as an error bar. The projected color is shown above for ref-
erence. Overall, the mean deviation stays within − 1.0 to 
1.0 mm , surpassing the target accuracy ± 1 mm , indicated 
by red dashed lines in Fig. 9. Considering this, the mean 
deviation for each reference point is low enough to ensure 
sufficient accuracy on depth coordinate estimation. Although 
the other regions show good agreement with the true values, 
with deviations of less than 0.5 mm , there are two error-
prone regions in the projected color, at y ∼ − 45 to − 38 mm 
(orange) and y ∼ − 20 to − 7 mm (cyan). Similarly, earlier 
works performed by Watamura et al. (2013) and Park et al. 
(2021) showed error-prone regions in the hue-to-depth cali-
bration curves. This may occur for various reasons, such as 
the quality of the color illumination projected by the LCD 
projector, the light receiving characteristics of the camera, 
or the light scattering characteristics of the particles. In addi-
tion, relatively large deviations in the depth estimation are 
located in the corner regions of the 3D-RGB domain of illu-
mination colors, as shown in Fig. 5c. The changes in colors 
of the rainbow gradient in these regions may be smaller than 
for colors in other regions. It might be better to exclude the 

Fig. 8  Training progress of the constructed ANN according to the 
RMSE values for the training and test data

Fig. 9  Mean deviations at each depth coordinate. Error bars indicate 
the standard deviations for each plot. The projected full-color image 
is shown above for reference. The target accuracy ± 1 mm is indicated 
by the red dashed lines, and the thickness of the sheet-color pattern 
± 0.75 mm is shown as gray-shaded region
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error-prone regions from the projected pattern, however, the 
validated accuracy, less than ± 1 mm , is sufficiently close 
to the existing deviation ± 1 mm in the present system dis-
cussed in Sect. 2.2.2. We conclude that the color-to-depth 
calibration works well for depth coordinate estimation over 
the whole illuminated volume.

2.5  Particle tracking in 3D real space

Tracking particles in 3D real space (x, y, z), as in the tomo-
graphic PIV technique (Elsinga et al. 2006; Schanz et al. 
2016), is a straightforward approach to 3D velocity field 
measurements. However, it is necessary to consider the accu-
racy of particle coordinate estimation before the 3D tracking. 
The depth coordinates of the particles determined from the 
color information have an accuracy of around ± 1 mm in the 
present case. This is much lower than the sub-pixel accuracy 
O(0.01 mm) of the in-plane coordinates. Accordingly, par-
ticle tracking in 3D real space may not be feasible, as the 
particle displacements in the y direction cannot be treated 
like as those in the x and z directions. To overcome this 
problem, a slightly more complicated 3D particle tracking 
must be followed, and an analytic scheme to reconstruct 3D 
particle trajectories is proposed in this section.

2.5.1  Two‑dimensional particle tracking in the image plane

It is possible to track particle trajectories in an image plane 
projecting the 3D space by adopting the conventional 2D 
PTV technique for the detected particles. In the present 
study, we adopted an in-house 2D PTV code that simply link 
the particle displacements by the nearest-neighbor method 
(Pereira et al. 2006), and outlier displacements are detected 
by the universal outlier detection (Westerweel and Scarano 
2005). The outlier displacements are then associated with 
other close particles, and these procedures are iterated until 
the convergence. It is worth computing the 2D trajectories 
for the purpose of labeling each particle in the image plane 
prior to 3D tracking. A 2D trajectory for a single particle 
is composed of temporally continuous image coordinates 
(i, j) along with color matrix �i,j . Conceptually, the particle 
motion in the 3D real space is smooth, and the recorded 
trajectory (i, j,�i,j) also provides a smooth change over time. 
Thus, tracking particles in the 2D image plane enables the 
temporal smoothness of the particle trajectory to be used 
to correct unreasonable deviations in the depth coordinate 
estimation.

2.5.2  Correction of the depth coordinates

As noted above, the color-to-depth calibration provides a 
probable estimation of depth coordinates from the color 
information of the particles. This initial estimation by the 

ANN does not ensure temporal smoothness of the trajec-
tories in the depth direction. Thus, the trajectories in the 
depth direction need to be corrected to ensure temporal 
smoothness. A similar approach was already performed 
by Aguirre-Pablo et al. (2019). In Fig. 10, examples of the 
depth coordinates estimated by the ANN-based calibration 
are plotted as uniquely colored squares for each particle. 
Only 80 to 100 successive frames of eleven trajectories are 
shown for visibility. As shown in Fig. 10, the depth coordi-
nates estimated by the ANN fluctuate over time, and these 
fluctuations increase when the particles enter the error-prone 
region ( y ∼ − 45 to − 38 mm and y ∼ − 20 to − 7 mm ), as 
shown in Fig. 9. The deviating particle trajectories are fit-
ted by the robust estimation method proposed by Huber 
(1964), and the fitted curves are drawn by solid lines. For 
these fluctuating plots, the robust estimation successfully 
draws smooth curves while excluding the outlier points that 
may originate from deviations in the colors of the particles. 
The fitted curves ensure temporally smooth displacements of 
the particles in the depth direction, and thus these corrected 
depths can be used as the measured depth coordinates.

2.5.3  Mapping image coordinates to real coordinates

Image coordinates (i, j) cannot be directly converted to real 
coordinates (x, z) because the magnification rate differs with 
respect to depth coordinate y. Thus, after obtaining the cor-
rected depth coordinate, the in-plane real coordinates (x, y) 
need to be calculated through mapping functions x = G(i, j, y) 
and z = H(i, j, y) . The mapping function is best calculated 
during the 3D calibration process employed in the stereo-
scopic PIV measurement, which mechanically traverses a 
calibration plate with dotted or grid patterns in micro-stages 

Fig. 10  Particle trajectories with respect to the depth coordinates. 
Particle positions originally estimated by the ANN are represented 
by squares, and fitted curves for each particle trajectory are shown 
as solid lines. The squares and lines are colored uniquely for each 
particle
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(e.g., Soloff et al. 1997; van Doorne and Westerweel 2007). 
In the present study, a method that requires only particle 
images to create mapping functions is proposed. The map-
ping function can be obtained only from the particle images, 
assuming that the lens aberrations and other optical refrac-
tion are negligible. If a sufficient number of tracer particles 
are seeded in the fluid, the colored particles should appear 
over the whole illuminated regions during long-term obser-
vation. Accordingly, long-term pathline images �pl compiled 
using the masked color images of the sheet-color illumi-
nation measurements provide particle regions in each thin 
sheet region. Here, �pl is newly obtained for all the sheet 
positions through the same procedure described in Sect. 2.3, 
resulting in a brighter image compared with the foreground 
image �fg . Examples of the long-term pathline images are 
shown in Fig. 11. From the long-term pathline images, the 
boundaries between the fluid and sidewalls or fluid surface 
become apparent, as the images possess bright pixels only 
in the fluid region seeded with the tracer particles. Accord-
ingly, the real coordinates (x, y, z) of the four corners are 
known, and the corresponding image coordinates (i, j) are 
also identifiable from the long-term pathline image at each 
cross section. In the present study, we were able to obtain 
160 reference points (four corners of 40 cross sections).

Since the reference points at the four corners of differ-
ent depth positions are aligned along the circumferences of 
the cylindrical vessel, these move in a bit complicated man-
ner within the image planes over the different depth. We 
thus employed a third-degree polynomial fitting to obtain 
the mapping function G for the x coordinate, and this is 
described as

(2)

x = G(i, j, y)

= a0 + a1i + a2 j + a3y + a4i
2 + a5 j

2 + a6y
2 + a7ij

+ a8 jy + a9yi + a10i
3 + a11j

2 + a12ij
2 + a13i

2
j

+ a14 jy
2 + a15 j

2
y + a16yi

2 + a17y
2
i + a18ijy.

Here, a0 to a18 are constants obtained by the least squares 
method. In the same manner, the mapping function H(i, j, y) 
for the z coordinate can be computed. Aguirre-Pablo et al. 
(2019) employed second-order regression for their cubic 
geometry, however, the best fitting function may differ 
depending on the spatial distribution of the reference points. 
Using these mapping functions, the final in-plane coordi-
nates x and z are obtained, and the particle trajectories in 3D 
real space P(x, y, z, t) are determined.

3  Validation of the methodology 
in a rotating flow

The methodology established in Sect. 2 was validated in 
a rotating flow experiment in a cylindrical tank, details 
of which are given in Sect. 2.1. In the presented case, the 
typical particle image density was ∼ 0.01 ppp resulting in 
the tracking of approximately 20,000 particles simultane-
ously. The reconstructed 3D particle trajectories are shown 
in Fig. 12a. The trajectories of 2000 particles are shown in 
Fig. 12a and colored uniquely to identify each particle. The 
measurement volume of the color PTV is indicated by the 
pink dashed lines. A rotating flow structure within the meas-
urement volume is qualitatively shown by the trajectories.

To validate the performance of the color PTV quantita-
tively, a temporal mean velocity field in 3D space was com-
puted using the tracking result. For this, we took the average 
of all the particle trajectories measured during 30 s (fifteen 
rotations of the impeller), and velocity vectors on a regular 
grid with 2 mm distancing in any direction were interpolated 
by Shepard’s method (Shepard 1968). For this interpolation, 
only the velocity vectors within ± 0.75 mm from each grid 
were used, and the weighted average values were interpo-
lated on each grid using the squares of the inverse distances 
between the grid and the particles as the weight. The inter-
polated velocity field is shown in Fig. 12b with the velocity 
vectors colored by the magnitudes |�|.

The interpolated velocity field must be compared with 
the flow field measured by the conventional PIV. For the 
PIV measurements, a 1.5-mm-thick red laser (DPRLu-5W, 
Japan Laser Co.) was used for sheet illumination at arbitrary 
cross sections. In principle, any cross sections can be meas-
ured by the PIV because the fluid vessel is fully transpar-
ent. The direct cross-correlation method was utilized in the 
PIV measurement. Mean velocity fields at a vertical cross 
section of y = −30 mm measured by conventional PIV and 
color PTV are shown in Fig. 13a, b. Here, the velocity field 
measured by the conventional PIV (Fig. 13a) was obtained 
by taking the temporal average for the same duration as that 
of color PTV, and that by color PTV (Fig. 13a) was extracted 
from the interpolated velocity fields shown in Fig. 12b. The 
color contours of Fig. 13a, b represent the magnitude of the 

Fig. 11  Long-term pathline images at different cross sections, a 
y = − 44.75 mm and b y = − 4.25 mm. Four boundaries are indicated 
by solid lines, and reference points of four corners are indicated by 
circles
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in-plane velocity 
√
u2 + w2 , and the in-plane velocity vectors 

are shown by white arrows. The mean velocity field meas-
ured by color PTV seems to be more blurred than that meas-
ured by conventional PIV. However, the result of color PTV 

is found to reconstruct the smallest toroidal vortex structures 
present in the system. This performance may be sufficiently 
high in terms of practical applications. Velocity profiles at 
fixed horizontal lines of z = 20 , 74, and 130 mm are shown 
in Fig. 13c, and the profiles measured by conventional PIV 
and color PTV are shown by different lines and symbols, 
respectively. The corresponding horizontal lines are repre-
sented by dashed lines in Fig. 13a, b. Overall, the velocity 
profiles measured by the two methods show the same trend 
with respect to magnitudes and gradients. The velocity pro-
files at z = 74 mm , however, show discrepancies especially 
at the vicinity of the side wall |x| > 70 mm . These discrepan-
cies may originate in low particle density around the region 
and the grid interpolation scheme, which requires spatial 
averaging adapted to the data obtained by color PTV. Thus, 
an increase in the particle image density may solve this 
problem, and that can be ideally increased up to ∼ 0.02 ppp 
in the present configuration, as 7 × 7 pixels were required 
to reconstruct the color matrix � with 3 × 3 pixels through 
color demosaicing. Apart from these steep changes around 
the edge regions, color PTV reconstructs the velocity field 
well.

In the same manner, the mean velocity fields at a hori-
zontal cross section of z = 25 mm measured by the two 
methods are shown in Fig. 14a, b. The color contours of 
Fig. 14a, b represent the magnitude of the in-plane veloc-
ity 

√
u2 + v2 , and the in-plane velocity vectors are shown 

by white arrows. Velocity profiles at fixed horizontal 
lines of y = −40 , −20 , and 0 mm are shown in Fig. 14c, 
and the profiles measured by conventional PIV and color 

Fig. 12  Reconstructed 3D flow field in a rotating flow induced by 
an impeller: a 3D particle trajectories of 2000 particles and b mean 
velocity field interpolated on a regular grid during 10 s (five cycles 
of the impeller). The trajectories in a are colored uniquely to iden-

tify each particle. The velocity vectors in b are colored by the veloc-
ity magnitude |�| , and only 1% of the interpolated vectors are shown 
for clearer visibility. The measurement volume of the color PTV is 
enclosed by pink dashed lines

Fig. 13  Mean velocity fields measured by 2D PIV and color PTV at 
a vertical cross section of y = − 30 mm : Velocity fields measured by 
a conventional PIV and b color PTV. c Velocity profiles at fixed hori-
zontal lines of z = 20 , 74, and 130 mm
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PTV are shown by different lines and symbols, respec-
tively. Similar to the results shown in Fig. 13, the mean 
velocity field measured by color PTV is blurred, and 
observable steep changes, especially around the center of 
the cylinder, are not fully reconstructed. However, color 
PTV well represents the circulating fluid motion induced 
by the impeller in any 3D direction, and the order of the 
velocity magnitude matches that measured by conven-
tional PIV.

Incorporating all the discussions, we can conclude that 
color PTV can measure the 3D-3C velocity fields through 
the methodology proposed in Sect. 2 without changing 
optical arrangements. In the present study, the upper limit 
of the particle image density was 0.02 ppp . Ideally, this 
can be increased up to 0.05 ppp if a 3-CCD-camera is 
employed, because it does not require color demosaicing 
restricting the minimum number of pixels comprising a 
single particle. This maximum particle image density is 
equivalent to that of the 2D PTV (Fuchs et al. 2017), 
while the shake-the-box method yields 0.125 ppp at the 
maximum through the multiple camera approach (Schanz 
et al. 2016). The measurable spatial resolution, however, 
may depend on the measurement depth since the particles 
distributing in the 3D domain are projected to the image 
plane. In the present setting, the number of detected par-
ticles in the full-color illumination measurement indicates 
a particle number density of ~ 0.01  mm−3 per frame with 
the measurement depth of δy = 60 mm . To calculate the 

mean velocity field, the particle number density becomes 
~ 27  mm−3 (90  f.p.s for 30  s). This was sufficient to 
resolve the smallest flow structures O(10 mm) of the toroi-
dal vortices, while the steep velocity gradients inside the 
vortices shown in Fig. 13a were underestimated.

4  Concluding remarks

We have proposed a color-to-depth calibration methodol-
ogy for 3D color PTV and performed a direct accuracy 
evaluation. The in situ method does not require calibration 
plates or cubes for associating color-to-depth relationships 
and is directly applicable to the particle-seeded fluids. 
Unreasonable assumptions, which have been convention-
ally taken, arising from the different optical arrangements 
between the measurements and calibration thus are not 
required. The use of a consumer-grade LCD projector 
reduces the cost and complexity of the 3D flow field meas-
urements as the color PTV requires only a single cam-
era and a volumetric rainbow gradient illumination. The 
proposed method consists of three different illumination 
measurements and a series of standard image processing 
steps for enabling conventional 2D PTV. The accuracy 
of the depth estimation was around 1 mm out of the full 
thickness of the volumetric illumination of 60 mm . The 
performance of the method was evaluated quantitatively 
by comparing the flow fields measured by the proposed 
method with those measured by the conventional PIV, and 
good accordance with the PIV with respect to the outline 
of the rotating flow was quantitatively confirmed. This 
result promises that the method can reconstruct 3D flow 
fields only with the particle-seeded fluid, as long as a suffi-
cient number of colored-particles are detectable to resolve 
target flow fields.

The present study formulated robust procedures from 
experimental design to 3D-3C flow field measurements. 
Each process, however, can be further optimized in terms 
of selection of illumination color pattern, color identi-
fication scheme, color-to-depth regression scheme, 2D 
PTV algorithm, and so on. For instance, the selection 
of the projected illumination patterns and the methods 
to calibrate the color-to-depth relationships may not be 
critical to the actual implementation of general color 
PTV, including this study, as long as a sufficiently high 
accuracy is ensured to resolve measurement targets. This 
is because variety of procedures have previously been 
proposed (Matsushita et al. 2004; McGregor et al. 2007; 
Watamura et al. 2013; Xiong et al. 2018; Aguirre-Pablo 
et al. 2019; Park et al. 2021), and each has both advan-
tages and disadvantages. Moreover, the best approach may 
change depending on the conditions in the experimental 

Fig. 14  Mean velocity fields measured by 2D PIV and color PTV at 
a horizontal cross section of z = 25 mm : Velocity fields measured by 
a conventional PIV and b color PTV. c Velocity profiles at fixed hori-
zontal lines of y = − 40 , − 20 , and 0 mm
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environments, such as light source, camera, and the mate-
rials to be illuminated.

To implement the proposed method in 3D flow meas-
urements, one needs to solve the limitations as follows. 
First, the actual size of particles should be large enough to 
scatter informative colors. Also, the size of tracer particles 
on the image planes needs to be large enough to extract 
reliable color information, namely more than 3 pixels in 
the diameter would be better in the present condition. The 
measurement volume is determined by the camera resolu-
tion and mounting lens specification, to solve the particle 
size limitation as above. The illumination intensity of the 
LCD projector limits the dynamic range of the velocity, 
in terms of the shutter speed of the camera. Under these 
limitations, the particle number density needs to be as 
much as high to reconstruct fine flow structures. As long 
as these limitations are properly considered, the proposed 
method can measure various flows as 3D-3C velocity fields 
in practical use.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00348- 021- 03220-9.
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