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Abstract
Rainbow particle tracking velocimetry (PTV) is a PTV method that enables three-dimensional (3D) three-component flow 
measurement using a single camera. Despite the advantage of its simple setup, the accuracy of the particle depth is restricted 
due to false color caused by image sensor arrays, such as Bayer arrangement. Since the false color occurs near sharp edges 
in the color gradient of in-focus individual particle images, we here introduced a defocusing technique to rainbow PTV to 
remove these false colors. Defocusing led to moon-shaped distorted particle images, which we applied an adaptive mask 
correlation technique to detect. Multi-cycle rainbow illumination was realized as an additional improvement on the defocus-
ing technique. In particular, individual particle coordinates were obtained by a combination of the color and constitution of 
pixels. This dramatically increased the depth resolution of the 3D particle tracking. The feasibility of the proposed method 
was demonstrated by a flow driven by rotating impellers and a wake behind a twisted Savonius turbine. By the demonstration, 
it is confirmed that the twisted turbine suppresses the loss of kinetic energy by shedding streamwise vortices in the wake.
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1  Introduction

Over the past two decades, particle image velocimetry (PIV) 
and particle tracking velocimetry (PTV) have advanced 
from planner velocimetry to volumetric velocimetry that 
can measure three-dimensional (3D) three-component (3C) 
velocity vector fields in fluid flows. Such a full 3D–3C flow 
measurement has contributed to experimental fluid mechan-
ics as well as fluid engineering applications. It has also ena-
bled direct comparison with direct numerical simulation 
(DNS) results. To realize volumetric PIV/PTV, a number 
of different optical principles have been proposed to date, 
including multi-camera 3D PTV (Walpot et al. 2006), tomo-
graphic PIV (Scarano 2013), plenoptic PIV (Fahringer et al. 
2015), defocusing PTV (Barnkob et al. 2015), holographic 
PIV (Lee et al. 2019), and rainbow PTV (Xiong et al. 2017). 
It should be noted that there have been many other publi-
cations on these individual techniques in various journals 
depending on the measurement target. Overall, we can clas-
sify these techniques into two groups: those using multiple 
cameras to capture 3D particle positions and those using a 
single camera with additional optical characteristics intro-
duced to estimate the particle depth coordinate. In the for-
mer group, tomographic PIV is regarded as the best example 
in the present generation of tools. This method uses more 
than three cameras to accurately reconstruct 3D particle 
positions. One drawback to it is the difficulty in setting up 
the optical configuration for complex measurement targets, 
such as those in fluid machinery. For instance, all the ele-
mentary procedures of PIV need to be controlled precisely 
for all the cameras, considering the depth of field, refraction, 
reflection, seeding, and illumination at different angles for 
each camera. Another option is to use an approach from 
the latter group of single-camera techniques. Since these 
approaches deal with a single image, time and cost both 
for the hardware and software components are significantly 
reduced. Even though accuracy and precision are limited to 
a lower level compared with those obtained by tomographic 
PIV, the development of single-camera volumetric PIV/PTV 
is desirable in fluid engineering applications where multi-
directional optical access is highly restrained.

In this study, we focused on two PTV techniques, color 
PTV and defocusing PTV, to develop a single-camera volu-
metric PTV technique with higher accuracy and precision 
than the other current methods. Color PTV is a method 
based on single-camera volumetric velocimetry. In par-
ticular, it makes use of the color-coded volumetric illumi-
nation of tracer particles captured by a color camera with 
three charged coupled devices (CCD) or a complementary 
metal–oxide–semiconductor (CMOS) sensors. This idea has 
a long history of being examined (Post et al. 1994; Brucker 
1996; Gogineni et al. 1998). Because of simplicity in setting 

up, many past researchers adopted several different kinds 
of color PIV/PTV to examine their measurement perfor-
mances of 3D velocity vector fields. In the present setup, we 
use the experimental instruments similarly to that used for 
conventional 2D–2C planer PIV/PTV systems. Difference 
from them is employing of a color illumination device and 
a color camera. This setup for 3D–3C velocimetry allows 
a larger measurement volume compared with the case of 
using multiple cameras. It enables to utilize a full range of 
depth of field of a single camera. Kanda et al. (2007) tried 
to investigate 3D–3C velocity vector field of wind blow-
ing on a tennis court using soup bubbles and a color liquid 
crystal display (LCD) projector as a demonstration of color 
PTV for a large-scale flow. However, color PIV/PTV has 
not yet become a widespread tool because sensitivity and 
image size are considerably limited to resolve exact color of 
the particles. Brightness of color particle image must nor-
mally be maintained at a darker than that of monochrome 
particle image due to a need to avoid saturation in RGB 
components. This dark recording condition can conserve 
hue information, i.e., linear sensitivity to the three primary 
colors is kept only in dark brightness level. Monochrome 
PIV/PTV does not require such a condition since linearity 
of brightness level does not matter for implementing par-
ticle tracking or image correlation analysis. In early stage 
of color PTV trials in 1990s, the selection of methodolo-
gies for color-to-depth conversion was severely restricted 
by videotape recording of an analog TV signal. Based on 
these limitations, development was limited in those days 
and the academic spotlight moved away from color PIV/
PTV until there caused widespread use of digital cameras. 
For example, in the famous review by Adrian (2005), he did 
not mention color PIV/PTV. However, there was still the 
possibility to overcome its limitations, and the next year the 
review by Prenel and Bailly (2006) discussed the potential of 
color volumetric velocimetry. Currently, the availability of 
highly sensitive high-speed color digital cameras with meg-
apixel resolutions has overcome these issues and allowed 
for quantitative analysis with reliable reproducibility. Our 
group has previously reported the effective use of color-
coded volumetric illumination for 3D–3C PTV (Watamura 
et al. 2013) and the 3D location detection of microbubbles 
(Park et al. 2019). Our understanding is that the development 
of color PTV is now in a revival stage, as made evident by 
the obvious increase in publications on the topic since 2010. 
For example, to perform color PTV, Matsushita et al. (2004) 
and McGregor et al. (2007) used prism-split rainbow illumi-
nation, Bendicks et al. (2011) used color-painted particles, 
Tien et al. (2014) used color-coded pinholes, Xiong et al. 
(2017) used rainbow color coupled with diffractive optical 
element (DOE)-lens imaging, Wang et al. (2018) used a two-
camera color-coded sequence, Menser et al. (2018) used a 
3C LED with time chart control, and Schultz et al. (2019) 
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proposed the generation of multi-cycle rainbow illumina-
tion using a Sanderson prism. There have even been reports 
aimed at color PTV using a single-lens reflex (SLR) camera 
(Funatani et al. 2013) or a smartphone (Aguirre-Pablo et al. 
2017).

Another technique for single-camera 3D–3C velocimetry 
is defocusing PTV, the first example of this being reported 
by Willert and Gharib (1992). This method measures shape 
distortion and size variation of defocused particle images 
to estimate the depth coordinate with a controlled depth 
of focus in the measurement volume. To judge the exact 
particle positions with regard to depth, tracer particles with 
uniform shape and size are required. However, particles have 
some distribution in their shape and size, which can lead 
to poor accuracy and precision in the depth of defocusing 
PTV. Although the accuracy and precision have been much 
improved by the help of large imaging sizes (Barnkob et al. 
2015; Barnkob and Rossi 2020), these limitations remain in 
the present generation of tools.

In the present study, color PTV and defocusing PTV are 
combined to improve two aspects on 3D–3C vector acquisi-
tion realized by a single camera: enlargement of the measur-
able depth and improvement of the estimation accuracy of 
particles’ depth coordinates. First, we extend the measurable 
depth by including the particle images that exist outside the 
depth of field. Such defocused particles are also collected 
in the labeling process of PTV by considering the defocus-
ing principle of the lens optics. Next, aperture on camera 
lens is fully opened in the present approach to intentionally 
defocus the particles so that color components can be stably 
captured with large number of pixels. The judging of color 
is relatively easy on these particle images comparing to in-
focus particle images. In particular, we use the color and size 
information of particle images simultaneously so that the 
uncertainty of the depth coordinate is significantly reduced. 
In this paper, the improvement of the estimation accuracy is 
precisely discussed. Among various color-coding patterns 
proposed for color PTV, we apply a rainbow-type volumet-
ric illumination with gradually changing hue in the depth 
coordinate. Here, hue is defined as one of color appearance 
parameters such as with brightness, chroma, and saturation. 
It expresses color as a degree from 0° to 360°. For example, 
red, green and blue are expressed as 0° (= 360°), 120° and 
240°, respectively. In principle, continuous change of hue 
like a rainbow allows a high spatial resolution in the depth 
direction compared with that of stepwise or split color pat-
terns. Such a way is called rainbow PTV as a nickname of 
color PTV using a rainbow-type illumination. This should 
be clearly distinguished from three-layer color PTV that uses 
only three primary colors. Rainbow PTV deals with many 
intermediate colors (mixed from RGB components) to deter-
mine the particles’ depth coordinates. In an ideal situation, 
the spatial resolution of rainbow PTV is excellent, as hue is 

given continuously in the depth coordinate. For example, 
when three primary colors are resolved as three 8-bit signals 
(one for each), the hue resolution becomes 360°/(3×28) ~ 
0.47°, and the measurement volume is divided by 768 layers 
in the depth direction. Unfortunately, this resolution cannot 
be achieved because of false colors in actual optical configu-
rations caused by the following five factors: (1) light source 
characteristics for rainbow illumination, (2) wavelength-
dependent light scattering characteristics of tracer particles, 
(3) overlapping of particles in the imaging plane, (4) color 
contamination in RGB sensors, and (5) digital compression 
of the image/movie. Among these factors, color contamina-
tion has the greatest effect and depends on the image sensor 
array adopted in the digital camera (Busin et al. 2008; Pick 
and Lehmann 2009; Charonko et al. 2014). The concept of 
color contamination is briefly explained using Fig. 1. The 
color sensor array most commonly used on cameras is the 
so-called Bayer sensor (Fig. 1a). Since the sensor has a 
one-color receptor for each pixel, the color of the pixel is 
interpolated using information given by the receptors around 
the pixel to form color images. This interpolation generally 
causes no problems for human vision but causes a problem 
in the case of color PTV, which requires quantified colors. 
The interpolation leads to false color, especially in regions 
with high-gradient RGB components, i.e., near the edge of 
individual particles (Fig. 1b). Since PTV can only be used 
to analyze particle images composed of 5–20 pixels, most 
of the particles have a false color that deviates significantly 
from the true one.

Fig. 1   Cause of false color on the Bayer sensor. a RGBG mosaic-type 
Bayer sensor normally used in a digital camera. b Process of false 
color generation on a particle caused by the Bayer sensor. The color 
in the reconstructed image is modified to be a different color. This 
effect is called color contamination
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Watamura et al. (2013) attempted to solve this problem 
using a saturation-weighted average of hue in individual 
particle images. They also introduced two kinds of rainbow 
illumination switching alternatively in time for a commercial 
liquid crystal display (LCD) projector. With this technique, 
a depth resolution equivalent to 256 divisions of a single 
measurement volume was successfully achieved. Aguirre-
Pablo et al. (2019) reported the use of time–space structured 
illumination, realizing single-camera 3D PTV. They applied 
four kinds of illumination in cyclic repetition by an LCD 
projector. However, the switching frequency for the LCD 
projector was lower than 60 Hz, and therefore the measure-
ment was limited to very slow flows. This can be overcome 
in future with the latest LCD projectors, which realize a pro-
jection frame rate higher than 1000 fps (Kagami and Hashi-
moto 2018; Ishikawa 2019). Until further development, 
the brightness of projection images from these high-speed 
projectors will be low, and it is thus difficult to actually use 
them for rainbow PTV.

As a method to improve the accuracy of hue recognition 
by removing the false color on particle images and improve 
the spatial precision in the depth direction by multi-cycle 
rainbow lighting without switching, the defocusing tech-
nique is in this paper applied to rainbow PTV (called defo-
cusing rainbow PTV). To make this principle applicable, we 
examine how the defocused particle images are generated on 
the imaging plane and propose a method to accurately detect 
various kinds of particle information with high accuracy 
(i.e., in-plane coordinate, defocused size, and effective hue). 
The methodology of defocusing rainbow PTV is explained 
in the next section, and the technique is then demonstrated 
in Sect. 3.

2 � Color particle imaging

2.1 � Defocusing to remove false colors

False colors are generated at the edges of the individual 
particle images due to the Bayer sensor arrangement. 

Defocusing can suppress this effect so that the correct 
colors can be extracted. Figure 2a, b shows in-focus particle 
images, while (c) shows a defocused particle image illumi-
nated by green-color illumination. These images were taken 
by a high-speed color digital video camera (FASTCAM 
Mini AX50, Photron) having Bayer sensor with resolving 
each primary color as 12-bit, i.e., 4096 levels. Each 12 × 12 
pixels image is enlarged for the sake of comparison. In the 
in-focus image, the corresponding color information of the 
green particle is contaminated by orange, red, magenta, and 
cyan pixels around the edges of the particle. In the defocused 
condition, approximately pure green pixels exist within the 
particle image.

The most significant information used in rainbow PTV is 
the hue of the particle images (McGregor et al. 2007; Wata-
mura et al. 2013; Xiong et al. 2017). To examine how much 
the precision of color recognition is improved by the defo-
cusing technique, the hue of the particle images illuminated 
by volumetric color-coded light was measured, as shown in 
Fig. 3a, b. The illumination light, which changes hue from 0° 
to 360° over time, was generated by an LCD projector (EB-
W420, Epson) and refracted by a convex lens to irradiate 
parallel to the x axis. Particles (HP20, Mitsubishi Chemical 
Co.) 300–700 μm in diameter and 1020 kg/m3 in density 
were suspended neutrally in a transparent viscoelastic fluid 
(0.2 wt% polyacrylamide aqueous solution), which enabled 
them to maintain their initial positions.

For estimation of the hue, we adopted a saturation-
weighted averaged hue inside the particle images, defined 
as follows:

where H and S are the hue and saturation in each pixel of 
the image, respectively. The effectiveness of this formula 
for rainbow PTV has been confirmed by Watamura et al. 
(2013). The relationship between the illuminated and meas-
ured color in terms of hue is plotted in Fig. 3c for the in-
focus condition and Fig. 3d for the defocused condition. 
The plots reveal a single meandering curve caused by the 
different sensitivity spectrums among the RGB sensors. 
The flat regions around 0° (= 360°; red), 120° (green), and 
240° (blue) in the illuminated hue are caused by overlapping 
of the spectra among the three bands. Similar results have 
also been reported by Park et al. (2019) for microbubbles 
illuminated by rainbow color. Although the curves are not 
approximated by a linear function, they maintain monotonic 
functions based on the increase of the illuminated hue. This 
deterministically achieves regression of the illuminated hue 
from the measured hue. However, its accuracy is determined 
by the standard deviation of the plots as applied to rainbow 
PTV, which requires the hues of individual particles hue 

(1)H = arctan

�∑

S cosH
∑

S sinH

�

,

Fig. 2   Image of a scattered particle with green illumination. a 
Focused particle image in grayscale. b Focused particle image gen-
erating false colors. c Defocused particle image in which the false 
colors are reduced
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but not an average. The resolvable number M of the depth 
coordinate by a single rainbow illumination is estimated by 
the following:

where σ(θ) is the standard deviation as a function of the illu-
minated hue. M becomes a function of the harmonic mean of 
σ(θ), with small deviations in σ(θ) dominantly contributing 
to the mean value. Based on the data of the standard devia-
tions shown in the bottom profile in Fig. 3c, d, the resolvable 
number is calculated to be M = 15 for the in-focus image 
and M = 75 for defocused image. Approximately five-times 
improved accuracy can be confirmed.

(2)M =
360

𝜎̃
, 𝜎̃ =

(

1

360 ∫
360

0

1

𝜎(𝜃)
d𝜃

)−1

,

As one of the demonstrations of the rainbow PTV incor-
porating the defocusing technique, we measured a flow 
under a rotating impeller in a rectangular water container, as 
shown in Fig. 4a. A volumetric light with gradually changing 
hue in the z direction was irradiated parallel to the horizontal 
x–y plane. In this setup, we produced a single-cycle rainbow 
color, and all the particles were equally defocused to remove 
false colors (note that we will introduce multi-cycle rain-
bows in Sect. 2.3). The number of instantaneous 3D veloc-
ity vectors had an average of 150 when a two-frame nearest 
neighbor search was applied for particle tracking. A sample 
of the velocity vector field is shown in Fig. 4b, to which 
Laplace equation rearrangement (LER; Ido et al. 2002) was 
applied in spatiotemporal 4-D domain to obtain the flow on 
a regular grid system. Here, U stands for the tip speed of 

Fig. 3   Improved identification 
of particle scattering colors 
achieved by defocusing. a Pic-
ture and b schematic diagram 
of experimental setup for hue 
calibration. c, d Hue calibration 
curves with c focused images 
and d defocused images, where 
gray error bars indicate the 
standard deviation

Fig. 4   Demonstration of 
rainbow volumetric PTV with 
defocusing technique. a Experi-
mental setup. b Instantaneous 
3D–3C velocity vector field, 
where the gray surface is the 
iso-surface indicating |rot 
(u/U)|= 0.1
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the impeller. We will not elaborate the flow structure in this 
paper. However, a change in the swirling flow in the z direc-
tion was reliably measured, as highlighted by the iso-surface 
of the vorticity at |rot (u/U)|= 0.1, for example.

2.2 � Detection of particle positions from distorted 
particle images

Particle images under defocusing conditions are unavoid-
ably distorted (Barnkob et al. 2015). The distortion becomes 
significant in the region away from the center of the imaging 
plane due to lens characteristics. This worsens the accuracy 
of particle detection as well as the identification of particles 
in comparison with a focused image. To predict how signifi-
cant distortion occurs, we simulated particle images using a 
ray analysis for a simple single-lens geometry, as illustrated 
in Fig. 5a. In the ray analysis, the defocusing effect was real-
ized by an imaging plane shifted toward the lens at a small 
distance, ld. Light sources were distributed on the object sur-
face, which radiated rays in all 3D directions. Only the rays 
that reached the lens contributed to the formation of images. 
Table 1 shows the parameters used for the ray analysis.

First, we show a simulated result without consider-
ing any optical aberration (Fig. 5b). In the figure, three 

characteristics can be identified: the finite size of the light 
source image, local brightness gradients in individual parti-
cle images, and a global brightness gradient in the imaging 
plane. Here, the former two characteristics originate from 
defocusing, while the latter is independent of the defocusing 
effect. When the light source was located far from the lens 
axis, the number of rays reaching the lens decreased, and 
the average brightness became lower outside of the imaging 
plane. This was caused by the use of a lens with a finite size 
regardless of focusing control. The other two characteristics 
appeared only in the defocused situation. The finite size of 
the light source image results in rays not accumulating at 
a single point, as illustrated in Fig. 5a. This causes both a 
local brightness gradient and a global brightness gradient. 

Fig. 5   Particle images distorted by defocusing. a Schematic diagram of ray tracing with a convex lens and simulated particle images at the defo-
cused plane. b Images without consideration of the aberration caused by the lens. c Images with consideration of spherical aberration

Table 1   Characteristics of PIV techniques

Object distance (lo) 300 mm
Image distance (li) 20 mm
Moving length for the defocusing (ld) 0.1 mm
Diameter of the lens (Dl) 200 mm
Size of imaging plane 50 × 50 mm2

Vertical and horizontal distances from the 
lens axis

0, 150, 300 mm
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The imaging plane was on the front side of the focus in this 
simulation, and therefore the brightness in the image was 
darker toward the outside from the center of the image. In 
the case that the imaging plane was located on the backside, 
a reverse brightness gradient was produced.

Next is an explanation of particle image distortion, which 
is mainly caused by aberrations of the lens. To simulate the 
effects of aberration, we added spherical aberration in the 
ray analysis. Because the influence of aberrations varies 
depending on the lens and the cindering, aberrations make 
it difficult to conduct ray analysis. Thus, we selected spheri-
cal aberration as the simplest case. In particular, a spherical 
glass lens following Snell’s law was considered. That is, only 
the refraction of light on the lens surface was computed. A 
simulated result is shown in Fig. 5c. The particle images are 
distorted to have asymmetric brightness patterns, including 
bright spots with outward tails and circular rims. If other 
types of aberration were added in the ray analysis, the par-
ticle shape would be changed. In real cameras composed of 
multiple lenses, the particle shape in the defocused condition 
becomes much more complex. As for this demonstration, we 
examined three kinds of commercially available cameras, 
shown in Fig. 6. Light was projected from the right side 
in each picture and the aperture of lens was fully opened. 
In these lens-mounting units, multiple lenses are com-
bined in line. The particles were illuminated by volumetric 
rainbow light and recorded in the defocused condition. In 
these results, the particle shape and local gradient varied 

significantly depending on the unit. An inward gradient was 
found for unit (a), an outward gradient for unit (b), and split 
circles for unit (c). This suggests that particle images will be 
analytically unpredictable using simple ray analysis, and that 
we thus need to apply an adaptive algorithm in the detection 
of the particles.

Tracer particles and their centers have to be accurately 
detected for PTV. The Gaussian mask algorithm is well-
known and widely applied for this purpose (e.g., Takehara 
and Etoh 1999). However, in the case of defocused images, 
the applicability of the mask algorithm is limited because 
of the distortion leading to large deviations from Gaussian 
brightness patterns. Further, the relationship between the 
center of the particle image and the actual center position 
of the particle needs to be investigated. For these reasons, 
we employed a pattern-adaptive mask algorithm for particle 
detection.

First, a picture of particle images illuminated by rainbow 
color is shown in Fig. 7. The picture was taken using the 
experimental setup shown in Fig. 3a and one of lenses (AI 
Nikkor 35 mm F/1.4S, Nikon) introduced in Fig. 6a. In the 
picture, although light was projected from the right side, 
the particle images in the picture have moon-phase patterns 
and orientation dependent on the location of the particle in 
the image. From Figs. 6 and 7, we found that there is little 
effect of the lighting direction when size of particles is suf-
ficiently small and they are observed as spherical particle 
images on a focused picture. The particles located in the 

Fig. 6   Shape-dependence of defocused particle images on a lens with fully opened aperture. The upper, middle, and bottom of the figure show 
the lenses used for the visualization, pictures taken of the particles, and enlarged samples of the particle images from the pictures, respectively
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center of the picture are projected as a full moon (i.e., a cir-
cular shape), while the particles on the outer edges become 
crescent shapes with a loss of brightness on their outer 
sides. We modeled these shapes as masks to detect particle 
images. The variety of moon-shaped masks are defined by 
subtracting a small circular mask from a large circular mask 
as follows:

Here, I and a are the intensity of the mask and a coeffi-
cient for intensity control, respectively. As shown in Fig. 8, 
the center locations of the masks are described as follows:

where l and θ are a length from the center of the picture and 
angle from the horizontal axis of the picture, respectively. 

(3)
Imoon = aImain − Isub, Imain or sub =

√

r2 −
(

x2 + y2
)

, a = 1.25, I ≥ 0.

(4)

(

xmain, ymain

)

= (l cos �, l sin �),
(

xsub, ysub
)

=
(

(l + rsub) cos �, (l + rsub) sin �
)

,

In the case of the presented example, the radii of the masks 
are set as a constant rmain = 9 pixel. Here, the radius of the 
subtraction mask is given by rsub = rmain l/lmax. For these 
moon-shaped masks, distorted particle images were robustly 
captured by searching for the maximum cross-correlation 
between the target particle image and the mask properties.

Figure 9 shows a defocused image of a single particle, 
with the white square representing the actual center loca-
tion of the particle. The actual center was detected from a 
different picture taken under in-focus conditions obtained by 
minimizing the aperture. As seen in the figure, the brightest 
points of individual particle images are displaced from the 
actual centers with a deviation that depends on the posi-
tion in the picture. In this experimental case, the direction is 
toward the center of the picture but not affected by the direc-
tion of the illumination light. To realize accurate particle 

Fig. 7   Distorted particle images 
obtained by defocusing and 
moon-shaped masks imitating 
distorted images for detecting 
the center coordinates of each 
image

Fig. 8   Parameters for generation of the moon-shaped mask. a The 
mask in a picture. b Coordinates of each mask forming the moon-
shaped mask

Fig. 9   The actual center location in a defocused particle image. a A 
defocused particle image and a focused image described by white 
cells, where this particle image is located on the right-upper corner 
on the full picture. Other particle images in the right column are 
sampled on the b left, c center, and d right of the picture, with white 
squares indicating the central location of each particle
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tracking, the particle center needs to be defined within the 
mask region. Based on the figure, it can be confirmed that 
the center of the outer circular rim does not represent the 
actual particle center. Instead, the particle center is located 
close to the highest intensity area. Figure 10 shows to what 
extent the particle detection ability and accuracy of center 
identification were improved by the moon-shaped mask, 
whose center position was modified. Note that this figure is 
not taken from Fig. 7 but is taken from a different picture for 
evaluating statistics. The Gaussian mask and moon-shaped 
mask were adopted for particle image detection and center 
identification, respectively, in the sample picture. Symbols 
are used to indicate the error in the distance between the 
actual center and the center identified based on the Gaussian 
and moon-shaped masks. The number of particles detected 
in the case of the Gaussian mask was approximately 60% 
lower than that detected for the moon-shaped mask because 
the Gaussian mask does not match the shape of the particle 
image. By using the moon-shaped mask, the accuracy of 
center identification was improved by 40% compared with 
the Gaussian mask.

In the present paper, we made subjective masks, i.e., the 
moon-shaped mask, for particle image detection and center 
identification as a test case. The shape of the particle image 
depends on the particular lens to utilize, thus predicting the 
shape before testing is generally difficult. The moon-shaped 
mask introduced in this paper does not cover wide situation 
of defocusing rainbow PTV that utilizes lens different from 
the present case. For example, the particle image in Fig. 6c 
is not moon-shaped and our mask does not properly work 
in this case. Toward the general use of defocusing rainbow 
PTV, it is expected to build up an automatic mask generation 
algorithm with help of methods such as machine learning of 
the defocused color image patterns.

2.3 � Multi‑cycle rainbow illumination in the depth

Employing the defocusing technique allows for the applica-
tion of multi-cycle rainbow illumination in determination of 
particle depth coordinates. In particular, the 3D position is 
given by a combination of the size and color of individual 
particle images. Figure 11 illustrates various possible com-
binations to explain this principle. In a case in which the 
defocusing technique is not used (Fig. 11a), the depth z of 
the particle is simply estimated recursively based on the hue 
of a single-cycle rainbow illumination. Figure 11b shows a 
case in which defocusing is applied together with single-
cycle rainbow illumination. We can determine the depth 
independently by either the measured particle diameter or 
the hue. In the present paper, depth is determined by hue 
because the precision of the hue is improved by defocusing. 
Further, it is difficult to estimate the size correctly since the 
shape of the particle image is distorted by the defocusing. If 
it is possible to estimate the size correctly, taking an aver-
age of these two depths will better estimate the true depth 
of the particle. A combination of defocusing imaging and 
two-cycle rainbow illumination is shown in Fig. 11c. In this 
case, we cannot judge the depth using only the hue because it 
presents two distinct possibilities. However, because the size 
gives an approximation of the depth, it is possible to define 
the depth using the hue and size simultaneously. An advan-
tage of this combination is an improvement in the accuracy 
of hue-to-depth conversion based on the large gradient in 
the hue, dH/dz. This leads to errors in the hue measure-
ment, such as random and systematic hue fluctuation, being 
relaxed during depth estimation. Since multi-cycle rainbow 
illumination is easily producible using a commercial LCD 
projector, defocusing imaging can be successfully combined 

Fig. 10   Comparison of the values calculated by the algorithm to detect particles and their center locations. a–c Particles detected using the a 
Gaussian and b moon-shaped masks. c The probabilities of error based on the actual particle centers
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with it. As shown in Fig. 11d, a case of three-cycle illumina-
tion would further improve the spatial resolution. However, 
its combination with defocusing technique is ineffective 
because defocusing has a limitation to classify the size of 
the particle image into more than two layers. In order to 
increase the number of cycles, it is necessary to suppress the 
deviation in the size distribution of tracer particles and use 
a camera with a larger number of pixels.

Two figures are presented to help in understanding 
this principle. First, Fig. 12a shows an optical setup for 
two-cycle rainbow illumination combined with defocus-
ing imaging. Using this setup in a water flow seeded with 
particles, the color particle images shown in Fig. 12b 
were obtained. Here, particle images of the same color 
with different sizes can be seen; one is relatively small 
and the other is relatively large. Figure 13 illustrates the 
algorithm used to determine the depth coordinates of 

Fig. 11   Possible patterns in 
the combination of defocusing 
and rainbow PTV. a Normal 
rainbow PTV. b Defocusing 
rainbow PTV with one-cycle, 
c two-cycle, and d three-cycle 
illumination. Red, blue, and 
white circles indicate the meas-
ured diameter, measured hue, 
and measured depth, respec-
tively. Gray region indicates an 
effective cycle of the color, to 
which the particle depth belongs 
with information of the particle 
image size
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individual particles. For example, particles A and B make 
blue images at time t1, but their sizes have different projec-
tions. The size of particle image B is smaller than that of 
particle image A when the camera’s focal plane is close 
to particle B. Small movements of these particles caused 
changes in color from blue to cyan at t2. Further motion 
caused emergence, disappearance, and change in size at t3. 
On the one hand, this procedure is unaffected by deviation 
of real particle size since the particle image size is mostly 
determined based on the defocusing degree. Further, the 
color changes sharply with the introduction of multi-
cycle rainbow illumination. This combination makes the 

proposed technique feasible for wide flow conditions. On 
the other hand, the overlapping of particle images becomes 
frequent in defocusing imaging, restricting the upper limit 
of detectable particle image densities. Roughly, the upper 
limit is estimated to be around 200 particles/(500 × 500 
pixels) ~ 0.001 particles per pixel (ppp). Similar issues 
have been reported in the defocus imaging of bubbles 
and droplets (Murai et al. 2001; Kawaguchi et al. 2002). 
Reducing the defocusing level or using an image process-
ing which separates multiple overlapping particle images 
is a possible solution to raise the ppp value.

3 � An example application to 3D flow 
measurement

As an experimental demonstration, we selected the investi-
gation of a 3D flow in the downstream region of a twisted 
Savonius turbine. Several researchers have reported that 
twisted turbines have better performance than normal 
straight-type Savonius turbines (Saha and Rajkumar. 2006; 
Damak et al. 2013). One of the reasons for this is the reduc-
tion of large periodic vortex shedding, which releases large 
amounts of kinetic energy downstream. Before the investi-
gation applying the defocusing rainbow PTV, the flow was 
measured by a hot-wire anemometer, as shown in Fig. 14a. 
A turbine 150 mm in height and 75 mm in the diameter 
(D) with a form twisted 180° was examined. The main flow 
velocity in the wind tunnel was U = 3.5 m/s, and the tip speed 
ratio of the turbine was fixed at 0.4 by a stepping motor. In 
these experimental conditions, the Reynolds number defined 
by D and U was approximately 1.8 × 104. The hot-wire ane-
mometer was set at 2D in the region downstream from the 
turbine. Time-averaged velocity and turbulence intensity are 
shown in Fig. 14b, c, respectively. To compare the effects of 
twisted blades, measurement data regarding a straight-type 

Fig. 12   Two-cycle rainbow 
color PTV with defocusing 
technique. a Schematic diagram 
of facility setup, where diver-
gence of light was eliminated 
by inserting convex lens. b Part 
of a picture obtained from the 
camera

Fig. 13   Principle for recognizing particle location. a Situation in 
which three particles pass in the measurement area. b Particle images 
obtained at each time
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Savonius turbine was also plotted in the figures. The average 
velocity with the straight-type turbine gradually increases 
in the vertical z direction due to the ground effect, while 
that with the twisted turbine has a uniform distribution with 
approximately 50% of the main flow velocity in the vertical 
direction. We expect that this is explained by contribution to 
vertical flow induced by the twisted blades. The turbulence 
intensity of the twisted turbine was relatively low, although 
its average velocity was relatively high at z/H < 0.9. To find 
the answer of what was kind of 3D flow structures which 
modified these wake characteristics, it was sought using the 
present multi-cycle defocusing rainbow PTV.

Figure  15 shows the experimental facilities used to 
measure the downstream flow structure of the twisted 
turbine. A towing tank containing tap water was used, in 
which the turbine was towed horizontally at a constant 
speed together with a camera and an LCD projector. The 
turbine was installed upside down in the towing tank, and 
its end plate was located at the water surface to avoid the 
ground effect. The towing speed was set to U = 0.3 m/s, and 

the corresponding Reynolds number was approximately 
Re = UD/ν = 1.8 × 104, where ν is the kinematic viscosity of 
water. The frame rate of the camera was set to 750 fps, and 
the spatial resolutions in the picture were 0.2 mm/pixel in 
the x–z plane and 0.15 mm per 1° of hue in the y direction. 
With a given accuracy regarding the particle center detection 
and a given precision regarding the hue recognition, the bias 
error of particle location was estimated to be within 1 mm in 
all directions for the 3D measurement volume.

Samples of the visualization results are shown in 
Fig. 16. In a camera picture shown in Fig. 16a, tracer par-
ticles are projected as a variety of colors and sizes. As the 
first step for the PTV, particle locations in the x–z plane 
of the measurement volume were determined using image 
masking correlation based on moon-shaped masks. Then, 
individual particle locations in the y direction were com-
puted using the size and hue of the color particle images. 
All the 3D particle coordinates were tracked in four con-
secutive frames to obtain an instantaneous velocity vec-
tor with three components, u = (u, v, w), as presented in 
Fig. 16b. The number of velocity vectors captured was 120 
among the ~ 500 particles identified in the original image. 
A reduction in the number was caused by particles’ partial 
overlapping and unsuccessful tracking of particles due to 
the finite hue resolution. Considering sub-pixel processing 
to define particle locations, accuracy of the present veloc-
ity vectors is about 0.013U (Udrea et al. 1996). The instan-
taneous velocity vector distribution in the figure does not 
mean much in identifying the flow structure; however, the 
particle position z and the velocity component in z direc-
tion are secured. This allows the data to be interpolated to 
see the 3-D wake structure in more detail. For preparation 
of evaluating various contours inside the wake, we con-
verted these PTV data to regular grid vector field as shown 
in Fig. 16c. Here, we employed Lagrangian-to-Eulerian 
formatting of the scattered vector field in spatiotemporal 
four-dimensional domain (x, y, z, t) using biquadratic ellip-
soidal rearrangement (BER) algorithm proposed by Ido 
and Murai (2006). This interpolation allows to estimate 
fine individual vortices from a limited number of velocity 
vectors per vortex. According to their paper, 12 vectors 
around a single vortex can reconstruct the original vorti-
cal structure at 0.95 in vector cross-correlation coefficient 
(Ido et al. 2002).

Figure 17 show iso-surfaces of a scalar distribution com-
putable from the measured velocity vector distribution. Fig-
ure 17a shows a vertical velocity contour at y = 0 and an 
iso-surface of u = 0.5U in red color. The white iso-surface 
in Fig. 17b represents helicity density at u·ω/|u||ω|= 0.9. 
Helicity is one of the conservative quantities that can be 
used to visualize 3D vortical structures (Kelvin 1987; Kasagi 
et al. 1995; Janke et al. 2017). From the results, two spe-
cific flow structures were identified to explain the vertically 

Fig. 14   Effect of the twisted blade of a Savonius turbine on flow in 
the downstream region, where the tip speed ratio of the turbine is 0.4. 
a Experimental setup, where x- and z-axes are set as the streamwise 
direction of main flow and the rotating axis of turbine, respectively. b 
Time-averaged streamwise velocity. c Turbulence intensity
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more uniform streamwise velocity profiles recovered by the 
twisted turbine. One was a vertical flow reaching half of the 
turbine’s height from the upper and the bottom region, and 
the other was a streamwise vortical structure released down-
stream. These do not occur in the case of a normal straight 
turbine because the original 2D flow is maintained (Murai 
et al. 2007). Vertical flows supply kinetic energy toward 

the center area, while the streamwise vortex equalizes the 
energy by momentum transfer. As a result, velocity in the 
downstream region of the twisted turbine was recovered 
quickly in this case compared with that of a normal straight 
Savonius turbine. This fact also tells that turbine drag of the 
twisted turbine is smaller than the straight one while torque 
increases with twisting the blades.

Fig. 15   Twisted Savonius turbine experiments performed in a towing tank. a Picture of facility setup. b Top and c side views of measurement 
area, where D and H are the diameter and height of the turbine, respectively

Fig. 16   Processing to obtain 3D–3C instantaneous velocity field. a 
Snap picture of particles illuminated by two-cycle rainbow illumina-
tion in the depth direction. b Instantaneous velocity vector u(u, v, w) 

obtained by the PTV. c Interpolated velocity vector field obtained by 
converting PTV data to a regular grid format using the algorithm pro-
posed by Ido and Murai (2006)
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In more detail, unlike the case of lift-driven turbines, the 
twisted Savonius turbine relies on flow separation behind 
rotating buckets in power generation. Kinetic energy loss 
in the wake does not immediately explain the correlation to 
the power. To understand the reason why twisting obtains 
better performance, 3D–3C velocity vector fields need to be 
investigated, from which intrinsic coherent structures can 
be extracted as well as pressure field and torque fluctuation 
in the next step. Although the present rainbow-defocusing 
PTV technique did not have significantly high accuracy and 
resolution of velocity fields to perform such analysis, we 
here offered the flow structure information directly obtained 
experimentally with the PTV technique in the demonstra-
tion. Of course, CFD simulations supply 3D–3C velocity 
vector fields with very good quality possible to perform 
the analysis. Simulations, however, are subject to several 
assumptions such as turbulent flow model and 3D boundary 
layer resolutions along rotating bucket surfaces. Thus, it is 
required to confirm the validity of simulations by experi-
mental data. We expect that our findings will contribute to 
their validation.

4 � Conclusion

In this paper, we proposed a method that combines rainbow 
PTV and defocusing PTV to improve the spatial resolution 
of 3D particle coordinates. We demonstrated that the method 
is able to prevent false color generation in individual parti-
cle images. This leads to a high precision in hue definition 
in comparison with in-focus particle imaging. Further, it 
allows for multi-cycle rainbow illumination, as the particle 
image size becomes a function of the depth coordinate. The 
multi-cycle technique led to a steep change in the hue of 
the individual particle images and improved the accuracy in 

the hue-to-depth recursive estimation. The combination of 
these two kinds of information (color and size) reduced the 
uncertainty of the depth coordinate so that 3D Lagrangian 
particle tracking could be successfully realized. At the same 
time, distortion of the image occurred due to the defocused 
imaging depended strongly on lens adopted on the camera. 
This was overcome by introducing an adaptive mask correla-
tion technique designed for the lens, with which the centers 
of the moon-shaped particle images were reconstructed.

For a demonstration of the defocusing rainbow PTV, we 
investigated the 3D structure of a wake behind a twisted 
Savonius turbine. 120 velocity vectors were obtained 
in every consecutive frame using a four-frame tracking 
algorithm without any smoothing process applied. Helic-
ity density and other quantities revealed that the twisted 
turbine induced vertical flow while shedding streamwise 
vortices in the wake, revealing the reason that the loss 
of kinetic energy was suppressed in comparison with a 
straight turbine. Based on the demonstration, the feasibil-
ity of the proposed defocusing rainbow PTV as a tool for 
experimental fluid engineering research was confirmed.
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