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Abstract 
In this study, we propose a novel optical flow formulation for estimating high-accuracy velocity fields from tracer particle 
image sequences. According to the Helmholtz velocity decomposition theorem, the proposed optical flow method decom-
poses the two-dimensional velocity field into four components: translation motion, linear distortion motion, shear distortion 
motion and rotation motion. In this context, regularization terms for different motion components are designed, which have 
a reasonable physical interpretation for the flow characteristics of the fluid. Subsequently, we design specific regularization 
parameters for the corresponding regularization terms according to the flow characteristics of the motion components. These 
regularization parameters can be adaptively adjusted with changes in the image space and velocity field. In addition, the 
data term of the optical flow formulation is based on the projected-motion equation derived from the continuity equation, 
which maintains the compressibility of the fluid in the two-dimensional plane. Velocity fields are estimated from synthetic 
tracer particle images and hypersonic experimental image sequences, and the velocity results are compared to those of an 
advanced cross-correlation-based PIV method and previous advanced optical flow methods. The results and comparisons 
indicate that the proposed method shows good performance and high measurement accuracy when acquiring compressible 
flow structures from fluid measurements.

Graphic abstract

1 Introduction

With the development of technology, fluid flow measure-
ment techniques have gradually replaced flow visualiza-
tion techniques in the study of fluid dynamics. Extracting 
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the velocity field through measurement techniques allows 
researchers to analyse complex flow field structures more 
deeply (Adrian and Westerweel 2011). As a non-contact 
measurement method, particle image velocimetry (PIV) 
has become one of the main technical methods for fluid 
flow measurement. Tracer particles are seeded into the 
fluid flow to follow its movement, and a sheet of pulsed 
laser light is employed to illuminate these tracer parti-
cles undergoing short displacements with a preset interval 
time. Meanwhile, a camera is utilized to synchronously 
capture two image frames of the tracer particles. Finally, 
the velocity field is calculated by determining the displace-
ments of the particle fields between the two image frames 
and using the preset interval time (Raffel et al. 2018). 
Because it allows the velocity field to be determined over 
an entire image domain, PIV is widely used in many appli-
cations, such as aerospace, biological medicine, and nano-
fabrication. Although PIV has achieved very impressive 
performance, the measurement accuracy of PIV is signifi-
cantly influenced by optical imaging technology and PIV 
measurement methods. Therefore, improving the accuracy 
and dynamic range of the estimated velocity field remains 
an important task in the PIV measurement method (West-
erweel et al. 2013).

Over the past few decades, various PIV measurement 
methods have been proposed and developed to improve the 
measurement accuracy of the velocity field. These methods 
can be classified into two main groups: cross-correlation-
based methods and optical flow-based methods (Heitz et al. 
2008, 2010). The traditional cross-correlation-based method 
divides the particle image into many fixed-size interroga-
tion windows and assumes that all pixels in an interrogation 
window have the same velocity vector. When calculating the 
correlation coefficient of two interrogation windows across 
two successive image frames, one velocity vector that gives 
the correlation peak is produced for each interrogation win-
dow. The cross-correlation method is widely used in various 
fields because of its reliability, accuracy, and robustness, but 
the resolution of the estimated velocity field is restricted by 
the size of the interrogation window (Kähler et al. 2012). 
The spatial resolution limitations of the cross-correlation-
based method are a well-recognized issue, and there have 
been many efforts to improve the spatial resolution of the 
velocity field, such as velocity field interpolation and image 
deformation (Astarita 2008, 2009), combined with particle 
tracking velocimetry (Kähler et al. 2012), variational adap-
tive Gaussian interrogation window (Becker et al. 2012), 
and adjusting the interrogation window adaptively accord-
ing to seeding density and velocity information (Theunissen 
et al. 2007, 2010; Yu and Xu 2016; Simonini et al. 2019). 
Because of the smoothing effect of the interrogation win-
dow on the velocity field, the estimation error of the cross-
correlation-based method is relatively large in regions with 

large velocity gradients, such as shock waves, recirculation 
areas, shear flow and strong vortices (Seong et al. 2019).

An alternative to the cross-correlation-based method is 
the optical flow-based method, which was originally applied 
in the computer vision field. Compared to the cross-cor-
relation-based method, which provides a sparse velocity 
field (one velocity vector for each interrogation window), 
the optical flow-based method enables the estimation of 
the dense velocity field (one velocity vector for each pixel). 
First proposed by Horn and Schunck (1981), the original 
optical flow formulation depends on an objective function 
composed of a data term and a regularization term. The data 
term is associated with the brightness constancy assumption, 
which assumes that a given point retains the same intensity 
in the image plane along its trajectory. To cope with the 
under-constrained vectorial estimation problem (i.e., aper-
ture problem in the computer vision field), a regularization 
term (based on the smoothness constancy assumption) is 
added in the optical flow formulation. Over the past 20 years, 
the original optical flow formulation proposed by Horn and 
Schunck (1981) has been extended to various revised optical 
flow-based methods for fluid flow motion estimation. Qué-
not et al. (1998) proposed an optical flow technique based 
on dynamic programming constraints, which was the first 
application of the optical flow-based method in PIV. The 
multi-resolution optical flow approach proposed by Ruhnau 
et al. (2005) is a continuous variational formulation for glob-
ally estimating the dense velocity field from particle images. 
Zhong et al. (2017) modified the brightness constancy to the 
brightness gradient constancy to resist the influence of the 
illumination variation in the experiment.

However, these approaches usually rely on computer 
vision theory and are not rigorously derived from the funda-
mental equations of fluid mechanics. Therefore, to more rea-
sonably apply optical flow to fluid flow measurements, it is 
necessary to establish optical flow formulations based on the 
theory of fluid mechanics (Heitz et al. 2010). Corpetti et al. 
(2000, 2002, 2006) presented a fluid-flow dedicated formu-
lation based on the integrated continuity equation, which is 
derived from the Reynolds transport equation of fluid in the 
image plane. Liu and Shen (2008) built a quantitative con-
nection between the optical flow and the fluid flow for vari-
ous flow visualizations and proposed a physics-based optical 
flow method to provide a rational foundation for applying the 
optical flow method to PIV measurements (Liu et al. 2015). 
In this context, more data terms in the optical flow formula-
tion are combined with the fundamental equations of fluid 
mechanics, such as the eddy-diffusivity model (Cassisa et al. 
2011) and the transport equation of turbulent flow (Chen 
et al. 2015; Cai et al. 2018), to improve the performance 
in estimating fluid flow motion. In addition to data terms 
based on the physics of fluid flow, various modifications to 
the regularization term have also been frequently proposed. 
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Among the recently developed optical flow methods, the 
regularization term is usually formulated in the forms of a 
high-order constraint (Corpetti et al. 2006; Liu and Ribeiro 
2011; Lu et al. 2019), orthogonal decomposition (Yuan 
et al. 2007), wavelet expansion (Kadri-Harouna et al. 2013; 
Dérian et al. 2011, 2013; Schmidt and Sutton 2019, 2020) 
or physical constraint  (Kohlberger et  al. 2003; Ruhnau 
and Schnörr 2007; Heitz et al. 2008; Chen et al. 2015; Cai 
et al. 2018). These works indicate that the combination of 
the physics of fluid flow and optical flow schemes is a very 
promising direction. However, optical flow methods are not 
without their potential drawbacks. Compared to the cross-
correlation-based method, optical flow methods may exhibit 
difficulties with experimental noise or illumination variation 
that commonly occur in experiments. Moreover, the regu-
larization parameters of most optical flow methods have no 
physical interpretation and are previously tuned empirically. 
However, the regularization parameters with physical inter-
pretation can be optimally set and are more suitable for opti-
cal flow methods dedicated to fluid flow (Cai et al. 2018).

The objectives of this work are to present an optical 
flow method for processing particle image sequences that 
addresses the potential drawbacks listed above. The main 
ideas and contributions of this work consist of proposing 
a novel optical flow formulation by considering both par-
ticle image information and physics theory of fluid flow. 
According to the Helmholtz velocity decomposition theo-
rem, the proposed optical flow method decomposes the two-
dimensional velocity field into four components: translation 
motion, linear distortion motion, shear distortion motion 
and rotation motion. In this context, regularization terms 
for different motion components are designed, which have 
a reasonable physical interpretation for the flow character-
istics of the fluid. Subsequently, we design specific regu-
larization parameters for the corresponding regularization 
terms according to the flow characteristics of the motion 
components. These regularization parameters can be adap-
tively adjusted with changes in the image space and velocity 
field. In addition, the data term of the optical flow formula-
tion is based on the projected-motion equation derived from 
the continuity equation, which protects the compressibility 
of the fluid in the two-dimensional plane. A bilateral filter 
kernel function is used to resist image noise and illumination 
changes in the experiment. The proposed velocity decom-
position-based variational optical flow method (VD-VOF) 
is based on the continuity equation and Helmholtz decom-
position theorem. It is applicable not only to turbulent or 
incompressible flow but also to more flow conditions.

The rest of this paper is organized as follows. In Sect. 2, 
the optical flow formulation under fluid velocity decomposi-
tion is presented in detail. Then, the discretization scheme and 
multiscale technique are described in Sect. 3. Experimental 
evaluations on synthetic images and real data are demonstrated 

in Sects. 4 and 5, respectively. Comparisons with other fluid 
motion estimation techniques are also discussed in these sec-
tions. Finally, a conclusion is discussed in Sect. 6.

2  Methodology

In this section, Helmholtz velocity decomposition is first intro-
duced in detail. Subsequently, regularization terms dedicated 
to Helmholtz decomposition and the velocity decomposition-
based optical flow method are presented and discussed.

2.1  Helmholtz velocity decomposition

The Helmholtz velocity decomposition states that a velocity 
field can be uniquely decomposed into a sum of a transla-
tional component, a divergence-free (solenoidal) component 
and a curl-free (irrotational) component. Such a decomposition 
simplifies the analysis of flow fields since important proper-
ties of flow representing physical phenomena such as incom-
pressibility and vorticity can be studied on the decomposed 
components directly. The Helmholtz decomposition has been 
proved to be an important tool for fluid analysis and one of 
the fundamental theorems of fluid dynamics (Bhatia et al. 
2013). It has been used by various research communities for 
a wide variety of applications, such as weather modelling, 
oceanology, and geophysics (McWilliams 2006). Under the 
zero boundary condition, the translational component can be 
ignored, and the vector field can be expressed as a sum of 
the gradient of a stream potential and the curl of a velocity 
potential (Kohlberger et al. 2003). This implicit Helmholtz 
decomposition has been used for the optical flow method in the 
literature (Corpetti et al. 2002, 2006; Kohlberger et al. 2003; 
Yuan et al. 2007) and is different from the explicit Helmholtz 
decomposition into four components involved in the current 
work.

Let x = (x, y)T denote the coordinate location of a point in 
the two-dimensional velocity field plane; u(x) = (u(x), v(x))T 
is the velocity vector at location x , and x + �x is a neighbour-
ing point near x with the velocity vector u(x + �x) . If the dis-
tance �x = (�x, �y)T between the point x and the point x + �x 
is small enough, by applying the first-order Taylor expansion, 
the following equations can be obtained:

The detailed expression is as follows:

(1)u(x + �x) = u(x) +
�u

�x
�x +

�u

�y
�y.

(2)�u(x) =
�u

�x
�x +

�u

�y
�y = � ⋅ �x + � ⋅ �x + � ⋅ �x,
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where � , � , � denote the linear distortion rate tensor, shear 
distortion rate tensor, and rotation tensor, respectively; 
�xx = �u∕�x and �yy = �v∕�y are the linear distortion rates in 
the x and y directions, respectively; �xy = (�u∕�y + �v∕�x)∕2 
is the shear distortion rate; and � = (�v∕�x − �u∕�y)∕2 is 
the rotation angular rate. Therefore, Eq. 1 can be derived as:

On the right-hand side of Eq. 4, the first term represents 
the translation motion of the fluid particle from point x to 
point x + �x at velocity u(x) , and the following three terms 
represent linear deformation motion, shear deformation 
motion and rotation motion. In this way, the velocity vector 
u(x + �x) at point x + �x can be decomposed into four com-
ponents, which is the explicit function of Helmholtz velocity 
decomposition. There are two important differences between 
Helmholtz velocity decomposition and general rigid object 
velocity decomposition: fluid motion has one more defor-
mation velocity component than rigid object motion; rigid 
object velocity decomposition is valid for the entire rigid 
body, while Helmholtz velocity decomposition is valid only 
within a fluid particle and is a local theorem.

2.2  Regularization term based on Helmholtz 
velocity decomposition

To address the under-constrained vectorial estimation 
problem in the optical flow formulation, a classical regu-
larization term was proposed in the seminal work of Horn 
and Schunck (1981). The regularization term proposed by 
Horn and Schunck (1981) is based on the smoothness con-
stancy assumption that all neighbouring points have similar 
motions and is expressed as the magnitude of the first-order 
velocity gradient:

where ∇ is the gradient operator in two-dimensional direc-
tions, and Ω denotes the two-dimensional image domain. 
Hereafter, the coordinate location of a point in the veloc-
ity field plane is equivalent to the pixel coordinate in the 
image domain, defined as x = (x, y)T  , and the velocity 
vector is equivalent to the optical flow vector, defined as 
u(x) = (u(x), v(x))T . This classical first-order regularization 
term is actually the first-order Tikhonov regularization for 
ill-posed problems (Liu and Shen 2008) and has been used 
in the physics-based optical flow method proposed by Liu 
et al. (2015). Furthermore, this regularization term can be 
interpreted as derived from a homogeneous divergence-free 

(3)� =

[
�xx 0

0 �yy

]
, � =

[
0 �xy
�xy 0

]
, � =

[
0 − �

� 0

]
,

(4)u(x + �x) = u(x) + � ⋅ �x + � ⋅ �x + � ⋅ �x.

(5)∫Ω

(|∇u|2 + |∇v|2)dxdy,

uncertainty random field and has been extended with a 
small-scale diffusion tensor in Cai et al. (2018).

It has been demonstrated that the classical first-order 
regularization term (Eq. 5) is equivalent to the first-order 
div-curl regularization term, which is the smoothing penali-
zation of the magnitude of divergence and vorticity (Corpetti 
et al. 2006):

where divu and curlu are the divergence and vorticity of 
the velocity field, respectively. Generally, the regularization 
term in the optical flow cost functional is set from a regu-
larity condition on the solution. However, such first-order 
regularization terms are particularly suited for rigid move-
ment and are difficult to relate to kinematical or dynamical 
properties of the fluid (Chen et al. 2015). To protect the key 
information contained in the vorticity field of fluid motion, 
Chen et al. (2015) simplified the first-order divergence-curl 
regularization term to the penalization of the magnitude of 
divergence, which addresses 2D incompressible turbulent 
flows only.

Compared with general stable object motion, fluid motion 
has additional deformation velocity components, so that 
the fluid velocity field normally exhibits areas with high 
values of vorticity and divergence. The underestimation of 
deformation movement may become a source of error for 
velocity field estimation. In this case, higher-order regu-
larization terms are considered, and the third derivatives of 
the velocity field have been used in the wavelet domain by 
Schmidt and Sutton (2019). Another more commonly used 
higher-order regularization term is the second-order div-curl 
regularization term proposed by Corpetti et al. (2006), which 
minimizes the gradients of the divergence and the vorticity:

This regularization term is consistent with the physical 
properties of fluid flows. Schmidt and Sutton (2020) imple-
mented it in the wavelet domain and has achieved better 
results than the third-order velocity gradient regularization 
term (Schmidt and Sutton 2019). Kohlberger et al. (2003) 
used the third derivatives of the stream potential and veloc-
ity potential in the implicit Helmholtz decomposition as the 
regularization term, which ignored the translation compo-
nent of the fluid flow. These works indicate that higher-order 
regularization terms with physical properties of fluid flow 
can obtain more accurate velocity estimations.

However, these optical flow methods completely ignore 
the image intensity information when establishing the regu-
larization term, which is not advisable in the optical flow 
method in the computer vision field (Sun et al. 2014). In the 

(6)∫Ω

(|div u|2 + |curlu|2)dxdy,

(7)∫Ω

(|∇ div u|2 + |∇ curl u|2)dxdy.
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current work, we use Helmholtz decomposition to design 
a new regularization term, which considers not only the 
flow characteristics of the fluid but also the image infor-
mation. This new regularization term enforces a smoothing 
constraint not on the velocity field u itself but only on four 
motion components we are interested in. The explicit func-
tion of Helmholtz decomposition is used to combine the 
physical properties of the fluid flow with the image informa-
tion within reasonable assumptions.

First, we consider only fluid flow characteristics and use 
the following notations:

After the Helmholtz decomposition, the four motion compo-
nents of fluid flow are smoothly constrained. From the pre-
vious velocity decomposition equation (Eq. 4) in Sect. 2.1, 
a novel regularization term for optical flow estimation can 
be proposed:

where the translation motion u , linear distortion rate tensor 
� , shear distortion rate tensor � and rotation tensor � are 
smoothly constrained. Substituting Eqs. 8–11 into Eq. 12, 
we obtain the following formulation:

However, such a regularization term does not accommo-
date discontinuities in the velocity field. To capture locally 
non-smooth motion, such as shock waves, it is necessary to 
allow outliers in the regularization term (Sun et al. 2014). 
This can be achieved by a non-quadratic penalty function 
�
�
s2
�
=
√
s2 + �2 . The symbol � is a prefixed small con-

stant that is usually set as � = 0.001 to ensure that �
(
s2
)
 is 

strictly convex. The use of the non-quadratic penalty func-
tion ensures a unique solution to the minimization problem 
and allows the construction of simple global convergence 
algorithm. In this way, a piecewise smooth flow field is 
modelled, and we propose the minimisation of the follow-
ing formulation:

(8)|∇u|2 ∶=|∇u|2 + |∇v|2,

(9)|∇�|2 ∶=||∇�xx||2 + |||∇�yy
|||
2

,

(10)|∇�|2 ∶=2|||∇�xy
|||
2

,

(11)|∇�|2 ∶=2|∇�|2.

(12)∫Ω

(|∇u|2 + |∇�|2 + |∇�|2 + |∇�|2)dxdy

(13)
∫Ω

(
|∇u|2 + |∇v|2 + ||∇�xx||2 + |||∇�yy

|||
2
)
dxdy

+ ∫Ω

(
2
|||∇�xy

|||
2

+ 2|∇�|2
)
dxdy.

On the basis of Eq. 14, we add the image intensity informa-
tion to construct an image-driven self-adaptive regulariza-
tion parameter to mitigate the regularization at flow motion 
boundaries. In supersonic or hypersonic flow, there are dis-
continuous flow structures such as shock wave, expansion 
wave, and shear layer (Lu et al. 2019). The abrupt change in 
velocity between the fluid and the wall can also be regarded 
as discontinuous. Here, we regard these discontinuous flow 
structures as flow motion boundaries, similar to image 
edges. In the regions of the flow motion boundaries, the fluid 
density changes abruptly, causing a corresponding change in 
the average concentration of tracer particles. This is reflected 
in the particle image in which the image intensity changes 
drastically in the regions of the flow motion boundaries and 
forms the image edges (Zhong et al. 2017). The self-adaptive 
regularization parameter e−|∇I|2 is based on a monotonically 
decreasing function of the magnitude of the image gradient, 
and it respects flow motion boundaries (Drulea and Ned-
evschi 2011). In the regions with uniform change in image 
intensity, this regularization parameter increases, while in 
the regions of the image edges, this regularization parameter 
automatically decreases, so that the flow motion boundaries 
can be protected from oversmoothing and blurring.

In addition to translation motion, linear deformation and 
shear deformation motion, rotation motion exists in the shock 
wave, shear layer and vortex structure. However, the image 
edge of the vortex structure in turbulent flow is not obvious. 
To further improve the optical flow performance in the region 
of the vortex structure, a vorticity bilateral filter is added as a 
regularization parameter of the rotation tensor constraint. The 
bilateral filter consists of a Gaussian (space) filter and a range 
(vorticity) filter (Lin et al. 2014):

where Gs denotes the spatial Gaussian filter of size � and 
with standard deviation �s , and G� denotes the vorticity 
Gaussian filter of size � and with standard deviation �� . The 
weight of a pixel x decreases as the distance from the cen-
tre x0 of the filter kernel increases. In addition, the weight 
decreases if the vorticity �

x
 of the pixel x is different from 

the filter kernel centre’s vorticity �
x0

 . The vorticity bilateral 

(14)

∫Ω

�
(|∇u|2 + |∇v|2)dxdy

+ ∫Ω

(
�

(||∇�xx||2
)
+ �

(|||∇�yy
|||
2
))

dxdy

+ ∫Ω

(
2�

(|||∇�xy
|||
2
)
+ 2�

(|∇�|2)
)
dxdy.

(15)

BF� = Gs ⋅ G�

= exp

�
−
��x − x0

��2
2�s

�
⋅ exp

⎛⎜⎜⎜⎝
−

����x
− �

x0

���
2

2��

⎞⎟⎟⎟⎠
,
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filter considers the spatial distance and vorticity difference 
between the pixel and its neighbouring pixels to better pro-
tect the vortex structure.

The improved regularization term, which includes the 
non-quadratic penalty function, a bilateral filter kernel func-
tion and a self-adaptive parameter based on the image gradi-
ent, is proposed as follows:

where ∗ denotes the convolution operation. Compared to 
the classical regularization term, the proposed regulariza-
tion term considers both particle image information and 
physics theory of fluid flow. According to the Helmholtz 
velocity decomposition, the proposed optical flow method 
decomposes the two-dimensional velocity field into four 
components: translation motion, linear distortion motion, 
shear distortion motion and rotation motion. In this context, 
regularization terms for different motion components are 
designed, which have a reasonable physical interpretation for 
the fluid flow. Subsequently, a non-quadratic penalty func-
tion is used to capture the locally non-smooth motion. In 
addition, we design the specific regularization parameters 
for the corresponding regularization terms according to the 
flow characteristics of the motion components. The mono-
tonically decreasing function e−|∇I|2 automatically changes 
according to the image intensity to protect the flow motion 
boundaries from being over-smoothed. The vorticity bilat-
eral filter BF� automatically changes according to the vorti-
city field to protect the vortex structure. These regularization 
parameters can be adaptively adjusted with changes in the 
image space and velocity field.

2.3  Velocity‑decomposition‑based optical flow

Optical flow-based PIV methods estimate the motion 
between two sequential particle images taken at times t and 
t + dt at every pixel position. When I(x, t) is the intensity of 
the particle image obtained at time t, and the position (x, t) 
is moved by dx and dt between the two images, the intensity 
of these two pixel points can generally be assumed to be 
invariable (Horn and Schunck 1981):

The right-hand side of Eq. 17 can be expanded using the 
Taylor series, and the following basic optical flow equation 
can be obtained:

(16)

Ereg = ∫Ω

e−|∇I|
2

�
(|∇u|2 + |∇v|2)dxdy

+∫Ω

e−|∇I|
2

(
�

(||∇�xx||2
)
+ �

(|||∇�yy
|||
2
))

dxdy

+∫Ω

(
2e−|∇I|

2

�

(|||∇�xy
|||
2
)
+2BF� ∗�

(|∇�|2)
)
dxdy,

(17)I(x, t) ≈ I(x + dx, t + dt).

Corpetti et al. (2006) proposed the integrated continuity 
equation in the image plane as an alternative based on the 
Reynolds transport equation of fluid under the assumption 
that the image intensity is proportional to an integral of the 
fluid density across a measurement domain. The integrated 
continuity equation is expressed as follows:

The projected-motion equations for typical flow visuali-
zations were derived in the pivotal work of Liu and Shen 
(2008), and those authors showed that the optical flow u is 
proportional to the path-averaged velocity of particles across 
the laser sheet. The physics-based optical flow equation pro-
posed by Liu and Shen (2008) in the image plane is given by

where f (x, I) = D∇2I + DcB + cn ⋅ (Ψu)|Γ2

Γ1
 , D is a diffusion 

coefficient, c is a coefficient for particle scattering/absorp-
tion, and B is a boundary term related to the considered 
transported quantity Ψ and its derivatives coupled with the 
derivatives of the control surfaces confining the laser illu-
mination volume. Because the control surfaces are planar, 
there is no particle diffusion through the molecular process, 
and the rate of particle accumulation in the laser illumination 
volume is ignored, the right-hand side term f (x, I) in Eq. 20 
could be approximately equal to 0, and Eq. 20 is equivalent 
to Eq. 19 (Heitz et al. 2010). Then, the integrated continuity 
equation proposed by Corpetti et al. (2006) is consistent with 
the projected-motion equation presented by Liu and Shen 
(2008) in the case of a laser-sheet-illuminated particle 
image.

To acquire the compressible structures in the two-dimen-
sional flow field, consistent with the objective of the pro-
posed regularization term, the data term of the proposed 
optical flow method is based on the projected-motion equa-
tion derived from the continuity equation, which protects the 
compressibility of the fluid in the two-dimensional plane. A 
bilateral filter kernel function is used to resist image noise 
and illumination changes in the experiment (Lin et al. 2014). 
The data term of the VD-VOF estimation cost function is 
defined as follows:

where BFI = Gs ⋅ GI , Gs and GI denote the spatial Gauss-
ian filter and the intensity Gaussian filter, respectively. 
The weight of the bilateral filter is automatically adjusted 

(18)
�I

�t
+ ∇I ⋅ u = 0,

(19)
�I

�t
+ ∇I ⋅ u + I divu = 0.

(20)
�I

�t
+ ∇ ⋅ (Iu) = f (x, I),

(21)Edata = ∫Ω

BFI ∗
||||
�I

�t
+∇I ⋅ u+Idivu

||||
2

dxdy,
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according to the spatial distance and image intensity differ-
ence. As mentioned earlier, in the region of the flow motion 
boundary, the particle concentration changes drastically, and 
the image intensity changes accordingly. The data term with 
the bilateral filter is more sensitive to particle concentration, 
and the automatically adjusted weight can reduce the propa-
gation or diffusion of the flow motion boundary, for exam-
ple, to protect the shock wave from being oversmoothed or 
the boundary of the shear layer from being blurred. Further-
more, the spatial Gaussian filter in the bilateral filter can 
make the data term more robust, thereby resisting image 
noise.

Based on Eqs. 16 and 21, the model of the proposed VD-
VOF method is as follows:

where 𝜆 > 0 is a smoothness parameter controlling the bal-
ance between the data term and the regularization term. 
The first two terms on the right side of the equation can be 
regarded as the modified model of the physics-based opti-
cal flow method proposed by Liu et al. (2015). The last two 
terms on the right side of the equation are constrained based 
on Helmholtz velocity decomposition and can also be seen 
as higher-order constraints of the velocity field. These two 
terms are often referred to as postprocessing constraints in 
the computer vision field.

3  Discretization and multiscale

In this section, the optimization strategies based on the dis-
cretization scheme and multiscale technique are first pre-
sented and discussed. Then, the complexity analysis and 
parameter settings are introduced in detail.

3.1  Discretization scheme

For the functional problem in Eq. 22, auxiliary variables are 
usually introduced to minimize the convex approximation of 
the original functional (Corpetti et al. 2006; Drulea and Ned-
evschi 2011; Lu et al. 2019). We introduce four auxiliary scalar 
fields, �̂�xx , �̂�yy , �̂�xy and �̂� , which constitute direct estimates of 

(22)

E = �Edata + Ereg

= �∫Ω

BFI ∗
||||
�I

�t
+ ∇I ⋅ u + Idivu

||||
2

dxdy

+ ∫Ω

e−|∇I|
2

�
(|∇u|2 + |∇v|2)dxdy

+ ∫Ω

e−|∇I|
2

(
�

(||∇�xx||2
)
+ �

(|||∇�yy
|||
2
))

dxdy

+∫Ω

(
2e−|∇I|

2

�

(|||∇�xy
|||
2
)
+2BF� ∗�

(|∇�|2)
)
dxdy,

the distortion rate and rotation rate. Then, the VD-VOF model 
is decomposed into five parts:

Because the distortion rate ( �xx , �yy , �xy ) and the rotation rate 
� are the first-order differential forms of the velocity field 
(u, v), the minimization problem of E1

(
u, v, �xx, �yy, �xy,�

)
 

can be regarded as equivalent to that of E1

(
u, v, ux, uy, vx, vy

)
 . 

This convex minimization problem can be optimized by 
alternating steps updating either (u, v) or (�̂�xx, �̂�yy, �̂�xy, �̂�) in 
every iteration. For E1 , �̂�xx , �̂�yy , ̂𝜀xy and �̂� are considered 
fixed, and (u, v) is unknown. The minimum of the energy 
model E1 can be found by solving the associated Euler-
Lagrange equations, given by

(23)

E1

(
u, v, 𝜀xx, 𝜀yy, 𝜀xy,𝜔

)

= 𝜆∫Ω

BFI ∗
||||
𝜕I

𝜕t
+ ∇I ⋅ u + Idivu

||||
2

dxdy

+ ∫Ω

e−|∇I|
2

𝜓
(|∇u|2 + |∇v|2)dxdy

+ ∫Ω

(
||𝜀xx − �̂�xx

||2 + |||𝜀yy − �̂�yy
|||
2
)
dxdy

+ ∫Ω

(
2
|||𝜀xy − �̂�xy

|||
2

+ 2|𝜔 − �̂�|2
)
dxdy,

(24)
E2

(
�̂�xx

)
= ∫Ω

e−|∇I|
2

𝜓

(||∇�̂�xx||2
)
dxdy

+ ∫Ω

||𝜀xx − �̂�xx
||2dxdy,

(25)
E3

(
�̂�yy

)
= ∫Ω

e−|∇I|
2

𝜓

(|||∇�̂�yy
|||
2
)
dxdy

+ ∫Ω

|||𝜀yy − �̂�yy
|||
2

dxdy,

(26)
E4

(
�̂�xy

)
= ∫Ω

2e−|∇I|
2

𝜓

(|||∇�̂�xy
|||
2
)
dxdy

+ ∫Ω

2
|||𝜀xy − �̂�xy

|||
2

dxdy,

(27)
E5(�̂�) = ∫Ω

2BF𝜔 ∗ 𝜓
(|∇�̂�|2)dxdy

+ ∫Ω

2|𝜔 − �̂�|2dxdy.

(28)
0 = 𝜆BFI ∗ I𝛿x

(
𝜕I

𝜕t
+ ∇I ⋅ u + Idivu

)

+e−|∇I|
2

div
(
𝜓 �

⋅ ∇u
)
+∇2u−𝛿x�̂�xx−𝛿y�̂�xy+𝛿y�̂�,
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with � �
�
s2
�
= 1∕

�
2
√
s2 + �2

�
 . To simplify the equations, 

we use the following notation:

The Euler-Lagrange equations as expressed in Eqs.  28 
and 29 can be solved by Gauss-Seidel iteration or successive 
over relation (SOR) iteration. The details of the numerical 
algorithm for solving the above equations, Eqs. 28 and 29, 
have been derived in detail in Sánchez et al. (2013), and we 
do not discuss this process further here.

For the minimum of the energy model Eqs. 24–27, the 
numerical schemes are expected to be similar. Taking E2 as 
an example, �̂�xx is unknown, and (u, v) and �xx are considered 
fixed. To make this problem easier to solve, we modify the 
penalty function �

(
s2
)
 to the L1 norm as follows:

The Euler-Lagrange equation for Eq. 31 is

which can be solved using a fixed-point iteration scheme. 
The details of the numerical algorithm for solving Eq. 32 
have been derived in detail in Drulea and Nedevschi (2011); 
as before, we do not discuss this process further here.

3.2  Multiscale strategy

Generally, one typical weakness is that optical flow meth-
ods require small displacements to achieve sufficient accu-
racy because of the condition for establishing the Taylor 
series linearization (Heitz et al. 2010). In the case of a large 
displacement between two sequential particle images, the 
discordance between the temporal derivative and the spa-
tial gradient in the image plane may lead to poor velocity 
estimations. To address this, optical flow methods are typi-
cally embedded into a sequential coarse-to-fine multiscale 
strategy, which has been proved effective for improving the 
estimation range of optical flow estimations in the litera-
ture (Heitz et al. 2008, 2010; Chen et al. 2015; Cai et al. 
2018; Lu et al. 2019).

(29)
0 = 𝜆BFI ∗ I𝛿y

(
𝜕I

𝜕t
+ ∇I ⋅ u + Idivu

)

+e−|∇I|
2

div
(
𝜓 �

⋅ ∇v
)
+∇2v−𝛿y�̂�yy−𝛿x�̂�xy−𝛿x�̂�,

(30)

�x ∶=
�

�x

�y ∶=
�

�y

� � ∶= � �
(|∇u|2 + |∇v|2).

(31)E2

(
�̂�xx
)
=∫Ω

e−|∇I|
2||∇�̂�xx||dxdy+∫Ω

||𝜀xx−�̂�xx||2dxdy.

(32)−div

(
e−|∇I|

2 ∇�̂�xx
||∇�̂�xx||

)
+ 2�̂�xx − 2𝜀xx = 0,

The main idea of this strategy is the image pyramid struc-
ture and image warping operation and is divided into the 
following steps: (a) an image pyramid structure of a particle 
image pair is constructed by a series of low-pass filters and 
a downsampling process on the image such that the resolu-
tions of the images in the pyramid are successively reduced; 
(b) the principal component displacements are estimated 
from the coarse-resolution level and then projected onto the 
next finer resolution level of the image pyramid, and the 
incremental displacements are then estimated while going 
down the image pyramid; and (c) an image warping opera-
tion is performed iteratively at each pyramid level so that 
only small displacement increments are estimated in each 
image warping operation.

In the image warping iteration process, let u
0
 denote 

the displacement field transferred from the previous 
warping iteration. Then, a warped intermediate image 
Iw(t + Δt) = I(x + u

0
Δt, t + Δt) is obtained by warping 

the second image I(x + uΔt, t + Δt) to the first image 
I(x, t) with u

0
 . In the current warping iteration, the small 
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displacement increment �u is estimated between the first 
image and the warped image rather than the second image. 
Finally, the updated u

0
= u

0
+ �u is transferred to the next 

warping iteration. As the warping iteration progresses, �u 
gradually approaches 0, u

0
 gradually approaches u , and 

the intermediate image Iw(t + Δt) gradually approaches 
the first image I(x, t) . The framework of the minimiza-
tion process of the proposed VD-VOF method is shown in 
Algorithm 1 with the image pyramid structure and image 
warping operation.

3.3  Complexity analysis and parameter settings

Complexity analysis is a common technique to compare 
the computational efficiency of different methods and has 
been used in the optical flow method literature (Kadri-
Harouna et al. 2013; Lu et al. 2019; Schmidt and Sut-
ton 2020). Assuming that the resolution of the particle 
image is N × N  , for the space complexity, the proposed 
VD-VOF method saves the image pyramid Itpyr{k} , the 
corresponding velocity field (u, v) and auxiliary scalar 
fields (�̂�xx, �̂�yy, �̂�xy, �̂�) at runtime, and its space complexity 
is K × N2 = O(N2) . In the image warping operation, the 
space complexity is K × L × N2 = O(N2) (the image size 
N is much larger than the layer of image pyramid K and 
the number of warping iterations L). Therefore, the space 
complexity of the proposed VD-VOF method is O(N2) . For 
the time complexity, the calculation of (Ix, Iy, It) is related 
to the image resolution N × N  , and the time complexity 
is O(N2) . The calculation of (�u, �v) consists of iteratively 
solving partial differential equations Eqs. 28 and 29, the 
number of SOR iterations P is generally close to N, and 
the corresponding time complexity is O(N3) . In the calcu-
lation of the auxiliary scalar fields (�̂�xx, �̂�yy, �̂�xy, �̂�) using 
Eq. 32 with fixed-point iteration, the number of fixed-point 
iterations is also close to N, and the corresponding time 
complexity is O(N3) . Therefore, the time complexity of the 
proposed VD-VOF method is O(N3).

The range of the smoothness weight parameter is approxi-
mately 2000 ≤ � ≤ 4000 . The size of the bilateral kernel 
is 5 pixels, the standard deviation for the space Gaussian 
is 0.85, and the standard deviation for the image intensity 
Gaussian and vorticity Gaussian is 0.1 (the image and vorti-
city intensities are normalized within [0, 1] ). The number of 
image warping iterations L is fixed to 5, the image warping 
interpolation method is the bicubic interpolation method, 
and the number of alternating iterations R is fixed to 10. The 
number of SOR iterations P is fixed to 200, and the number 
of fixed-point iterations Q is fixed to 200. The number of 
pyramid layers is approximately 2 ≤ K ≤ 5 , chosen based 
on the image size and fluid velocity, and the scale factor � 
for downsampling is set to 0.5.

4  Evaluations of synthetic data

In this section, different synthetic image sequences are used 
to investigate the performance of the proposed VD-VOF 
method. The main advantage of testing on synthetic image 
sequences is that the true velocity field is known and can be 
used for comparison with the velocity field estimated by dif-
ferent methods. Although these synthetic image sequences 
are usually generated under different ideal conditions, they 
are quite suitable for evaluating the performance of differ-
ent PIV measurement methods. A real experimental tracer 
particle image sequence is tested and discussed in the next 
section. The estimated velocity field from the VD-VOF 
method is compared against the true velocity field, as well as 
velocity estimations using a multiple-pass cross-correlation 
estimation (Insight 4G, TSI Inc.), the classical H & S R+S 
estimation by Ruhnau et al. (2005), the physics-based esti-
mation by Liu (2017), the field-segmentation-based estima-
tion by Lu et al. (2019), and the stochastic model estimation 
by Cai et al. (2018). The parameter settings of all compared 
approaches are described in detail in our previous work (Lu 
et al. 2019), and we do not discuss this process further here.

Hereafter, we follow a standard way to quantitatively 
evaluate the experimental results by computing the root 
mean square error (RMSE) and average angle error (AAE) 
over N pixels of the image:

where ut = (ut, vt) and ue = (ue, ve) denote the ground truth 
and the estimated velocity field, respectively. N represents 
the total number of pixels of the estimated particle image, 
and the index i represents the pixel position where the veloc-
ity is computed. RMSE and AAE are commonly used as 
the evaluation criteria in the velocity estimation of fluid 
flow (Chen et al. 2015; Cai et al. 2018; Lu et al. 2019). To 
avoid the influence of errors caused by the matrix extrapo-
lation, the velocity values of the widths of the three pixels 
around the image are ignored when calculating RMSE and 
AAE. Moreover, the spectrum analysis of the velocity field 
is introduced to evaluate the estimated flow structure, which 
is also a common evaluation in fluid flow motion estima-
tion (Heitz et al. 2010; Schmidt and Sutton 2019, 2020). 
This evaluation criterion can be used not only for simulation 
data but also for experimental data. Therefore, we compare 
the proposed method with other approaches based on these 
evaluation criteria.

(33)RMSE =

√√√√ 1

N

N∑
i=1
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|||
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,
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4.1  Analytic flows

These synthetic particle image data contain six different 
flows, which were generated by the Cemagref team (Carlier 
2005). The analytic flows can be divided into two catego-
ries: viscous flows and potential flows. Viscous flows include 
Poiseuille flow and Lamb-Oseen vortex flow, which are two 
well-known examples with velocity gradients. Poiseuille 
flow is viscous flow between two parallel plates with a con-
stant streamwise pressure gradient. The Lamb-Oseen vortex 
is a two-dimensional viscous flow with circular streamlines 
and a decreasing vorticity along the radial distance. The 
provided potential flows in the analytic flows data set are a 
uniform flow, a sink, a vortex and a potential flow around 
a cylinder with circulation. For each of the analytic flows, 

41 successive images are given with the same parameters 
(particle size, concentration, intensity); the corresponding 
ground-truth velocity fields of the six different flows are 
presented in Fig. 1.

As shown in Fig. 2, quantitative comparisons of various 
PIV methods can be performed using the evaluation criteria 
RMSE and AAE. On these six synthetic particle images, 
the proposed VD-VOF method provides better results than 
the previous advanced optical flow methods. Compared to 
the original model (H & S R+S estimation), different data 
terms (physics-based estimation) and smoothing terms (FS-
VOF estimation and stochastic model estimation) can be 
used to reduce the RMSE and AAE. Moreover, the addi-
tion of the regularization term based on Helmholtz velocity 
decomposition in the VD-VOF estimation is more effective 

Fig. 1  The ground-truth velocity fields for the analytic flows: a Poiseuille flow; b Lamb-Oseen vortex; c uniform flow; d sink flow; e vortex 
flow; f potential flow around a cylinder with circulation

Fig. 2  RMSE (a) and AAE (b) 
errors of velocity for analytic 
flow particle image sequences 
estimated by different methods: 
#01 Poiseuille flow; #02 Lamb-
Oseen vortex; #03 uniform flow; 
#04 sink flow; #05 vortex flow; 
#06 potential flow around a 
cylinder with circulation

(a) (b)
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in reducing the error. However, in the third data set #03 uni-
form flow, the calculation accuracy of the VD-VOF method 
is slightly lower than that of the multiple-pass cross-corre-
lation method. This is because there is no velocity gradient 
in the uniform flow, and the multiple-pass cross-correlation 
method based on the interrogation window will achieve 
smoother results. In later experiments, we demonstrate that 
our algorithm has comprehensive advantages in terms of 
resolution and accuracy over the multiple-pass cross-cor-
relation method.

4.2  2D DNS turbulent flow

This synthetic particle image data set is a 2D, homogeneous, 
isotropic and incompressible turbulent flow, which is gen-
erated by direct numerical simulation of the Navier-Stokes 
equations at Reynolds number Re = 3000 and Schmidt num-
ber Sc = 0.7 . The details of the simulation and synthetic 
particle generation are described in Carlier and Wieneke 
(2005). This data set contains typical difficulties for PIV 
measurement methods such as high velocity gradients and 
a large dynamic range. It has been used by many research-
ers in the fluid measurement community, including in our 
previous work (Lu et al. 2019). The data set consists of 100 
successive images at the resolution of 256 × 256 pixels , and 
the maximum displacement between two successive images 
is approximately 3.5 pixels . Fig. 3 demonstrates a particle 
image and the corresponding vorticity map with the ground-
truth velocity field.

The vorticity maps for a given instantaneous velocity 
field (at time t = 50) obtained by different methods are 
illustrated in Fig. 4. The corresponding velocity vectors are 
superimposed on each vorticity map, and the vorticity maps 
share a common colour legend. The bicubic interpolation 
method is used to interpolate the estimated velocity field 
of the multiple-pass cross-correlation method to obtain the 
same fine velocity field as the optical flow method. The 

vortex structures of different scales, which are comparatively 
blurred with the H & S R + S estimation and are slightly 
detected by the multiple-pass cross-correlation estimation 
and physics-based estimation, are substantially more accu-
rately estimated with the FS-VOF estimation, stochastic 
model estimation and the proposed VD-VOF method such 
that the vortices have a similar behaviour to that of DNS. 
Upon carefully comparing the ground-truth vorticity map 
in Fig. 3b, at x = 5 pixel , y = 250 pixel , the FS-VOF and 
stochastic model estimations have an incorrect local vortex 
structure, but it does not exist in the vorticity map estimated 
by the VD-VOF method. We can observe from the vorticity 
maps that the proposed VD-VOF method performs better 
than the other methods, particularly in the area with high 
vorticity.

We present in Fig. 5 the RMSE and AAE curves of the 
velocity for the 2D DNS particle image sequences estimated 
from different methods. This comparison result suggests that 
the proposed VD-VOF method outperforms the multiple-
pass cross-correlation and other advanced optical flow esti-
mations. The turbulent energy spectra of these estimations 
are plotted in Fig. 6. All energy spectra generated by differ-
ent methods are very close to the reference DNS spectrum 
at large scales. As clearly seen in Fig. 6, the proposed VD-
VOF method performs much better than the other methods 
at small scales since the proposed method has introduced the 
velocity decomposition model and image-driven self-adap-
tive regularization parameter that can protect small-scale 
motions in the turbulent flow.

In order to further demonstrate the influence and contribu-
tion of each module in the proposed VD-VOF method, the 
modified physics-based estimation and the basic VD-VOF 
method were added as compared approaches. The modi-
fied physics-based estimation comprises the first two items 
in Eq. 22, and the basic VD-VOF method is the form of 
Eq. 22 without the regularization parameters e−|∇I|2 and BF� . 
As shown in Fig. 7, both the regularization terms based on 

Fig. 3  Illustration of a sample 
frame (t = 50) from the 2D 
DNS synthetic image sequence: 
a particle image and b vorticity 
map with the ground-truth 
velocity field
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Helmholtz decomposition and the adaptive regularization 
parameters have effects on reducing RMSE and AAE errors, 
among which the former contribute more significantly. From 
these experiments, we can conclude that the proposed VD-
VOF method is very well adapted to the estimation of fluid 
flows with high vorticity and small-scale motion. In the next 
section, we present some experiments on real data of a hyper-
sonic compressible flow.

5  Evaluations of experimental data

A Mach 5 hypersonic wind tunnel experiment was car-
ried out to acquire the particle images of a compressi-
ble flow. The experiment was performed in the FD-30B 
hypersonic wind tunnel of the China Aerodynamics 
Research and Development Center (CARDC). The wind 

Fig. 4  Instantaneous vorticity field for the 2D DNS turbulent flow 
data set at t = 50 estimated by different methods: a result of multiple-
pass cross-correlation; b result of H & S R + S estimation; c result of 

physics-based estimation; d result of FS-VOF estimation; e result of 
stochastic model estimation; f result of the proposed VD-VOF method

Fig. 5  RMSE (a) and AAE (b) 
errors of velocity for the 2D 
DNS particle image sequence 
estimated by the different 
methods

(a) (b)
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tunnel was operated at a total pressure p0 of 0.5 MPa and 
a total temperature T0 of 350 K . A Quantel dual-cavity 
Nd:YAG-pulsed laser with a wavelength of 532 nm , a 
maximum energy of 430 mJ , a pulse rate of 10 Hz and a 
pulse duration of 60 ns was used. The particle images were 
recorded by a PowerView Plus 4MP-HS camera with a 
charge-coupled device (CCD) chip of 2048 × 2048 pixels 
and a Nikon AF Micro-Nikkor 200 mm f/4D prime lens, 
resulting in a visualized field of 100 mm × 100 mm and a 

spatial resolution of 20 pixels/mm . The laser pulses were 
separated by 0.5 �s , and a maximum of 200 image pairs 
were acquired in all experiments. A synchronizer with an 
accuracy of 0.25 ns ensured that the laser and the camera 
operated simultaneously. Titanium dioxide ( TiO2 ) parti-
cles with particle diameter 200 nm and relaxation time 
0.41 μs were chosen for seeding.

A 40◦ compression ramp model was used to form com-
plex flow field structures, such as the flow separation and 
shock wave/boundary layer interaction, as shown in Fig. 8a. 
Figure 8b is the average velocity field calculated from 100 
instantaneous velocity fields measured by commercial PIV 
software Insight 4G. The separation shock and the reat-
tachment shock are represented by two white dotted lines, 
and the grey area indicates the compression ramp model. 
The hypersonic laminar flow has different stages such as 
boundary layer transition, flow separation and reattachment 
throughout the flow process. The shear layer forms and 
grows along the flow direction gradually, the shear layer 
surrounds the recirculation zone, and the free stream sur-
rounds the shear layer. More details about the experimental 
design can be found in our previously published paper (Lu 
et al. 2019), and we omit that information here.

The instantaneous velocity fields and streamlines meas-
ured by different methods are shown in Fig. 9. The flow 
structures of the hypersonic laminar flow over the 40◦ com-
pression ramp are successfully captured through the different 
fluid flow estimations. The velocity field structures estimated 

Fig. 6  Spectrum analysis of the turbulent velocity for the 2D DNS 
particle image sequence, E(k) denotes the energy at a given frequency 
k 

Fig. 7  RMSE (a) and AAE (b) 
errors of velocity for the 2D 
DNS particle image sequence 
estimated by the modified 
physics-based estimation and 
the basic VD-VOF method

(a) (b)

Fig. 8  The particle image (a) 
and average velocity field (b) of 
hypersonic laminar flow over a 
40◦ compression ramp
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by different methods are basically the same. The trend of 
the streamlines clearly indicates the separation and reattach-
ment of the flow. The shear layer gradually forms and grows 
along the flow direction, and the shear structure and shearing 
degree increase. The shear layer surrounds the recirculation 
zone, and the free stream velocity outside the shear layer 
is uniform. Due to the influence of the flow separation and 
shearing effect, the velocity direction is deflected and shows 
a tendency to coincide with the direction of compression of 
the flow channel.

The overall trend of the streamline reflects both the recir-
culation motion in the separation zone and the reattachment 
of the flow on the compression ramp. In the result of mul-
tiple-pass cross-correlation, as shown in Fig. 9a, the thick-
ness of the shear layer is too large because of the interroga-
tion window. The recirculation motion is incomplete in the 
velocity field measured by the H&S R + S and physics-based 
estimations, as shown in Fig. 9b and c, respectively. The 
separation shock and reattachment shock are not smooth in 
the result of stochastic model estimation, and the recircula-
tion zone structure is compressed in the result of FS-VOF 
estimation. In comparison, the instantaneous velocity field 
measured by the proposed VD-VOF method is closer to 
the average velocity field in Fig. 8b. Compared with other 
instantaneous velocity fields, the structures of the recircula-
tion zone and shear layer in Fig. 9f is more complete, and the 
boundaries of the separation shock and reattachment shock 
are smoother. The non-quadratic penalty function and bilat-
eral filter kernel function in the proposed method ensure 
that the shock position obtained by this method is consist-
ent with that obtained by FS-VOF estimation. Similar to the 
synthetic data discussed in Sect. 4.2, spectrum analysis is 

performed for the six processing methods and are shown in 
Fig. 10. The spectrum obtained by the proposed VD-VOF 
method retains the inertial scales before reaching the energy 
dissipating range and is closer to the −5∕3 spectrum slope. 
From this experiment, we can conclude that the proposed 
VD-VOF method is very well adapted to the estimation of 
fluid flows with a compressible flow structure.

6  Conclusion

In this study, we propose a novel optical flow formulation 
by considering both particle image information and physics 
theory of fluid flow. According to the Helmholtz velocity 

Fig. 9  Instantaneous velocity fields and streamlines of 40◦ compres-
sion ramp flow at Mach 5 estimated by different methods: a result of 
multiple-pass cross-correlation; b result of H & S R + S estimation; 

c result of physics-based estimation; d result of FS-VOF estimation; 
e result of stochastic model estimation; f result of the proposed VD-
VOF method

Fig. 10  Spectrum analysis of the velocity fields for 40◦ compression 
ramp flow
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decomposition theorem, the proposed optical flow method 
decomposes the two-dimensional velocity field into four 
components: translation motion, linear distortion motion, 
shear distortion motion and rotation motion. In this context, 
regularization terms for different motion components are 
designed, which have a reasonable physical interpretation 
for the flow characteristics of the fluid. Subsequently, we 
design specific regularization parameters for the correspond-
ing regularization terms according to the flow characteristics 
of the motion components. These regularization parameters 
can be adaptively adjusted with changes in the image space 
and velocity field. In addition, the data term of the optical 
flow formulation is based on the projected-motion equation 
derived from the continuity equation, which protects the 
compressibility of the fluid in the two-dimensional plane. 
A bilateral filter kernel function is used to suppress image 
noise and illumination changes in the experiment.

The proposed VD-VOF method is based on the continuity 
equation and Helmholtz decomposition theorem, consider-
ing both particle image information and physics theory of 
fluid flow. It is suitable not only for turbulent or incompress-
ible flow but also for other flow conditions. To fully analyse 
the performance of the VD-VOF method, we analyse the 
comprehensive comparison results on synthetic and experi-
mental image sequences using advanced cross-correlation 
and various optical flow approaches. For particle image data 
of analytic flows, the proposed VD-VOF method provides 
better results than previous advanced optical flow methods. 
For the 2D DNS turbulent flow particle image sequence, we 
present the effectiveness of our method for turbulent flow 
fields, and it is shown that the proposed velocity decompo-
sition formulation outperforms some of the high-accuracy 
methods in the literature. Finally, we capture a compression 
ramp flow at a Mach 5 hypersonic flow field, and we dem-
onstrate the good performance of the proposed VD-VOF 
method for a hypersonic compressible flow.
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