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Abstract
This Letter establishes a physical interpretation of the regularization process that occurs as part of the solution to an opti-
cal flow problem within fluids. In doing so, a new regularization scheme for optical flow velocimetry (OFV) methods is 
developed through direct inspection of the Navier–Stokes equations. To the authors’ knowledge, this is the first time that a 
regularization scheme has been derived using the governing fluid transport equations for viscous fluids. The current regu-
larization scheme is based on the insight that regularization in OFV should play the same role as viscosity in fluid dynamics. 
Evaluation on synthetic particle image data from 2D and 3D direct numerical simulations of nonreacting and reacting flows 
show that the proposed regularization scheme reduces the absolute error and leads to enhanced robustness with respect to 
the choice of the strength of regularization.

1 Introduction

The most common imaging-based velocity measurement 
technique is particle image velocimetry (PIV), which com-
putes velocity fields from the cross-correlation of consecu-
tive tracer particle images. While a discussion of PIV is 
outside the scope of the present letter, an inherent property 
of PIV is the sparsity (or lower resolution) of the estimated 
velocity field due to the correlation-based analysis. For 
more details concerning PIV specifics, including advanced 
analysis approaches, the reader is referred to reference texts 
such as that by Raffel and coworkers (2018). An alterna-
tive to cross-correlation-based PIV algorithms is optical 
flow velocimetry (OFV), which extends the more general 
class of optical flow techniques from the computer vision 
community (e.g., Horn and Schunck 1981) to experimen-
tal fluid mechanics. Many advanced OFV methods have 
demonstrated an increase in accuracy and spatial resolution 
compared to state-of-the-art correlation-based PIV (Corpetti 
et al. 2002; Yuan et al. 2007; Kadri-Harouna et al. 2013; 

Héas et al. 2014; Chen et al. 2015; Cai et al. 2018; Schmidt 
and Sutton 2020).

The solution of the optical flow problem starts with the 
so-called conservation of intensity which is expressed as an 
advection equation

where I
(
x, t

)
 is the image intensity and v

(
x, t

)
 is the fluid 

velocity. Previous works (Liu and Shen 2008; Schmidt and 
Sutton 2019) have shown that Eq. (1) is equivalent to the 
transport equation for a passive scalar in fluid mechanics if 
v is the path-averaged fluid velocity within the imaging plane 
defined by the laser sheet, and it is assumed that there is no 
transport of tracer particles in or out of the laser sheet. The 
form of Eq. (1) also assumes that the projected fluid flow in 
the visualization plane is divergence-free, or equivalently, 
that flow divergence has no direct impact on the appear-
ance of particle images. If the velocity is constant between 
images, Eq. (1) can be integrated in time to yield the dis-
placed frame difference (DFD) equation

The majority of OFV algorithms solve Eq. (2) through a 
minimization problem that balances a data term, JD , against 
a regularization term JR as
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In Eq. (3), JD penalizes the mismatch between a pair of 
images: I0 and the motion-compensated image, I1 ; the regu-
larization term JR enforces smoothness on the estimated 
velocity field v ; and � is a scalar parameter that controls the 
relative influence of JD and JR . The interested reader can 
find further information on the construction of JD and the 
solution to Eq. (3) in any of the OFV papers cited above. The 
concern of the present Letter is the form of the regulariza-
tion term JR , its physical interpretation, and its impact on 
the resulting velocity field.

2  Motivation

The choice of the regularization term JR in the variational 
formulation of the optical flow problem (Eq. (3)) is very 
important for providing the proper closure and smoothing 
for an estimation of a velocity field. It is noted that there are 
other classes of OFV methods that seek to reduce or remove 
the dependence on the regularization and use statistical 
methods involving stochastic transport and turbulence mod-
els to estimate the velocity field (Héas et al. 2014; Chen et al. 
2015; Cai et al. 2018). While these formulations require less 
explicit regularization terms, they result in a considerably 
more complex form of Eq. (3) and are subject to the user’s 
choice of turbulence model, similar to the choice of subgrid 
model in large eddy simulations (LES). These implementa-
tions are beyond the scope of the present manuscript and will 
not be discussed further here.

Various forms of JR exist in the literature, but the majority 
are largely mathematical constructs whose primary purpose 
is to constrain/smooth the estimated velocity field. The most 
commonly used regularization is the original scheme (or 
similar variants) introduced by Horn and Schunck (1981), 
which is equivalent to first-order Tikhonov regularization:

As shown by Corpetti et al. (2006) the Horn and Schunck 
regularization penalizes the curl of a velocity field (i.e., vor-
ticity), which is inappropriate for turbulent fluid flows since 
vorticity is a key characteristic that should be calculated 
accurately. Alternatively, Corpetti et al. (2002) proposed the 
second-order div-curl regularization because it forces the 
divergence and vorticity of a flow into coherent “blobs,” 
which is more physically sound for fluid flows:

(3)v̂ = argmin
v

JD
(
I0, I1, v

)
+ 𝜆JR

(
v
)
.

(4)JHS
R

= ∫
�

||∇v1||2 + ||∇v2||2dx.

This form of regularization has been shown to produce very 
good results by a number of researchers (Corpetti et al. 
2002; Yuan et al. 2007; Schmidt and Sutton 2020).

It is clear that choosing JR is an opportunity to enforce 
fluid flow physics on the estimated velocity field, since JD 
is determined solely from the acquired images and includes 
no physical constraints on the estimated motion. While the 
second-order div-curl term leads to velocity field behavior 
that is qualitatively similar to that of real fluids, it has no 
firm basis in the equations which govern fluid motion, i.e., 
the Navier–Stokes equations, as it is based only on empirical 
observations of qualitative turbulent flow behavior. Methods 
such as the second-order div-curl and the penalization of 
the divergence proposed by Chen et al. (2015) solely focus 
on better preservation of vorticity with no particular con-
straint on the form of the regularization. Preservation of 
vorticity certainly is necessary for turbulent flows, but may 
not be sufficient to achieve optimal results. In the current 
work, we seek a form of JR that is directly motivated by the 
Navier–Stokes equations and hence is the best form of JR 
applicable for OFV in a broad range of fluid flows.

3  Regularization term

We begin by developing an intuitive understanding of the 
role of JR during the velocity estimation process. The discus-
sion is generally applicable to all OFV methods, although 
it is particularly insightful in the context of multiresolution 
strategies as illustrated below. Equation (3) represents a bal-
ance of the data term JD , which attempts to match images 
I0 and I1 as closely as possible with no constraints on the 
displacement (i.e., velocity) field, against a regularization JR 
which introduces constraints on the velocity field.

Wavelet-based optical flow velocimetry (wOFV) is one 
type of multiresolution optical flow analysis that will be used 
as an example (see Kadri-Harouna et al. 2013; Héas et al. 
2014; Schmidt and Sutton 2020, 2019). In wOFV, finer-scale 
motions are permitted as more wavelet scales are succes-
sively included, and JD causes the estimated velocity field 
to fluctuate greatly over very small spatial scales. While 
the exact match of the images improves very slightly, the 
velocity field quickly becomes nonphysical, with much more 
energy contained at high wave numbers (fine scales) than is 
physically possible for a real fluid. While wavelet sparsity 
in the velocity field provides closure of the ill-posed inverse 
problem, it cannot adequately enforce realistic fluid phys-
ics on the velocity field. This is why JR becomes important 
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in wOFV methods as it provides both closure and physical 
smoothness.

Overall, the role of JR in any OFV method is to impose 
smoothness (i.e., regularity) on the velocity field by penal-
izing strong fluctuations across fine spatial scales either 
explicitly for multiresolution approaches or implicitly for 
other methods. In real fluid flows, this same role, namely 
enforcing smoothness on the velocity field at fine scales, is 
carried out by viscosity. Therefore, the physically motivated 
form of JR that we seek should act on the estimated velocity 
field in Eq. (3) in the same way as viscosity acts on velocity 
in the Navier–Stokes equations. This is clearly seen in the 
solution of the optical flow problem in Eq. (3). The data 
term JD only is constrained by permissible motion from an 
advection equation (Eq. (1)), which is the same functional 
form as the advection operator of the momentum equation 
for constant density flows. To faithfully mimic fluid behav-
ior, the transient and advective terms should be balanced 
by a diffusive term, which for velocity is the diffusion of 
momentum or viscosity. Thus, the remaining task is to deter-
mine the resulting form of JR that mimics the role of viscos-
ity. It is important to note that we do not explicitly seek to 
solve the full Navier–Stokes equations using optical flow 
nor constrain the solution of v̂ to satisfy the Navier–Stokes 
equations. Our objective only is to determine the form of JR 
that will enforce smoothness on v̂ in the same way as viscos-
ity acts to diffuse momentum in physical fluid flows, thus 
appropriately balancing the purely advective behavior of JD.

3.1  Derivation

We begin with the compressible form of the Navier–Stokes 
equations. Equations (6) and (7) give the conservation of 
mass and momentum, respectively, for a flow with variable 
density, negligible body forces, and constant viscosity:

It is important to use the compressible form of the 
Navier–Stokes equations for two reasons. First, this form 
is more general and is more applicable to compressible and 
reacting flows that have variable density. Second, and more 
importantly, many velocimetry applications, including OFV 
methods, involve planar images, which are two-dimensional 
slices through three-dimensional flows. In this case, even if 
a flow has constant density, the projection of the velocity 
field in two dimensions is not divergence-free (Liu and Shen 
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2008). To see this effect, constant density is assumed for 
simplicity and Eq. (6) is split into its various components:

Since no information about the out-of-plane component of 
velocity v3 nor its variation in the out-of-plane dimension x3 
can be determined from a planar image, a divergence-free, 
three-dimensional flow can be treated equivalently as a two- 
or three-dimensional flow with divergence. This is due to the 
fact that the term �v3

�x3
 becomes arbitrary in the same manner 

as 
(
v ⋅

∇�

�

)
 and 

(
�v3

�x3
+ v ⋅

∇�

�

)
 in 2D and 3D flows with diver-

gence, respectively (as � cannot be determined from planar 
imaging).

By inspection of Eq. (7), it is noted that JR will smooth 
the motion estimation in an equivalent manner as viscosity 
smooths an actual flow if it penalizes the quantity

A regularization term that penalizes the quantity shown in 
Eq. (9) specifically will enforce smoothness on the velocity 
field by reducing the magnitude of second derivatives of 
v , in a similar manner to the div-curl regularization term 
shown in Eq. (5). However, unlike the div-curl regulariza-
tion term, the proposed viscosity-inspired regularization 
term will penalize the derivatives of v and hence enforce 
smoothness, in the same way as viscosity imposes smooth-
ness on a physical fluid flow according to the Navier–Stokes 
equations. Typically, JR penalizes the square of the L2 norm 
of a vector expression (for example, see Eqs. (4) and (5)) 
such that new regularization parameter takes on the form of

or in terms of partial derivatives:

It is noted here that the quantity in Eq. (10) bears resem-
blance to the strict enforcement of Stokes flow in the fluid-
based image registration method of Christensen et al. (1996). 
Image registration and optical flow are closely related 
inverse problems in image processing. Furthermore, if diver-
gence-free conditions are assumed, the derived form of JR 
will take on the form of Laplacian regularization:
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Laplacian penalization is widely used in image process-
ing for filtering and smoothing Paris et al. (2011). To the 
authors’ knowledge, a Laplacian regularization scheme has 
not appeared in the OFV literature with the exception of 
the work by Kadri-Harouna et al. (2013), but no physical 
justification was given for doing so.

3.2  Implementation

For the remainder of this Letter, a wOFV framework will 
be used, although implementation of Eq. (10) in any OFV 
method should be possible with schemes likely similar to 
those used for second-order div-curl regularization Cor-
petti et al. (2002, 2006). The viscosity-inspired regulariza-
tion term J�

R
 is implemented in a straightforward manner in 

wOFV methods without the need to develop a stable numeri-
cal scheme to handle the associated Euler–Lagrange equa-
tions. This is performed using the results of Beylkin (1992), 
as first implemented by Kadri-Harouna et al. (2013). As 
shown by Schmidt and Sutton (2020), the implementation 
can be performed efficiently using matrix multiplications 
by matrices N(n) , which enact differentiation in the wavelet 
domain according to the chosen wavelet basis. Using this 
approach, JR is derived in the context of wOFV as

where �
i
 is the wavelet transform of the ith component of 

the velocity field v and   :   denotes the Frobenius inner 
product.

4  Sample results

Performance of the wOFV method utilizing the regu-
larization scheme derived in this Letter (denoted J�

R
 ) is 

evaluated using a hierarchy of simulated data. Four addi-
tional common regularization schemes, including the 
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three identified above and a second-order Tikhonov regu-
larization scheme previously used by the authors Schmidt 
and Sutton (2019), also are utilized and compared to 
results using J�

R
 . First, the schemes are evaluated using 

the two-dimensional direct numerical simulation (DNS) 
of isotropic, incompressible turbulence from Carlier and 
Wieneke (2005). This simulation is commonly used in the 
OFV community to benchmark algorithm performance and 
has synthetic particle images associated with the velocity 
fields that can be processed with various methods. Fur-
ther evaluation of the proposed regularization scheme 
involves 3D flows with divergence (either projected or 
physical and projected). First, we use a three-dimensional 
DNS of homogeneous isotropic turbulence with constant 
density (denoted 3D-NR). The DNS was constructed 
with Lagrangian flow tracers, which are used to create 
synthetic particle images using the approach described 
in Schmidt et al. (2019). Unlike the 2D DNS of Carlier 
and Wieneke, the 2D velocity fields extracted from the 3D 
DNS contain significant amounts of projected divergence 
in the 2D planes, even though the 3D flow is physically 
divergence-free. Finally, the regularization schemes are 
evaluated using a 3D DNS of a reacting non-premixed 
hydrogen–air system in a homogeneous isotropic turbu-
lent flow (denoted 3D-R), which is described in further 
detail in Schmidt et al. (2019). As in the 3D-NR case, the 
DNS was constructed with Lagrangian flow tracers to cre-
ate synthetic tracer particle images. The reacting flow has 
three-dimensional flow divergence in addition to projected 
2D divergence. It is noted that the magnitude of the three-
dimensional divergence is only 9% of the projected 2D 
divergence in this flow. This indicates that in many flows 
of interest the projected 2D divergence may be of greater 
importance when considering the effects of divergence in 
planar velocimetry applications.

The calculated 2D vorticity ( �3 =
�u2

�1
−

�u1

�x2
 ) from the 

“true” DNS velocity fields at a single instance in time is 
shown for each flow in the left column of Fig. 1. For each 
of the three-dimensional simulations (3D-NR and 3D-R), 
only a sample plane from the full 3D domain is shown. 
The computed vorticity from the estimated velocity fields 
using wOFV with no explicit regularization term (� = 0) 
is shown in the center column, and with the new viscosity-
based regularization in the right column. It is clear by 
comparing the vorticity fields across the columns that 
explicit regularization JR acts to smooth the flow computed 
from the data term JD , removing nonphysical microscale 
fluctuations (i.e., noise) and generating velocity and vor-
ticity fields are more faithful representations of the true 
fields.



Experiments in Fluids (2021) 62:34 

1 3

Page 5 of 6 34

The error in the estimated velocity fields using the vari-
ous regularization methods is quantified using the normal-
ized root-mean-square error, �v , defined as

where v̂ is the estimated velocity and v is the true velocity, 
defined as the DNS result for the synthetic data. Figure 2 
shows �v as a function of the regularization parameter � for 
the three instantaneous velocity fields used to calculate the 
2D vorticity fields shown in Fig. 1. The calculated value 

(14)𝜀v =

�∑
��v̂

i
− v

i
��2

∑
��v

i
��2

,

of �v for a given value of � is similar for all instantane-
ous velocity fields (and corresponding synthetic particle 
images), and thus only one is used to report the normalized 
error as a function of � . The error using the wOFV method 
with no explicit regularization term ( � = 0 ) and error using 
a commercial cross-correlation-based PIV algorithm (TSI 
Insight4G) are shown for comparison. The velocity results 
and associated error using the current PIV software are very 
similar to results using other commercial packages (e.g., 
LaVision DaVis).

The results show that the new viscosity-inspired regu-
larization scheme produces the lowest error of the seven 
schemes used to estimate velocity. Although the absolute 
improvement in �v using J�

R
 is modest ( ≈ 3–4% ), (1) it 

achieves the lowest error across all three flows which show 
different flow physics (i.e., mixing, heat release, diver-
gence) and topology (range of length/timescales) and (2) 
the error for J�

R
 using nonoptimal values of � is still lower 

than the minimum error for the other schemes even when 
the value of � is ± 40% away from its optimal value. Hence, 
the proposed regularization not only gives an improve-
ment in the absolute value of the error compared to other 
schemes, but the results are significantly more robust and 
less sensitive to the choice of � . The latter result is consist-
ent across the three turbulent flows considered. It should 
be noted that previous regularization schemes are largely 
mathematical expressions, predominately constructed to 
minimize error. The current regularization scheme outper-
forms the previous schemes, achieving a reduction in error 
and increase in robustness while using a physically mean-
ingful form of the regularization. This further strengthens 
the case that J�

R
 is currently the best form of regularization 

for OFV in fluid flows.

Fig. 1  Example 2D vorticity field calculated from the DNS velocity 
(left column); vorticity computed from wOFV velocity estimation 
with no explicit regularization (center column); and vorticity com-
puted from wOFV velocity estimation with viscosity-based regu-
larization (right column) for the two-dimensional, nonreacting (top), 
three-dimensional, nonreacting (center), and three-dimensional, react-
ing (bottom) flows
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Fig. 2  Normalized RMS error ( �
v
 ) as a function of � for several regularization schemes as applied to a two-dimensional, nonreacting b three-

dimensional, nonreacting, c three-dimensional, reacting flows
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5  Summary and conclusions

The focus of this Letter is to establish a physical interpreta-
tion of the regularization process that occurs as part of the 
solution to an optical flow problem within fluids. In doing 
so, a novel, physically sound regularization scheme for OFV 
methods has been developed using the Navier–Stokes equa-
tions as direct guidance. Inspection of the Navier–Stokes 
equations shows that a new regularization scheme that 
enforces smoothness on calculated velocity fields in a way 
that mimics the role of viscosity in fluid flows is physically 
meaningful and likely applicable across a broad range of 
fluid problems. While the new regularization term does not 
constrain the solution of the optical flow problem to conform 
to the Navier–Stokes equations, it does enforce smoothness 
on the solution in a physically sound way using the viscous 
term of the Navier–Stokes equations. The new, viscosity-
inspired regularization was implemented within the context 
of a wavelet-based optical flow velocimetry (wOFV) frame-
work for testing, but it is expected to be applicable to a broad 
range of OFV methods. The new regularization approach 
was evaluated on three sets of synthetic tracer particle data 
from a series of DNS test cases that cover 2D, incompress-
ible turbulent flow; 3D, nonreacting turbulent flow; and 
3D, reacting flow. For all test cases, the new regularization 
scheme leads to lower overall error in the velocity estima-
tion. While the improvement in absolute error for three DNS 
cases is small, the error for the viscosity-based regulariza-
tion scheme is less sensitive to the choice of the weighting 
parameter, � , which is very important for the use of OFV 
methods on experimental data, since the optimal value of 
� cannot be precisely determined a priori for a given data 
set. The primary strength of the new regularization scheme 
is that, to the authors’ knowledge, it is the only one that is 
rigorously based on flow physics using the Navier–Stokes 
equations. Thus, we recommend that this form of the regu-
larization parameter be applied broadly to fluid dynamics 
problems as opposed to arbitrary mathematical forms.
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