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Abstract 
Improving pressure rise capabilities of axial compressors requires an in-depth understanding of the losses produced in the tip 
leakage region. Here, a generic setup that magnifies the tip region of an isolated, non-rotating blade is used with the objec-
tives of describing the main flow components and evaluating the related sources of loss. The flow at the tip is structured by 
the jet flow out of the gap which, under the effect of the main stream, rolls-up into a tip-leakage vortex. The current setup 
is characterized by the tip gap height and the thickness of the incoming boundary layer at the casing, here a flat plate, for a 
given incidence of the blade. Measurements are performed using LDV and a multi-port pressure probe. Variations in the tip-
leakage flow are found to be mainly driven by gap height. A small, intermediate and large gap regimes are more specifically 
found, with threshold around 4% and 8% of gap to chord ratio for the present setting. The incoming boundary layer thickness 
is shown to provoke a notable effect on the vortex lateral position and total pressure losses. The local entropy creation rate is 
computed from LDV data and used to identify the sources of loss in the flow. A decomposition into wake and vortex losses 
is further proposed, allowing to relate the contributions of the various flow components to the overall losses. An empirical 
model of the formation of the tip vortex is developed to account for the increased losses as a function of gap height. The 
model provides a useful mean for the practical approximation of the gap sensitivity of pressure losses.
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Γ	� Tip-leakage vortex circulation
Γ��	� Total secondary vorticity
(yv, zv)	� Vortex center position
CPt = (Pt∞ − Pt)∕(
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)	� Total pressure loss coeff.
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	� Wake loss coeff.

Cvortex = CPt − Cwake	� Vortex loss coeff.
KP = (Ps − Ps∞)∕(
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)	� Pressure coeff.

CL	� Airfoil lift coeff.
�D	� Discharge coeff.
U∞	� Upstream velocity
Uj	� Gap exit jet velocity
P	� Pressure
T	� Temperature
s	� Entropy per unit of mass
�	� Density
�	� Dynamic viscosity
�	� Kinematic viscosity
ui	� Mean velocity
u′
i
	� Fluctuating velocity

Sij =
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	� Strain rate tensor

�ij = −⟨u�
i
u�
j
⟩	� Reynolds stress tensor

k = ⟨u�
i
u�
i
⟩	� Turbulent kinetic energy

∙m	� Mass-flow average
∙s	� Surface average
∙∞	� Upstream quantity
∙t	� Total quantity
∙s	� Static quantity
⟨∙⟩	� Ensemble average
∙+	� Pressure side quantity
∙−	� Suction side quantity
∇∙	� Nabla operator
LDV	� Laser Doppler velocimetry

1  Introduction

The need for a cleaner aviation requires the development 
of lighter, quieter and more fuel efficient turbojet engines. 
This can be achieved by increasing the pressure rise capa-
bilities of axial compressors and by extending their range 
of stable operation. A major obstacle to proceed along this 
path though lies in the flow going through the gap between 
the tip of rotor blades and the casing wall of the engine, 
also known as tip-leakage flow or tip-gap flow. Indeed, 
the flow at the gap exit rolls-up into a tip-leakage vortex 
that concentrates high total pressure losses (Doukelis et al. 
1998a; Kang and Hirsch 1993) which limit both the com-
pression ratio and the efficiency of compressors. Several 
studies (Saathoff and Stark 2000; Vo et al. 2008) also indi-
cate that the impact of the tip-leakage vortex trajectory with 

the leading edge of the adjacent blade is a precursor of 
compressor stall.

The first parameter of interest concerning the tip flow 
phenomenology is gap height. Indeed, while a design param-
eter of a machine, it is also subject to variations in operation 
because of wear and thermal loads. That is why knowing 
its influence on the tip-leakage flow is essential. Previous 
works have shown that larger gaps lead to higher total pres-
sure losses (Flachsbart 1931; Lakshminarayana and Horlock 
1963; Storer and Cumpsty 1994; Doukelis et al. 1998a) and 
reduce the pressure rise capabilities and the surge margin 
of compressors (Saathoff 2001; Kameier and Neise 1997; 
Smith and Cumpsty 1982). However, most of these studies 
focus on a global analysis of total pressure losses and give 
little information on the underlying mechanisms of loss gen-
eration. Identifying them is hence one of the main motiva-
tions of the present paper.

The second parameter of interest is the boundary layer 
thickness at the casing wall. A computational analysis of its 
influence on the tip-leakage flow in a compressor rotor and 
a cascade was performed by Brandt et al. (2002), yielding 
that a thicker inlet boundary layer leads to higher total pres-
sure losses. Similar results were obtained experimentally by 
Storer and Cumpsty (1994). In addition, when the boundary 
layer thickness is increased, not only the tip-leakage vortex 
detaches from the blade closer to its leading edge but its 
trajectory also yields more inclination about the blade pas-
sage. The interaction of the incoming boundary layer with 
the blade leading edge is also known to possibly generate 
a horseshoe vortex. Hot-wire measurements in a compres-
sor rotor performed by Inoue and Kuroumaru (1989) sug-
gested the presence of this structure in the flow. Friction 
lines visualizations of Kang and Hirsch (1993), in which 
a saddle point appears at the casing for a small gap height, 
give credits to this conjecture. Nonetheless, it seems that 
this tip-leakage flow feature has not been further investi-
gated so far.

Analytical models are often used in preliminary designs of 
compressors in order to quickly estimate the losses induced 
by the tip-leakage flow. There is essentially two approaches. 
The first one, introduced by Prandtl (1919), is based on the 
lifting line theory which gives an estimation of the vortex 
induced drag. The presence of the wall, where a slip condition 
is applied, is materialized by the symmetry plane of a slotted 
wing. This approach fails to model the tip-leakage flow for 
small gap heights that represent the biggest interest for tur-
bomachine applications. Indeed, Flachsbart (1931) has shown 
that induced drag predicted with this approach was overesti-
mated by 30% . To circumvent this problem, Lakshminarayana 
and Horlock (1963) introduced an empirical coefficient in this 
model that represents the retained lift at the blade tip. The 
second approach, initiated by Rains (1954), assimilates the 
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tip-leakage flow as a jet in cross-flow. For instance, Denton 
(1993) with Storer and Cumpsty (1994) built a simple model 
based on the assumption that the jet flow exiting the gap 
completely mixes-out with the main flow. Their model gives 
a good estimation of the increment of total pressure losses 
with gap height. This second approach, based on an analogy 
with a jet in cross-flow, seems to be well suited to model the 
tip-leakage flow and will be considered in the present paper 
to estimate the circulation and the losses of the tip-leakage 
vortex.

RANS simulations are widely used in compressor design, 
insofar as it gives a prediction of the flow for complex geom-
etries with a moderate computational cost. However, because 
of the complexity of the flow and of the turbulent interactions, 
the tip-leakage flow still represents a challenge for these com-
putations (Kang and Hirsch 1996; Borello et al. 2007; Decaix 
et al. 2015). Improvement of the predictions of given by CFD 
calculations based on RANS approach relies on the availabil-
ity of detailed experimental data of the tip-leakage flow, as 
provided here.

The present study uses a generic setup to investigate the 
flow in the tip region. A single blade is installed in a wind 
tunnel and set orthogonal to a flat plate that plays the role of 
the casing wall. This flat and non-rotating setup reproduces 
many of the important features of the real flow, namely the 
tip-leakage flow, the tip-leakage vortex and its interaction with 
the casing wall. Taking these effects alone while discarding 
the others allows a finer analysis of their characteristics while 
providing fundamental knowledge, applicable to more real-
istic situations. This way, conclusions on this generic setup 
can provide useful guidelines for a wide variety of applica-
tions where a tip-leakage flow is present such as compres-
sors, turbines, variable inlet guide vanes and even ducted fans. 
Furthermore, two fundamental parameters of the tip leakage 
flow, namely gap height and incoming boundary layer thick-
ness at the casing wall, can be easily changed with this generic 
geometry. The description of the sensitivity of the flow to these 
two parameters represents the first goal of the work that natu-
rally offers a phenomenological understanding while expos-
ing its various configurations. The second goal is to identify 
the sources of total pressure losses and ultimately provide a 
simple model over the parameter space taken into account. 
Beyond these goals, the development of a basic experimental 
database is motivated by the need to provide an improved and 
extensive collection of data to confront analytical models and 
CFD calculations.

The present paper is organized in four sections. The experi-
mental setup is presented in more detail in Sect. 2. A detailed 
description of the effect of gap height and casing boundary 
layer thickness on different tip-leakage flow features is pre-
sented in Sect. 3. The tip-leakage flow losses are analyzed in 
Sect. 4 and are modeled in Sect. 5.

2 � Experimental setup

The data presented here are normalized by the upstream 
velocity U∞ , blade chord c and upstream total temperature 
Tt∞.

2.1 � Wind tunnel test model

The analysis is based on wind tunnel tests that have been 
carried out in the low subsonic S2l facility, located at the 
ONERA Meudon center. The setup is shown in Fig. 1. 
The facility features an open circuit, with a test section of 
length 2 m and a circular shape of diameter 1 m. The setup 
consists of a fixed rectangular wing placed perpendicular 
to a flat plate, which represents the blade and the casing, 
respectively. The coordinate system and the origin O are 
shown in Fig. 1.

The parameters considered for this study are provided 
in Table 1. In order to have the maximum blade loading 
while preventing flow separation, most of the experiments 
are conducted with an angle of attack � of 10◦ . The case 
� = 0◦ is only considered in the analysis of the horseshoe 
vortex (HSV) upstream of the blade leading edge. Gap 
height h is changed by adjusting the wingspan with a 

Fig. 1   Schematic view of the isolated blade setup in the test section. 
O indicates the origin of the coordinate system

Table 1   Experimental parameters

U∞ 40 m/s
Re 550,000
M 0.1
Tu 0.07%

Airfoil section NACA0012
c 200 mm
� 10◦

+ 0◦ for HSV
h/c 0.5–8%

+ 13% for L∕c = 3.3

+ 0% and 0.25% for HSV
L/c 1.8/3.3
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precision of ± 0.05 mm. The error of parallelism between 
the blade tip and the casing wall is about 0.06◦ . This setup 
can reproduce values of h/c encountered in real compres-
sors, from 0.5 to 3.0% of the chord, while larger gaps, up 
to 13% of chord, can also be tuned. An ensemble of dis-
crete values in this range has been considered. Smaller gap 
heights, h∕c = 0 and h∕c = 0.25% , are also considered in 
the analysis of the horseshoe vortex. The boundary layer 
thickness upstream of the blade is adjusted by changing 
the distance L between the leading edges of the casing and 
the blade. Two values of L/c are considered, 1.8 and 3.3. 
Due to practical reasons, not all combinations of param-
eters were investigated.

The flow behaves as incompressible (Mach number is 
nearly 0.1), and freestream turbulence was determined by 
hot-wire measurements made 1.5c upstream of the blade 
leading edge. The turbulence intensity Tu is 0.07%.

2.2 � Description of the boundary layers involved 
in the setup

This section indicates the preliminary qualification of the 
boundary layers at the casing, wing surface and upper wall.

Casing The turbulent state of the boundary layer at the 
casing wall is triggered by a tripping tape applied 15 mm 
downstream of the plate leading edge (which follows a 
Rankine body shape). The tripping tape is a 125 μ m thick 
zigzag turbulator tape with 6 mm width and 70◦ angle of the 
brand Glasfaser-Flugzeug-Service. Two-component LDV 
measurements, described in the next section, have been used 
to evaluate the boundary layer. These measurements were 
realized for h∕c = 13% and � = 0◦ to mitigate the pressure 
gradient imposed by the blade. The properties of the bound-
ary layer 0.5c upstream of the blade leading edge are given 
in Table 2. For the two values of L, the shape factor is 1.3, 
indicating a fully turbulent state.

Blade The same tripping tape as before is placed at the 
two sides of the airfoil, 20% of the chord downstream of the 
leading edge. The tripping tape has an effect on the pressure 
side only. At the suction side, transition occurs naturally 
shortly after the leading edge. In Fig. 2, the measured pres-
sure distribution around the airfoil for a Reynolds number 
of 550, 000 is compared to measurements for Re = 210,000 
and to a 2D RANS simulation for Re = 550,000 . The cal-
culation uses the fully turbulent k − � SST model of Menter 
(1994). Figure 2 shows a good agreement between measure-
ments and calculations. The pressure distribution at Reyn-
olds 210,000 exhibits a pressure plateau close to the leading 
edge, which is typical of a laminar separation bubble, see, 
for instance, Hu and Yang (2008). In the inset of Fig. 2, it 
can be seen that the pressure distribution for Re = 550,000 
also exhibits an alteration of the slope, revealing here also 
the existence of a short laminar separation bubble, close to 
the leading edge. Downstream of this laminar separation, 
due to the destabilization of the bubble, the flow reattaches 
in a turbulent state, causing the natural laminar–turbulent 

Table 2   Casing wall boundary 
layer characteristics 0.5c 
upstream of the blade

L/c 1.8 3.3
�
0.99

∕c 2.68% 4.95%
�∗∕c 0.40% 0.78%
�∗∕c 0.33% 0.60%
H∗ 1.30 1.30
Re�∗ 1800 3400

Fig. 2   Pressure distribution 
around the NACA0012 airfoil 
for � = 10◦ ( h = 0 ). Compari-
son between experimental and 
numerical, RANS, data at two 
different Reynolds numbers. 
The pressure taps in the experi-
ment are located at the altitude 
z = 1.7c
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transition at the suction side, in between x∕c = 2% and 
x∕c = 5% . Due to the fully turbulent flow hypothesis, the 
calculation does not capture the laminar separation bubble. 
This explains the small discrepancy between experimental 
and numerical results, visible in the inset of Fig. 2.

Upper wall The boundary layer velocity profile at the 
upper wall (see the description in Fig. 1) was obtained using 
a flat pitot tube placed 2.23c upstream of the blade leading 
edge. The boundary layer, displacement and momentum 
thicknesses are, respectively, 11.45% , 1.45% and 1.15% of 
chord. The shape factor is 1.3, indicating here also a fully 
turbulent state.

2.3 � Measurements

The measurement setup is described in Fig. 3. The casing 
is equipped with 32 pressure taps in the gap area, which 
are connected to an ESP differential pressure scanner. The 
uncertainty on the pressure measurement is ± 16 Pa.

A 5-hole pressure probe was used to measure velocity 
and pressure in a plane downstream of the blade, as shown 
in Fig. 3. The probe has a diameter of 1.6 mm. The uncer-
tainties associated with its calibration method are ± 0.001 
for the Mach number and ± 0.15◦ for pitch and yaw angles.

Two-component laser Doppler velocimetry (LDV) was 
used to investigate the flow at the casing, upstream of the 
blade and for � = 0◦ . These measurements were made in 
forward scattering configuration. The green and blue beams 
(514.5 nm and 488 nm) are conducted to a Dantec Fiberflow 
emitter. The receiving optics are composed of an in-house 
Cassegrain telescope (200 mm aperture) equipped with two 
photomultipliers. The spatial resolution is approximately 
0.10 mm, and measurements were possible down to approxi-
mately 0.15 mm above the casing. For these measurements, 
the flow is seeded with DEHS droplets generated by a Laskin 
nozzle and injected upstream of the wind tunnel.

The three-component LDV technique was then 
employed for � = 10◦ . The presence of the blade imposed 

a back-scattering configuration for the (y, z) measurement 
planes as indicated in Fig. 3. The optical arrangement for 
514.5 nm and 488 nm lines is similar to the 2 components 
configuration. A third pair of laser beams (532 nm) is con-
ducted to a second emitting optical system, and a second 
Cassegrain telescope is dedicated for receiving the light at 
this wavelength. In this case, the spatial resolution is about 
0.15 mm. Because of light reflections, it was not possible 
to get closer than 10 mm from the blade and 0.3 mm from 
the casing in general. In addition, other regions of the flow 
could not be measured, as will be apparent later on. For 
this configuration, a homogeneous seeding at the intake of 
the wind tunnel is generated with a Magnum fog machine 
(glycol droplets).

The laser beams are generated by three 1 W Coher-
ent Genesis laser sources. The Doppler frequency shift is 
measured with a Dantec BSA processor. The calibration 
was done by measuring directly the angles of the laser 
beams with a theodolite. The uncertainty on the veloc-
ity measurement coming from the calibration procedure 
and the optical adjustments is ± 0.1 m/s. The statistical 
moments are computed on 10,000 samples for two-compo-
nent measurements. For three-component measurements, 
3000 samples were taken, which is enough for the estima-
tion of the average to converge and to get a qualitative 
estimation of the Reynolds stress tensor. The statistical 
moments are computed with the average weighted by the 
transit time of the particles in the measurement volume.

Fig. 3   Description of the vari-
ous measurements performed 
in the current experiment. The 
figure indicates the pressure 
taps localized at the casing wall 
in the gap region, the various 
measurement planes for the 
LDV and the plane at x = 1.05c 
measured using the 5-hole pres-
sure probe. Mesh resolution is 
given in Table 3

Table 3   Mesh resolution of 5-hole probe and LDV measurement 
planes

Suction side ( y < 0) Leading edge ( x < 0)

Δx∕c ∅ 3.5 × 10−3

Δy∕c 10 × 10−3 ∅

Δz∕c 5 × 10−3 0.6 × 10−3
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3 � Description of the flow

This section aims at analyzing the sensitivity of the tip-
leakage flow to the gap height and incoming boundary 
layer thickness at the casing wall. This analysis is based 
upon a detailed description of several key features of this 
flow.

3.1 � Horseshoe vortex in the leading edge area

A horseshoe vortex can form for small gap height as 
observed, for instance, by Kang and Hirsch (1993). Here, 
the presence of a horseshoe vortex is investigated by look-
ing at the velocity field in a (x, z) plane upstream of the 
blade leading edge, as shown in Fig.  3. The reference 
situation for a horseshoe vortex is for zero gap height. As 
explained by Millikan (2018), the formation process relies 
on the reorientation of the vorticity present in a boundary 
layer around the object opposing the flow.

Gap height, given in ratio of the incoming boundary 
layer momentum thickness h∕�∗ , and blade loading are 
the fundamental parameters of the problem and are varied 
thereafter. The thick incoming boundary layer case is con-
sidered for varying h∕�∗ as it produces larger structures in 
physical space, which eases measurements. The analysis 
uses the vorticity field in front of the blade leading edge 
obtained from LDV. The results are shown in Fig. 4.

A horseshoe vortex is found in the limit case of a wing-
body type junction h = 0 . This is apparent in Fig. 4a and 
agrees with the results by Hasan et al. (1986), Devenport 
and Simpson (1990) and Bloxham et al. (2008). The flow 
presents an area of reversal flow close to the casing wall 
and a region of high vorticity �y , which is similar to the 
PIV measurements conducted by Bloxham et al. (2008), 
upstream of a junction between a cylinder and a flat plate. 
It also appears that the horseshoe vortex switches between 
two preferred states over time, as indicated by the prob-
ability density functions (pdf) of the flow at several loca-
tions about the reversal flow region. Outside this reversal 
area, at location specified by ( △ ) in Fig. 4a, both u′

x
 - and 

u′
z
-pdfs have a Gaussian shape. Inside this area, at location 

specified by ( ▽ ), the pdf of u′
x
 exhibits two maxima and 

a similar account can be made with the u′
z
-pdf, although it 

features a weaker intensity. This two-peaked pdfs behavior 
is usually associated with bimodal dynamics and has been 
observed in several studies on horseshoe vortices before 
(Devenport and Simpson 1990; Yakhot et al. 2006; Prais-
ner and Smith 2006). It thus appears that bimodality is 
quite generic of horseshoe vortices. Although a systematic 
validation of this property is strictly speaking lacking in 
current state of knowledge, it is helpful to consider it as a 

marker of the vortex nature of the flow reversal observed 
in the present flow, as otherwise distinguishing between a 
simply recirculating flow and a vortex is uneasy.

The conditions for the appearance of a horseshoe vortex 
at finite gap heights are investigated in the rest of Fig. 4. 
The largest gap heights, in Fig. 4c, f, show no flow reversal, 
which amounts to the boundary layer remaining attached. 
A reversal flow area appears when the ratio h∕�∗ is reduced 
below 0.4 for � = 0◦ and 0.8 for � = 10◦ , see Fig. 4b, e. With 
further reduction of h∕�∗ , the reversal flow and high vorticity 
areas widen, see Fig. 4a, d. The effect of blade incidence 
also indicates that increasing the blade loading promotes the 
apparition of a separation point at the casing wall, thereby 
increasing the critical gap height for flow separation.

In order to evaluate the presence of a horseshoe vortex 
for the case � = 10◦ and h∕�∗ = 0.8 , shown in Fig. 4e, addi-
tional LDV measurements were carried out in vertical planes 
adjacent to the leading edge and are displayed in Fig. 5. It 
can be seen that a region of reversal flow is only visible in 
the leading edge plane. This indicates that reversal flow is 
limited to the area upstream of the blade leading edge and 
furthermore that the reversal flow observed in Fig. 4e most 
likely corresponds to a small separation bubble. Moreover, 
Fig. 4e shows that the u′

x
-pdfs inside and outside the reversal 

flow region are similar and have a Gaussian shape. Even if 
the u′

z
-pdf inside the reversal flow area exhibits another small 

peak, it does not differ much from the u′
z
-pdf outside of the 

reversal flow area. Therefore, this flow has no perceptible 
bimodal behavior. On the basis of previous approach, the 
flow for � = 10◦ and h∕�∗ = 0.8 hence does not seem to form 
a horseshoe vortex. However, for � = 10◦ and h∕�∗ = 0.4 , 
shown in Fig. 4d, the u′

z
-pdf in the reversal flow region 

exhibits two maxima, revealing the presence of a bimodal 
dynamics, and suggesting, in this case, the formation of a 
horseshoe vortex.

The sketch in Fig. 6 summarizes the evolution of the flow 
topology in front of the blade leading edge with the blade 
loading and h∕�∗ as parameters, based on previous find-
ings. When h∕�∗ is large, this sketch states that no separa-
tion occurs at the casing wall. When h∕�∗ is reduced below 
a critical value (h∕�∗)s , a separation bubble appears which 
eventually becomes more intense upon further reduction of 
h∕�∗ . The limit case h∕�∗ → 0 corresponds to a junction 
flow with a horseshoe vortex. A higher blade loading shifts 
the critical ratio (h∕�∗)s toward higher values, which is indi-
cated by the positive slopes of the separation lines.

3.2 � Transverse flow in the gap

The flow inside the gap sustains many changes important 
to consider in order to understand the overall tip flow. 
However, from an experimental point of view at least, its 
qualification is a challenging task, especially regarding flow 
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Fig. 4   Description of the flow in the leading edge region. Iso-con-
tours of vorticity �y in the leading edge plane. The flow reversal area 
is delimited by the iso-line of ux = 0 , plotted in blue. The insets show 
the pdfs of the velocity fluctuations inside the reversal flow area, 

at location specified by ( ▽ ) using black curves and the pdfs of the 
velocity fluctuations outside the reversal flow area, at location speci-
fied by ( △ ) using gray curves
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velocity. Average and RMS values of velocity inside the gap 
were obtained by Heyes et al. (1992) using single hot-wire 
measurements in a transverse vertical plane, and by Jacob 
et al. (2010) with two-component PIV measurements in a 
horizontal plane parallel to the casing wall. In the present 
study, the velocity inside the gap is obtained using 3-com-
ponent LDV measurements for a gap height of 6% of chord 
and a thick incoming boundary layer at the casing. This gap 
height is large enough to allow optical measurement and is 
close to the value of 5% of chord considered by Jacob et al. 
(2010). These LDV measurements are shown along with 
static pressure measurements at the casing wall in Fig. 7, 
for x∕c = 40% . The same horizontal axis is used throughout 
Fig. 7 to ease interpretation.

The data in Fig. 7a first show that the flow undergoes a 
strong acceleration from the pressure side toward the gap. 
The evolution of the maximum transverse velocity along y 
is plotted in Fig. 7b, along with the associated other velocity 

components. The gap essentially impacts the transverse 
components uy and uz , whereas the streamwise component 
ux is weakly affected (on the order of 10%). This is important 
as it suggests that the velocity components in the transverse 
direction can be analyzed independently from the stream-
wise component, as previously done by Rains (1954). The 
flow acceleration at the gap entrance generates a pressure 
drop well captured by the evolution of the static pressure 
coefficient KP at the casing wall, shown in Fig. 7c. Note that

with Ps and Ps∞ the local and freestream static pressures, 
respectively. The KP distribution is shown at x∕c = 0.35 
and x∕c = 0.50 , displaying little variation in this region of 
x/c. Interestingly, the minimum of static pressure is located 
at y∕h ≃ −1 , that is at a distance of one gap height from 
the pressure side, which is comparable to the experimental 
data of Moore and Tilton (1988) and of Heyes et al. (1992). 
Moreover, a comparison of Fig. 7b, c indicates that the mini-
mum of static pressure corresponds to the maximum trans-
verse velocity uy.

Figure 7a also indicates the formation of a separated flow 
region at the tip of the blade, as a consequence of its sharp 
edge. The separated region narrows the effective passage 
area, which reaches a minimum at a location known as vena-
contracta. Comparing Fig. 7a, c indicates that the position 
of the vena-contracta matches the location of the minimum 
of static pressure at the casing wall, i.e., y∕h ≃ −1 , in coher-
ence with the work of Moore and Tilton (1988).

To analyze the impact of the tip-leakage flow on the 
streamwise boundary layer at the casing wall, the evolution 
of the shape factor H∗ and Reynolds number Re�∗ , computed 
from ux profiles, are plotted in Fig. 7d. It can be seen that 

(1)KP =
Ps − Ps∞

1

2
�U2

∞

Fig. 5   Velocity field in the lead-
ing edge area for h∕c = 0.5% 
( h∕�∗ = 0.8 ) and � = 10◦ . The 
locations of the three planes 
are indicated at the center of 
the figure. Insets on the top and 
bottom left show contours of ux 
in (x, z) planes, where the flow 
essentially goes from left to 
right. Inset on the right shows 
contours of uy in a (y, z) plane, 
where the flow essentially goes 
from top to bottom of the figure

Fig. 6   Schematic of the flow topology at the blade leading edge as 
a function of blade loading and h∕�∗ , as derived from the present 
observations. The thick continuous gray line indicates the threshold 
(h∕�∗)

s
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H∗ diminishes from 1.25 to 1.13, while Re�∗ decreases from 
2300 to 640 in the direction of the vena-contracta. This 
behavior is typical of a boundary layer in a favorable pres-
sure gradient, which is imposed by the accelerating flow in 
the gap, and is consistent with the measurements realized by 
Julien et al. (1969).

The other gap sizes were not dedicated to LDV meas-
urements, especially small gaps for which the LDV could 
not be applied, and are investigated using the pressure 

distribution available at the casing wall. Figure 8 displays 
the effect, on this pressure distribution, of gap height h/c, 
considering two incoming boundary layer thicknesses 
at the casing wall. The transverse evolution of pressure 
traduces the transverse momentum flowing through the 
gap as explained before. The main finding concerns the 
chordwise location of the maximum transverse flow, or 
minimum static pressure, that is seen to move downstream 
with increasing gap size. For h∕c = 0.5% , the location is 

Fig. 7   Topology of the flow 
entering the gap for h∕c = 6.0% 
at x∕c = 0.40 . ( −− ): approxi-
mate boundary of the separation 
bubble. The origin of the y axis 
is shifted to the gap entrance. 
The flow goes from right to left. 
a Transverse flow using vec-
tors of the transverse velocity. 
b Evolution of the maximum 
velocity of each component 
(axial, transverse, vertical) 
along the transverse direction. c 
Evolution of the pressure coeffi-
cient along the transverse direc-
tion. d Evolution of the shape 
factor and Reynolds number 
based on momentum thickness 
of the streamwise boundary 
layer as it goes through the gap

Fig. 8   Transverse distribution 
of static pressure at the casing 
wall, in the gap region, for a 
selection of axial stations and 
for various gap heights
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near the blade leading edge, while it is around x∕c = 0.2 
for h∕c = 3.5% and x∕c = 0.35 for h∕c = 6% . The incom-
ing boundary layer thickness has little influence here.

Detailed measurements of the flow at the gap exit were 
realized by Storer and Cumpsty (1991) with a pressure 
probe. They provided profiles of total pressure losses and 
of two components of the velocity in a plane parallel to 
the casing. Those velocity and total pressure losses pro-
files show that the flow exiting the gap is similar to a jet. 
The objective here is to complete this description using 
3-component LDV measurements, performed in several 
planes near the suction side of the blade previously shown 
in Fig. 3. Velocity and turbulent kinetic energy profiles 
close to the gap are plotted in Fig. 9 for h∕c = 3.5% and 
x∕c = 0.55 , where u∕∕ (resp. u

⟂
 ) corresponds to the veloc-

ity component parallel (resp. normal) to the chord. The 
strong transverse flow through the gap induces a jet like 
flow at the suction side. This can be seen looking at the 
profiles of the velocity component u

⟂
 and the turbulent 

kinetic energy k. These share similarities with an iso-
lated jet considering, for instance, details given by Pope 
(2011). In particular, a potential core and a mixing layer 
are found. The potential core corresponds to the area 
where u

⟂
 is high and k is low, and the mixing layer can 

be recognized as the area where k and the gradient of u
⟂
 

are high. In addition, the transverse flow exits the gap 
parallel to the casing since the vertical velocity uz is close 
to zero in the gap area, i.e., for z∕h < 1 . Finally, the pro-
file of u∕∕ exhibits a deficit in the mixing layer, which 
is the expression of the turbulent losses induced in this 
region. Of course this jet-like flow interacts with the main 
flow, and this creates a situation best referred to as a jet 
in cross-flow. The consequence of this interaction is the 
rolling-up of the jet into a tip-leakage vortex, as described 
in the next section.

3.3 � Tip‑leakage vortex

Figure 10 shows iso-lines of the streamwise vorticity field in 
a transverse plane at x∕c = 1.05 , downstream of the blade. 
The area of negative vorticity corresponds to the tip leakage 
vortex described previously. The proximity of the casing 
wall generates an opposite vortical zone, which essentially 
forms as a consequence of the separation of the transverse 
boundary layer induced by the tip vortex at the casing wall, 
as previously observed by Muthanna and Devenport (2004). 
The effect of gap height and boundary layer thickness on the 
tip-leakage vortex trajectory, circulation and axial velocity 
is analyzed thereafter.

3.3.1 � Tip vortex trajectory

The several measurement planes recorded with LDV allow 
tracing the locus of the vortex xc , which are shown with 
closed symbols in Fig. 11. The locus is obtained by taking 

Fig. 9   Velocity and turbulent 
kinetic energy profiles at the 
gap exit for h∕c = 3.5% at 
(x, y) = (0.55c,−0.02c) . u∕∕ 
(resp. u

⟂
 ) designates the veloc-

ity component parallel (resp. 
normal) to the chord

Fig. 10   Visualization of the tip leakage vortex flow with the sec-
ondary vorticity at the wall. The plot shows iso-lines of streamwise 
vorticity at x∕c = 1.05 for h∕c = 3.5% . Negative vorticity is featured 
by dashed lines. Negative vorticity relates to the tip leakage vortex, 
while positive vorticity relates to the secondary vortex
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the centroid of axial vorticity in the tip-leakage vortex, that 
is

where �x is the streamwise vorticity and ΩQ is the zone cor-
responding to the tip vortex, here identified using positive 
values of the Q criterion given by

with Ωij the vorticity tensor defined as

The area ΩQ is defined by Q > 0 (Wu et al. 2007), here calcu-
lated based on the LDV data. In some cases, LDV measure-
ments were not possible in the vortex core due to irregular 

(2)xc =
∫
ΩQ

�xxdydz

∫
ΩQ

�xdydz

(3)Q =
1

2

(
ΩijΩij − SijSij

)

(4)Ωij =
1

2

(
�ui

�xj
−

�uj

�xi

)

seeding and/or laser lighting; therefore, the vorticity centroid 
could not be computed. In these cases, the position of the 
tip vortex is estimated by locating the center of curvature 
of the pseudo-streamlines surrounding the vortex core (see 
open symbols in Fig. 11), where LDV measurements remain 
accessible. Pseudo-streamlines are the apparent streamlines 
formed by the transverse flow, i.e., not accounting for the 
axial flow component.

This ensemble of vortex locus allows to draw the tra-
jectory of the tip leakage vortex, as presented in Fig. 11. 
The tip vortex develops differently depending on h/c. As 
previously observed in the literature (Flachsbart 1931; Lak-
shminarayana and Horlock 1963; Doukelis et al. 1998b), 
the tip-leakage vortex stays close to the blade for large gap 
to chord ratios, the separation of the vortex from the blade 
occurring at approximately 50% of chord for h∕c = 13% , 
while it evolves away from the blade at low ratios. In any 
case, the tip vortex eventually moves away from the blade 
surface, which is opposite to what happens for an isolated 
wing, and is the consequence of the image effect of the cas-
ing wall. Notwithstanding the no-slip boundary condition at 
the casing wall, from an inviscid point of view, the effect of 
the wall upon the tip vortex is accounted for by an opposite 
vortex mirror of the primary one about the casing wall. This 
image vortex induces a transverse momentum away from the 
blade that can usefully be referred as drift.

The effect of gap height h/c and incoming boundary 
layer thickness on the vortex lateral and vertical positions 
are plotted in Figs. 12 and 13, respectively. Figure 12 
shows a non-monotonous evolution of lateral position, 
with a positive slope for h∕c < 2% and a negative one for 
h∕c > 4.5% . These two opposing trends are the conse-
quence of the conflicting effects of delayed vortex detach-
ment from the blade at larger gap ratios and increased drift 
effect at lower gap ratios due to closer wall proximity and 
accentuated effect of the image vorticity. A small and a 

Fig. 11   Vortex center trajectory for a selection of gap heights. The 
vortex centers are obtained using the LDV measurements made at 
several stations along the blade. Closed symbols indicate the centroid 
of streamwise vorticity. Open symbols indicate the center of cur-
vature of the streamlines which is used as a proxy to locate vortex 
center when LDV data inside the vortex core is not available

Fig. 12   Evolution of the 
vortex center lateral position, 
expressed as distance from 
blade trailing edge, as a function 
of gap height, at x∕c = 1.05 . 
The vortex center position is 
obtained from the 5-hole pres-
sure probe measurements
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large gap regime can also be seen in Fig. 13 for the vortex 
vertical position. At very large gap to chord ratios h/c, the 
tip-leakage vortex is expected to be similar to a wingtip 
vortex, meaning that the distance between the blade tip 
and the vortex center Δz0 is not impacted by gap height 
anymore. This is tantamount to saying that zv = h + Δz0 , 
where Δz0 is a constant. This large gap regime seems to 
occur for gap heights larger than 8% of chord. At low gap 
to chord ratios, here for h∕c < 3.5% , the vertical position 
of the tip vortex also increases linearly, although more 
rapidly than gap height. For gap heights between 3.5 and 
8% of chord, the vortex vertical position transitions from 
the small gap trend to the large gap one.

Figures 12 and 13 show little effect of the boundary 
layer thickness on the vertical position and only a slight 
effect on the transverse position. A thicker incoming 
boundary layer allows an increased lateral position of the 
tip vortex, which is consistent with the numerical analysis 
of Brandt et al. (2002). This effect can be explained, at 
least for small gap heights, by considering the jet in cross-
flow dynamics of the tip flow. The penetration of a jet in a 
cross-flow is driven by the ratio R = U2

j
∕U2

0
 , where U0 is 

the main stream velocity and Uj the jet exit velocity (Fearn 
and Weston 1974). Based on the approach of Rains (1954), 
the gap exit velocity Uj is essentially driven by the pressure 
distribution across the gap, which is not impacted by the 
incoming boundary layer thickness. Therefore, a thicker 
boundary layer reduces U0 at the gap exit without changing 
Uj , which increases the ratio R, provoking a larger push of 
the jet and a more detached formation of the tip vortex.

From the perspective of a compressor, and consider-
ing that an increased lateral position of the tip vortex is 
detrimental regarding surge margin, improvement is to be 
obtained by reducing the boundary layer thickness at the 
casing. Compressors typically feature gap to chord ratios 

smaller than 3% , which corresponds to the first type of 
behavior just described. Then, both an increased gap to 
chord ratio and incoming boundary layer thickness lead 
to an increased lateral position of the tip vortex and thus 
may reduce the surge margin.

3.3.2 � Tip vortex circulation

The determination of the tip leakage circulation is accom-
plished by first distinguishing the tip-leakage vortex from 
the secondary vorticity, as the two are present, see Fig. 10. 
Circulations Γ and Γ�� corresponding to that of the tip-leak-
age vortex and of the secondary vortex, respectively, are 
hence introduced:

In Eq. (5), the integration areas are shaped by the sign of 
the vorticity. To verify the accuracy of the circulation com-
puted as the sum of streamwise vorticity, the total circulation 
Γtot = Γ + Γ�� obtained with relation (5) is compared to the 
circulation of velocity in a closed contour C , i.e.,

The deviation between these two approaches to compute the 
total circulation Γtot is below 2% . Hence, the values of cir-
culation obtained from the sum of streamwise vorticity (5) 
have a similar accuracy as the one computed from the line 
integral (6).

The evolutions of Γ and Γ�� as a function of gap height 
h/c are displayed in Fig. 14 for the two boundary layer thick-
nesses at the casing. These circulations increase with gap 
height up to h∕c = 8% and are not affected by the incoming 
boundary layer thickness. Then, up to h∕c = 13% , a case 

(5)Γ = ∬
𝜔x<0

𝜔x dS Γ�� = ∬
𝜔x>0

𝜔x dS

(6)Γtot = ∮
C

�.��

Fig. 13   Evolution of the vortex 
center vertical position as 
a function of gap height, at 
x∕c = 1.05 . The vortex center 
position is obtained from the 
5-hole pressure probe measure-
ments
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only available for the thick incoming boundary layer con-
figuration, a decrease occurs. The increase in the tip-leakage 
vortex circulation accounts for the growth of leakage flow 
with larger h/c. In return stronger tip vorticity results in rein-
forced secondary vorticity. For gap heights larger than 8% of 
chord, the decrease in tip-leakage vortex circulation can be 
explained by a reduction of blade lift induced by a combina-
tion of vortex downwash and reduced blade span.

3.3.3 � Axial velocity in the tip‑leakage vortex

At the vortex center, where in first-order approximation 
uy, uz ≃ 0 , Bernoulli theorem states that the axial velocity 
is mostly determined by the difference between the static 
pressure drop ΔPs = Ps∞ − Ps and the total pressure loss 
ΔPt , following

Figure 15 compares the measured value of ux at the vor-
tex center to the inviscid estimate given by (7) consider-
ing ΔPt = 0 , for varying gap height h/c. The axial velocity 
increases monotonously with h/c. The flow features a veloc-
ity deficit in the vortex core for low h/c and a jet flow above 
h∕c = 4% . The effect of a thicker incoming boundary layer is 
to decrease the axial velocity. The inviscid estimate provides 
the good slope of the increase in ux while lying well above 
the experimental ux because of the presence of total pressure 
losses ( ΔPt > 0 ) in the vortex core. Hence, the increase in ux 
with gap height comes from the pressure drop at the vortex 
center, as the consequence of the strengthening of the tip-
leakage vortex.

(7)
ux

U∞

=

(
1 +

ΔPs

1

2
�U2

∞

−
ΔPt

1

2
�U2

∞

) 1

2

Fig. 14   Evolution of tip-leakage 
vortex circulation and second-
ary vorticity as a function of 
gap height at x∕c = 1.05 for 
the two values of the boundary 
layer thickness. The data are 
inferred from the measurements 
performed with the 5-hole pres-
sure probe

Fig. 15   Evolution of the 
streamwise velocity at the 
vortex center as a function of 
gap height as measured by the 
5-hole probe measurements at 
x∕c = 1.05 and as estimated by 
the Bernoulli evaluation in (7) 
considering zero total pressure 
loss in the vortex core
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4 � Losses in the tip region

Based on the theoretical analysis of Denton (1993), the 
increment of entropy will be used as the signature of losses 
in the flow. Indeed, in a compressor, the increase in entropy 
essentially comes from irreversible processes, since heat 
transfers can generally be neglected. Moreover, entropy is 
independent of the reference frame; therefore, from that per-
spective, the analysis performed on the present isolated and 
fixed blade can be extrapolated to a real compressor.

4.1 � Local distribution of losses

Areas where losses occur can be identified by looking at 
where a particle of fluid undergoes an entropy increase, i.e., 
where the mean flow entropy production rate per unit of 
mass ṡm is positive. For a steady and incompressible flow, 
it is possible to calculate this quantity using LDV measure-
ments following

This relationship is demonstrated in “Appendix 1”. The 
quantities Sij and 𝜏ij = − < u�

i
u�
j
> are the strain rate tensor 

and the Reynolds stress tensor, respectively. Equation (8) 
states that the entropy increases in areas of turbulent kinetic 
energy production ( Pk ) and viscous dissipation ( 2�SijSij ). 
Derivatives with respect to y and z are about three orders of 
magnitude larger than those with respect to x. Hence, x 
derivatives in Eq. (8) are discarded.

The distribution of ṡm in the tip-leakage vortex area is 
shown in Fig. 16, for h∕c = 3.5% . Figure 16a shows that 
entropy is created in the mixing layer formed by the jet 
flow (JML) and in an area named separation mixing layer 
(SML), at the left of the tip-leakage vortex. The SML comes 
from the separation of the boundary layer at the casing wall, 
induced by the tip-leakage vortex. Downstream of the blade, 
it can be seen in Fig. 16b that the magnitude of the losses 
in the jet mixing layer (JML) and separation mixing layer 
(SML) decreases along x between stations x∕c = 0.70 and 
1.05. Note that entropy is also created in the blade wake 
(BW); however, this area was not investigated with LDV 
measurements for this gap height.

The effect of gap height h/c on the distribution of ṡm is 
shown in Fig. 17. Except for h∕c = 13% , the blade wake 
(BW) is outside the measurement plane and is represented 
by the dash-dot line. For h∕c = 0.5% (Fig. 17a), it seems that 
a significant part of the entropy is created in the separation 
mixing layer (SML). In the case h∕c = 6.0% (Fig. 17b), the 

(8)
ṡm =

1

Tt∞

(
2𝜈SijSij + 𝜏ij

𝜕ui

𝜕xj
���

Pk

)

entropy production in the jet mixing layer (JML) and in the 
separation mixing layer (SML) has comparable magnitudes. 
The case h∕c = 13% , the largest gap, is eventually shown in 
Fig. 17c. In this situation, no jet is present and the entropy is 
mostly created in the blade wake (BW) that rolls-up around 
the tip-leakage vortex.

To sum up, entropy production is not only found in the 
jet mixing layer, as previously observed by Storer and 
Cumpsty (1994), but also in the wake and in a mixing 
layer coming from the separation of the boundary layer at 
the casing wall induced by the tip-leakage vortex.

4.2 � Volume integrated losses

The global loss L is considered to be the mass-flow aver-
aged entropy increase per unit of mass occurring upstream 
of the (y, z) plane S0 , such as

Fig. 16   Distribution of mean flow entropy creation rate ṡ
m

 and 
pseudo-streamlines of the transverse flow in the tip-leakage vortex 
area for h∕c = 3.5% and thick incoming boundary layer
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In Eq. (9), ṁ is the mass-flow going through Σ , the vol-
ume defined by the envelop of the path of fluid particles, or 
streamtube, taken far upstream, where the flow is uniform, 
and getting to the plane S0 after flowing through the gap.

It is shown in “Appendix 2” that L is related to the total 
pressure losses such as

where

is the mass-flow averaged total pressure loss coefficient con-
sidering a (y, z)-integration plane, which is defined with the 
pressure loss coefficient

The quantity Cm
Pt

 evaluates the global effects of the dis-
sipative phenomena that occur upstream of the S0 plane. 
At this plane S0 , located at x∕c = 1.05 , and defined by 
y∕c ∈ [−0.35, 0.15] and z∕c ∈ [0.015, 0.325] , measurements 
are carried out using the 5-hole pressure probe.

To differentiate the contributions of transverse (tip-leak-
age vortex) and streamwise (wake) flow components in the 
total pressure losses, CPt is decomposed as the sum of Cvortex 
and Cwake , defined as

Maps of Cvortex and Cwake are shown in Fig.  18, for 
h∕c = 3.5% and a thick incoming boundary layer. The coef-
ficient Cwake is high in the blade wake, in the boundary layer 
and in the streamwise velocity deficit area of the core of the 
tip-leakage vortex. This coefficient relates to the concept 
of blockage used by turbomachine engineers and is here 
referred to as wake loss coefficient. As for Cvortex Fig. 18 
shows that it is concentrated in the tip-leakage vortex core 
with a maximum at the vortex center. This quantity related 
to the transverse flow induced by the vortex is referred as 
vortex loss coefficient.

Considering a Rankine vortex model of circulation Γ and 
core radius a for the tangential flow of the tip-leakage vortex, it 

(9)L =
1

ṁ ∭Σ

𝜌ṡm dV

(10)L =
1

2
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∞

Tt∞
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∬
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∞
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Fig. 17   Effect of gap height on the mean flow entropy creation rate 
ṡ
m

 shown in transverse plane at x∕c = 1.05 , for the thick incoming 
boundary layer case. The plots include pseudo-streamlines of the 
transverse flow to locate the different structures
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is shown in “Appendix 3” that Cvortex depends upon the square 
of the circulation and vortex core radius. The radial distribu-
tion of Cvortex for the Rankine vortex is plotted in Fig. 19. The 
maximum of Cvortex occurs at the vortex center and is equal 
to zero outside of the vortex core. This is comparable to the 
experimental observations made in Fig. 18. The surface aver-
aged vortex loss coefficient Cs

vortex
 , given by

is independent of the core radius a, leaving the sole depend-
ence on vortex circulation squared, that is

(14)Cs
vortex

=
∬

S0
Cvortex dS

∬
S0

dS

Figure 20 displays the experimental increment of averaged 
vortex loss ΔCs,m

vortex , either averaged upon mass flow rate 
(superscript m ) or surface (superscript s ), against the tip-
leakage vortex circulation squared Γ2 , where

with Cs,m
vortex

||h=0 the vortex loss coefficient for a closed gap, 
which is extrapolated from the experimental data. It can 
be seen that the surface averaged increment of vortex loss 
ΔCs

vortex
 (open symbols) follows a linear increase with Γ2 , in 

agreement with the Rankine approximation. The values of 
the linear coefficient A are also close, with about 0.10 in the 
experiment and 0.08 in the model. The increase in ΔCm

vortex
 of 

the mass-flow average of Cvortex (closed symbols) with Γ2 is 
similar to the surface averaged one up to Γ2 = 0.18 . For high 
values of tip-leakage vortex circulation, i.e., Γ2 > 0.18 , the 
linear law slightly underestimates the mass-flow averaged 
ΔCm

vortex
 . This deviation corresponds to the appearance of a 

strong streamwise velocity surplus in the vortex core (see 
Fig. 15) that accentuates the contribution of this area, where 
Cvortex is high, in the global count of mass-flow average of 
vortex losses.

Evolutions of Cm
Pt

 , Cm
vortex

 and Cm
wake

 with gap height 
and incoming boundary layer thickness are presented in 
Fig. 21. It is observed that these coefficients all increase 
at small h/c and then decrease, at different thresholds. 
The evolutions of Cm

Pt
 and Cm

vortex
 follow similar trends, 

decreasing for h∕c > 8% , while Cm
wake

 starts to decrease 
earlier, for h∕c > 4% . First, this shows that the increment 
of total pressure losses ΔCm

Pt
 with gap height is primarily 

driven by the vortex losses Cm
vortex

 . Second, the decrease 
in Cm

wake
 induces a reduction of Cm

Pt
 increment with gap 

height for h/c between 4 and 8% of chord. Third, the vor-
tex losses Cm

vortex
 are dominant in the total pressure losses 

Cm
Pt

 for intermediate and large gap configurations, while 
Cm
vortex

 and Cm
wake

 count for almost the same at small gaps. 
The reduction of Cm

vortex
 is the result of the decrease in 

(15)Cs
vortex

=
A

S0
Γ2 A =

1

4�
≈ 0.080

(16)ΔCs,m
vortex = C

s,m
vortex − C

s,m
vortex

||h=0

Fig. 18   Distribution of C
wake

 and C
vortex

 in a transverse plane at 
x∕c = 1.05 , for h∕c = 3.5% and the thick boundary layer case. The 
plot shows iso-contours of C

wake
 and C

vortex
 with increment of 0.1 

between iso-lines. The symbol ⊕ indicates the position of the tip-
leakage vortex center

Fig. 19   Distribution of vortex 
loss coefficient C

vortex
 in a Rank-

ine vortex of circulation Γ and 
core radius a 
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tip-leakage vortex circulation for h∕c > 8% , as shown in 
Fig. 14, whereas the decrease in Cm

wake
 for h∕c > 4% can 

be attributed to the emergence of a streamwise velocity 
surplus in the tip-leakage vortex core (see Fig. 15).

The effect of the incoming boundary layer thickness is 
appreciated in Fig. 21. While no major difference is observed 
qualitatively, the trends being the same, the amplitudes of 
Cm
vortex

 and especially Cm
wake

 are affected, in opposite ways. A 
thinner boundary layer tends to appraise the contribution of 
Cm
vortex

 compared to Cm
wake

 . The value of Cm
Pt

 is also increased, 
by approximately 0.011 when the boundary layer is thicker. 
This points out the extra losses induced by a thicker bound-
ary layer.

5 � Model for the vortex losses

The objective here is to build a model to estimate the sensi-
tivity of total pressure losses with gap height. The previous 
section showed that the increment of total pressure losses 

ΔCm
Pt

 with respect to gap height is essentially driven by the 
vortex losses Cm

vortex
 and is weakly affected by the incoming 

boundary layer thickness, that is

Moreover, the increment of vortex losses ΔCm
vortex

 , relative 
to the value at h = 0 , increases linearly with the tip-leakage 
vortex circulation Γ squared, as shown in Fig. 20, and devi-
ates slightly from this linear increase only for the highest 
values of circulation ( Γ2 > 0.18 ). That is why the main focus 
here is to build a model for the tip-leakage circulation. The 
increment of vortex losses ΔCm

vortex
 is then calculated with 

relation (15) with A = 0.1 . The model for the circulation 
is obtained by drawing an analogy between the tip-leakage 
flow and a jet in cross-flow, following our earlier analysis.

The jet in cross-flow produces a symmetrical counter-rotat-
ing vortex pair system which aligns with the direction of the 
cross-flow (Fearn and Weston 1974; Jacquin 1994; Karagozian 
2014). In the current analogy, the vortex pair consists of the 

(17)ΔCm
Pt
≃ ΔCm

vortex

Fig. 20   Increment of vortex 
loss coefficient ΔCs,m

vortex
 with 

the tip-leakage vortex circula-
tion squared at x∕c = 1.05 for 
the two values of the upcom-
ing boundary layer thickness. 
Open symbols : surface average 
ΔCs

vortex
 . Closed symbols : 

mass-flow average ΔCm
vortex

Fig. 21   Evolution of mass-flow 
averaged loss coefficients Cm

Pt
 , 

Cm

vortex
 and Cm

wake
 at x∕c = 1.05
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tip-leakage vortex and the vortex generated by the symmetrical 
blade with respect to the casing wall as sketched in Fig. 22. A 
slip boundary condition is considered at the casing wall, mean-
ing that the present model does not take into account the effect 
of the boundary layer. This is coherent with the observation of 
the weak influence of the incoming boundary layer thickness 
on the tip-leakage vortex circulation (see Fig. 14).

5.1 � Description of the model

The circulation of the rolling-up jet has been assessed by Jac-
quin (1994) using an analogy with tip vortices in the wake 
of an isolated finite wing. In this approach, this equivalent 
wing is modeled as a lifting line of span equal to the distance 
between the centers of the two vortices generated by the jet in 
cross-flow, i.e., 2zv , with lift L. Next, the lift is obtained from 
the Kutta–Joukowski theorem as

Then, the jet is assumed to be adapted and its thrust T is 
assimilated to the lift L of this equivalent wing such as

where Aj represents the slot area (equal to 2hc) and U2
j
 is the 

mean value of the jet velocity squared. Equation (19) can be 
conveniently reorganized as

which yields the circulation Γ in terms of gap height h, dis-
tance zv between the vortex center and the casing wall, and 
jet velocity Uj at the gap exit. The latter can be related to the 
blade loading CL by considering that the flow entering the 
gap is driven by the pressure difference between the pressure 

(18)L = 2�U∞Γzv

(19)T = �U2
j
Aj = 2�U∞Γzv

(20)Γ

cU∞

=
h

zv

U2
j

U2
∞

and suction sides. As mentioned earlier, this approach previ-
ously adopted by Rains (1954) is justified by LDV measure-
ments showing the flow accelerating primarily in a plane 
transverse to the main flow (see Fig. 7b). At a given chord-
wise position � , one thus has

which can be derived from Bernoulli theorem upon inserting 
an overall discharge coefficient �D to account for the losses 
in the gap. Then, taking the square of relation (21) and its 
mean value leads to

where the mean pressure difference along the chord is 
assumed to be close to the airfoil lift coefficient CL . Finally, 
replacing U2

j
 in Eq. (20) by the expression (22) leads to

The circulation Γ is normalized by the chord c and the veloc-
ity U∞.

The increment of vortex losses is then estimated by insert-
ing relation (23) in (15) and taking A = 0.1 , which leads to

5.2 � Experimental validation

The airfoil lift coefficient CL is obtained from pressure meas-
urement at mid-span of the wing and equals 1.01. The verti-
cal position zv of the tip-leakage vortex center is described 
as a piecewise affine function of gap height

which fits the experimental data provided in Fig. 13.
In Fig. 23, the predictions of this model are compared to 

the tip-leakage vortex circulation Γ obtained in the experi-
ments by integrating the negative vorticity only. For gap 
heights smaller than 3.5% of the chord, a good agreement 
with experimental data is obtained. Note that the dis-
charge coefficient �D is set to 1. The overestimation of the 

(21)
Uj(�)

U∞

= �D

√√√√Ps+(�) − Ps−(�)

1

2
�U2

∞

(22)

U2
j

U2
∞

= �2
D ∫

c

0

Ps+(�) − Ps−(�)

1

2
�U2

∞
c

d�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≈CL

,

(23)Γ =
h

zv
�2
D
CL

(24)ΔCm
vortex

=
0.1

S0

(
h

zv

)2

�4
D
C2
L

(25)
zv

c
=

⎧⎪⎨⎪⎩

1.51
�

h

c

�
+ 0.05 for

h

c
≤ 3.5%

0.104 for 3.5% ≤ h

c
≤ 8.5%

h

c
+ 0.02 for

h

c
≥ 8.5%

Fig. 22   Slotted wing configuration used to model the flow through 
the gap in an inviscid approximation, showing the subsequent roll-up 
of the jet flow outside the slot into two counter rotating vortices
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circulation by the model for h∕c > 3.5% suggests that the 
analogy with a jet in cross-flow is not valid anymore for 
larger gaps. In practice, for h∕c < 3.5% , relation (23) and 
(24) become, respectively,

and

where a1 and a0 are empirical coefficients, here found equal 
to 1.51 and 0.05, respectively.

In Fig. 24, the modeled ΔCm
vortex

 is compared to experi-
mental data, from which the extrapolated values at h = 0 

(26)Γ =
h∕c

a1

(
h

c

)
+ a0

�2
D
CL

(27)ΔCm
vortex

=
0.1

S0

⎛⎜⎜⎜⎝

h∕c

a1

�
h

c

�
+ a0

⎞⎟⎟⎟⎠

2

�4
D
C2
L

are subtracted. This approach gives a good prediction of the 
sensitivity of Cm

vortex
 to gap height, which allows to capture 

the main part of the increment of Cm
Pt

 . To get a better predic-
tion of the increment of total pressure loss with gap height, 
the wake loss coefficient Cm

wake
 would have to be taken into 

account.
Note that the fitting coefficients for zv in relation (25), 

i.e., a0 and a1 in Eqs. (26) and (27), may depend on x and on 
the blade loading. Indeed, for a jet in cross-flow, the vortex 
spacing depends not only on x but also on jet exit velocity 
Uj (Fearn and Weston 1974). This suggests that zv depends 
on x and Uj , itself linked to the blade loading through rela-
tion (22).

The value 1 of the discharge coefficient �D adopted in this 
model is larger than the value of 0.8 found in the literature 
(Rains 1954; Moore and Tilton 1988; Storer and Cumpsty 
1994). This higher value of �D may compensate the larger 
values of zv caused by the vortex rebound that comes from 

Fig. 23   Comparison of the 
circulation Γ provided by the 
model (straight line) against 
experimental data (symbols) for 
the two values of the upcoming 
boundary layer thickness, as a 
function of gap height

Fig. 24   Increment of total and 
vortex loss as a function of gap 
height, for the two values of 
the upcoming boundary layer 
thickness. Comparison between 
the model (straight line) and 
experimental data (symbols)
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the interaction of the tip-leakage vortex with the no-slip cas-
ing wall in the experiment (Barker and Crow 1977).

6 � Conclusions

The sensitivity of the tip-leakage flow to gap height and the 
incoming boundary layer thickness has been investigated 
using an isolated and fixed blade setup. Detailed measure-
ments, using LDV, a 5-hole pressure probe and pressure taps, 
were conducted in a low-speed wind tunnel for a Reynolds 
number of 550,000. It appears that the tip-leakage flow fea-
tures are primarily impacted by the gap height. The effects of 
this parameter on the flow can be divided into three regimes 
: a small gap regime for gap heights smaller than 3.5% of 
chord, a large gap regime for gap larger than 8% of chord and 
a intermediate regime in-between. Increasing the gap height 
moves the maximum of transverse velocity in the gap, or 
minimum of pressure, toward the blade trailing edge. Moreo-
ver, the tip-leakage vortex remains attached to the blade over 
a longer portion of chord, and its circulation increases when 
the gap height is enlarged. This also tends to reduce the 
streamwise velocity defect, present at the vortex center for 
small gaps, leading to the apparition of a streamwise veloc-
ity excess for gaps larger than 4% of chord. In front of the 
blade, the flow is found to separate if gap height h is smaller 
than the momentum thickness �∗ and if blade loading is high, 
leading to the formation of a horseshoe vortex. A thicker 
incoming boundary layer at the casing tends to move the 
tip-leakage vortex away from the blade, whereas the static 
pressure distribution at the casing wall and the tip-leakage 
vortex circulation are not impacted by the incoming bound-
ary layer thickness.

A careful analysis of the losses in the tip region has been 
realized. Local losses are defined by the entropy production 
rate, which has been computed from LDV measurements. 
At the gap exit, entropy is created not only in the jet mixing 
layer but also in a mixing layer associated with the separa-
tion of the casing boundary layer induced by the tip-leakage 
vortex. Overall losses are reflected by total pressure losses, 
which have been decomposed in two terms, one representing 
the contribution of the areas of streamwise velocity deficit 
and identified as a wake loss, and the other one, identified 
as a vortex loss, that evolves with the tip-leakage vortex cir-
culation squared. The evolution of total pressure losses with 
gap height is primarily driven by the vortex loss coefficient. 
A thicker incoming boundary layer decreases the vortex 
losses and increases the wake losses, which globally leads 
to higher total pressure losses, without altering significantly 
their evolution with the gap height.

Finally to describe the increment in total pressure losses 
impaired in the gap, the tip-leakage flow has been modeled 
as a jet in cross-flow. This model gives a good estimation of 

the tip-leakage vortex circulation for gaps smaller than 3.5% 
of the chord. The tip vortex circulation is a proxy to evaluate 
the increment in pressure loss, on the basis of the net influ-
ence of the vortex loss coefficient, which depends on the 
circulation squared. The range of gap height accounted for 
by the model is valid for most turbomachinery applications.
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Appendix 1: Entropy creation rate 
for the mean flow

The first objective of this section is to clarify the definition 
of the entropy production rate for the mean flow. The second 
objective is to demonstrate that this entropy production rate 
can be estimated using velocity measurements from LDV. 
This work generalizes the analysis carried out by Denton 
(1993) on the relation between entropy increment and vis-
cous forces. The following assumptions are considered : 

1.	 The fluid is a perfect gas: P = �RT

2.	 The flow is in a steady state and incompressible: 
div(�) = 0 and M ≪ 1 (for the present case M = 0.1)

3.	 Variations of total pressure and temperature are small, 
i.e., |Pt − Pt∞| ≪ Pt∞ and |Tt − Tt∞| ≪ Tt∞ (in the pre-
sent experiment |Pt − Pt∞| < 10−2 × Pt∞)

4.	 Heat transfers are neglected.

Starting with Gibbs–Duhem relation, one can relate entropy 
variation to total enthalpy and pressure for the instantaneous 
field following

Assuming that |Pt − Pt∞| ≪ Pt∞ and |Tt − Tt∞| ≪ Tt∞ we 
have

Insofar as the Mach number is small ( M = 0.1 ), we assume 
that � ≈ �t∞ , which leads to

(28)Ttds = dht − RTt
dPt

Pt

.

(29)
Tt∞ds = dht −

RTt∞

Pt∞
⏟⏟⏟
1∕�t∞

dPt.
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Then, the Reynolds decomposition is applied to Eq. (30), 
considering the assumptions of a steady and incompressible 
flow, which leads to

with ⟨∙⟩ the Reynolds average and with ṡm defined as

In (33), e′ represents the fluctuation of internal energy per 
unit of mass. This quantity ṡm can be understood as the 
equivalent rate of entropy production for the mean flow, 
which is not the same as the mean entropy production rate 
ṡ . From now on, the symbol < ∙ > is dropped for mean flow 
quantities in order to reduce the amount of notation. Equa-
tion (31) thus becomes

To replace the right-hand side of Eq. (33), let us consider the 
RANS energy equation

and the RANS mean flow kinetic energy equation

with Sij the strain rate tensor, 𝜏ij = − < u�
i
u�
j
> the Reynolds 

stress tensor and qj the heat flux. Inserting relations (34) and 
(35) in Eq. (33) leads to

which is similar to the relation obtained by Chassaing 
(2010). This relation can also be written as follows

with

(30)

Tt∞
ds

dt
=

dht

dt
−

1

𝜌

dPt

dt
where

d∙

dt
= ∙̇ =

𝜕∙

𝜕t
+ ui

𝜕∙

𝜕xi
.

(31)Tt∞ ṡm = ⟨ui⟩ 𝜕

𝜕xi
⟨ht⟩ − 1

𝜌
⟨ui⟩ 𝜕

𝜕xi
⟨Pt⟩,

(32)
ṡm =⟨ui⟩ 𝜕

𝜕xi
⟨s⟩ + 𝜕

𝜕xi
⟨u�

i
s�⟩

−
1

Tt∞

𝜕

𝜕xi
⟨u�

i
e�⟩.

(33)Tt∞ ṡm = ui
𝜕ht

𝜕xi
−

1

𝜌
ui
𝜕Pt

𝜕xi
.

(34)

uj
�ht

�xj
=
(
2�Sij + �ij

)�ui
�xj

+ ui
�

�xj

(
2�Sij + �ij

)

−
1

�

�qj

�xj
,

(35)
1

�
ui
�Pt

�xi
= ui

�

�xj

(
2�Sij + �ij

)
,

(36)Tt∞ṡm =
(
2𝜈Sij + 𝜏ij

)𝜕ui
𝜕xj

−
1

𝜌

𝜕qj

𝜕xj
,

(37)Tt∞ṡm = 2𝜈SijSij + Pk −
1

𝜌

𝜕qj

𝜕xj
,

the production of turbulent kinetic energy. Equation (37) 
shows that the equivalent mean flow entropy production rate 
ṡm corresponds to the sum of viscous dissipation ( 2�SijSij ), 
production of turbulent kinetic energy ( Pk ) and heat power 
( div(�) ). Upon assuming that the heat power is negligible, 
Eq. (37) yields

This relation only depends on mean flow velocity gradients 
and on the Reynolds stress tensor; therefore, it is possible to 
compute ṡm from LDV measurements.

Appendix 2: Averaged total pressure losses 
and entropy creation rate

The objective of this section is to demonstrate the equiva-
lence between mass-flow average total pressure losses Cm

Pt
 

and the volume integrated rate of entropy production 𝜌ṡm in 
a streamtube. The start is relation (33), which, taking into 
account that the flow is incompressible, leads to

This relation is integrated over the streamtube Σ composed 
of an inlet boundary Sin , an outlet boundary S0 and a lat-
eral boundary Slat . The inlet boundary is taken upstream 
of the blade where flow and thermodynamic conditions are 
homogeneous. The lateral boundary Slat is characterized by 
�.� = 0 , where � is the local normal vector. Then, the diver-
gence theorem applied to the integral of (40) yields

with

In the present study, we consider a fixed setup, i.e., no 
mechanical power is exchanged. Therefore, assuming no 
heat transfer at the boundaries of the streamtube Σ , we have 
ΔHt = 0 . Moreover, mass-flow being conserved between Sin 
and S0 , Eq. (41) becomes

(38)Pk = �ij
�ui

�xj
,

(39)ṡm =
1

Tt∞

(
2𝜈SijSij + Pk

)
.

(40)Tt∞𝜌ṡm = div(�.𝜌ht) − div(�.Pt).

(41)

Tt∞ ∭Σ

𝜌ṡm dV = ∬
Sin

Pt∞U∞(�x.�)dS

−∬
S0

Pt(�.�)dS + ΔHt,

(42)ΔHt = ∬
S0

�ht(�.�) dS −∬
Sin

�ht∞U∞(�x.�) dS.
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The mass-flow averaged total pressure losses Cm
Pt

 is then 
introduced in Eq. (43), with

where ṁ represents the mass flow through the streamtube 
Σ , and with

leading to

The average entropy increase per unit of mass L , defined as

is introduced in relation (46), which gives

Relation (48) states the equivalence between the mass-
flow averaged total pressure losses and the average entropy 
increase per unit of mass.

Appendix 3: Steady axisymmetric vortex 
analysis

This section establishes a relation between the vortex loss 
coefficient Cvortex , introduced in Eq. (13), and the circula-
tion of the tip-leakage vortex. In a cylindrical reference 
frame (x, r, �) , Cvortex is defined by

The radial velocity ur is taken equal to zero. An axisym-
metric steady inviscid flow is in radial equilibrium, that is

Upon introducing this relation in (49) leads to

(43)Tt∞ ∭Σ

𝜌ṡm dV = ∬
S0

(Pt∞ − Pt)(�.�)dS.

(44)Cm
Pt
=

1

ṁ ∬S
0

CPt
𝜌 (�.�) dS,

(45)CPt =
Pt∞ − Pt

1

2
�U2

∞

,

(46)∭Σ

𝜌ṡm dV =
1

2

U2
∞

Tt∞
ṁ Cm

Pt
.

(47)L =
1

ṁ ∭Σ

𝜌ṡm dV ,

(48)L =
1

2

U2
∞

Tt∞
Cm
Pt
.

(49)Cvortex =
Ps∞ − Ps

1

2
�U2

∞

−
u2
�

U2
∞

(50)�Ps

�r
= �

u2
�

r

Let us now consider the Rankine vortex, defined as

where a is the vortex core radius and Γ is the vortex circula-
tion. Based on this model, the coefficient Cvortex becomes

which shows that the Cvortex coefficient is maximum at the 
vortex center and is equal to zero outside the vortex core.

The surface average of Cvortex over a disk of radius R is 
defined as

If the integration area includes the whole vortex core 
( R > a ), one has

Equation (55) shows that the surface average of Cvortex is 
proportional to the vortex circulation squared, divided by the 
integration area. This relation does not depend on the vortex 
core radius a. If S0 and Γ are normalized by the velocity U∞ 
and a reference length, relation (55) eventually becomes
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