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Abstract
The present work compares two different drag formulations based on a global balance of momentum (cf. for instance Rival 
and Van Oudheusden in Exp Fluids 58(3):20, 2017) fed with wake surveys of a finite-size wing. The traditional expres-
sion in terms of velocity and static pressure is considered, and compared to the phenomenological drag breakdown put 
forward by Méheut and Bailly (AIAA J 46(4):847–862, 2008) within the aerodynamic context. Both formulations require 
information on the velocity field, but also the static or stagnation pressure in the wake plane of the model of interest. In this 
paper, we focus on computing the results based on velocity data exclusively, acquired by stereo-PIV. These two methods 
are benchmarked experimentally on the wake of a SACCON model (Schütte et al. in J Aircraft 49(6):1638–1651, 2012) 
that has been measured in one of ONERA’s wind-tunnels, and their performance is evaluated by comparing their results to 
direct force balance measurements. It is shown that while both formulations perform similarly, with drag predictions lying 
within 10% of the balance measurements, the phenomenological approach can additionally inform on the physical origins 
of drag. The latter method may thus be valuable to aerodynamicists, by giving them valuable clues as to how to fine-tune 
the performances of a given airframe.

1 Introduction

In a world increasingly concerned with energy and cost 
savings, it has become critical for aerodynamicists to accu-
rately measure and predict the effects of drag acting on air 
vehicles. This task is all the more difficult, as drag may 
result from drastically different physical phenomena, rang-
ing from viscous skin friction to shock waves, via the mere 
presence of lift. The mandatory first step towards improving 
the efficiency of an airframe is thus to accurately describe 
and measure these various drag components. The direct 
measurement of total mean drag acting on a model using 
force balances has been tried and tested, and is nowadays 
customarily found on industrial and research experimental 
platforms. Though reliable, this method only gives a global 

assessment of drag, and makes it impossible to distinguish 
between its various sources.

This drawback may be bypassed by expressing the total 
aerodynamic force in terms of the surrounding flow’s prop-
erties, by means of a global balance of momentum. The main 
difficulty associated with the aforementioned method then 
comes from accurately evaluating the pressure and velocity 
fields throughout a control volume, which can sometimes be 
quite large. Within this context, particle image velocimetry 
(PIV) appears to be a measurement method particularly well 
suited for this task, as it can yield velocity fields throughout 
large domains. And indeed, Van Oudheusden et al. (2006, 
2007) demonstrated that the control volume approach fed 
exclusively with planar PIV data was viable when consid-
ering the mean aerodynamic loads acting on a two-dimen-
sional (2D) airfoil. Since then, the continuous improvements 
made to PIV whether in terms of accessing the out of plane 
velocity component, or increasing spatial and temporal reso-
lutions have made it possible to infer ever more precisely 
the relationship between the forces acting on an object, 
and its surrounding flow. For instance, Ragni et al. (2009, 
2011), computed the time and phase averaged loads acting 
on straightly flying and rotating airfoils, respectively. The lift 
was computed by integrating the pressure coefficient along 
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the airfoil’s contour, which had been determined beforehand 
by integrating the Navier–Stokes equations fed with stereo-
PIV data. Drag, on the other hand, was deduced from PIV 
measurements of the momentum deficit in the wake. These 
PIV based loads were reported to be within 10% of those 
measured using conventional methods (pressure taps and 
Pitot probes). Alternately, Unal et al. (1997), Kurtulus et al. 
(2007), David et al. (2009) and Villegas and Diez (2014) 
took advantage of time resolved planar PIV data to examine 
the relationship between the instantaneous loads acting on 
2D profiles and the unsteady surrounding flow, and studied 
the drag in terms of convective, pressure and turbulent con-
tributions. In particular, these studies enabled to associate 
periodic features of the loads to vortex shedding in the wake. 
More recently, Terra et al. (2017, 2019) have estimated the 
drag acting on bluff bodies, based on the investigation of 
their wakes with large-scale tomographic PIV. Notably, the 
former study investigates the drag acting on a sphere towed 
across quiescent air, and highlights the competition between 
the convective and pressure contributions to drag, as a func-
tion of the distance between the investigation plane and the 
model.

The control volume approach in the form discussed above 
still entangles the different drag components resulting from 
irreversible losses of energy (i.e., viscous, form and wave drag, 
which add up to profile drag), to those resulting from the pres-
ence of lift (i.e., induced drag). To illustrate this point, let us 
consider the wake vortices that typically appear at the edges of 
three-dimensional wings, which result from a sudden pressure 
discrepancy at the crossing of the wingtip. This sharp pres-
sure gradient ultimately drives a strong cross-flow around the 
wingtip, whose magnitude can reach, in the present study, up 
to 20% of the streamwise velocity component. In the process 
of setting up wake vortices around its body, the airframe looses 
energy in the form of induced drag. It is however impossible to 
attribute the overall induced drag production to either inertia 
or pressure alone, since both effects contribute to the phenom-
enon. Within this context, the work of Jone’s (1936) can be 
seen as a first attempt to extract the profile drag resulting from 
viscous and form drag only, by considering the momentum 
deficit in the wake of two-dimensional (2D) airfoils flying 
through an incompressible fluid. This approach was further 
extended by Maskell (1972) and Cummings et al. (1996), 
who presented a way to determine lift induced drag. They did 
so by accounting for the presence of a transverse flow in the 
downstream plane, and showed that the induced drag in fact 
simply boiled down to the integration of the transverse kinetic 
energy at that same location. Finally, Destarac and Van Der 
Vooren (2004) and Kusunose et al. (1999) extended the latter 
methods to the compressible flow regime, where profile drag 
may also be generated by the emergence of shock waves upon 
the model. In such regimes, it is helpful to link profile drag to 
the production of entropy. In particular, the latter authors put 

forward a wave drag extraction method, based on the observa-
tion that the profile drag originating from viscous shear lay-
ers translates into a rotational wake (hence can be determined 
from Crocco’s theorem), whereas the profile drag resulting 
from shock waves can be associated to the irrotationnal region 
of the wake (hence wave drag can be calculated from the Rank-
ine–Hugoniot shock jump formula).

The goal of the present work is to compare the perfor-
mances of both approaches in an experimental context, where 
measurements stem from PIV. For the sake of simplicity, 
the framework adopted here will focus on the incompress-
ible regime. We will start by reviewing the mechanical and 
phenomenological drag breakdown methods in Sect. 2. The 
experimental rig used for the present investigation will then be 
described in Sect. 3, while the implementation and robustness 
of both methods will be assessed in Sect. 4. Global drag results 
will eventually be presented and discussed in Sect. 5.

2  Theoretical background

2.1  Mechanical drag breakdown

Let us consider an aircraft model immersed in an upstream 
uniform flow U∞ �x of density � and dynamic viscosity � . The 
cornerstone of the method consists in performing a global bal-
ance of momentum over the control volume V of contour �V 
and outwards pointing normal � , which is fully encompassing 
a model of wing area Sref (cf. Fig. 1). Considering a steady 
mean flow and time averaged quantities, the mean aerody-
namic load � acting on the model is traditionally found to be

(1)

� = − ∫
𝜕V

𝜌(� ⋅ �)� dS − ∫
𝜕V

𝜌 ⟨�� ⊗ �
�⟩ ⋅ � dS

− ∫
𝜕V

P� dS + 𝜇 ∫
𝜕V

�
∇� + (∇�)T

�
⋅ � dS,

Fig. 1  Control volume of interest. The region enclosed in the dashed 
loop is referred to as the wake w, which is a subset of the downstream 
plane S1 . Outside of this region, the profile drag, induced drag and 
turbulent contributions have completely vanished, unlike those asso-
ciated to the convective and pressure terms
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where � = U �x + V �y +W �z and P, respectively repre-
sent the mean velocity and mean static pressure fields. The 
term ⟨�′ ⊗ �

′⟩ refers to the Reynolds stress tensor, with 
�
� = u� �x + v� �y + w�

�z being the turbulent velocity fluctua-
tion. The effects of viscous friction along �V are consider-
ably smaller than any other term (about two orders of mag-
nitude here), hence can be safely dropped. Assuming that the 
lateral boundaries are sufficiently far from the model, there 
is no flux of momentum across them, and the global balance 
simplifies to evaluating the difference of momentum between 
the up- and downstream planes of the control volume S∞ and 
S1, respectively. This assumption also implies that the turbu-
lent stresses will be non negligible only in the downstream 
plane S1 . Further invoking the conservation of mass, and 
the fact that integrating P∞ over the closed contour �V is 
zero, the total drag coefficient CD = 2� ⋅ �x∕�∞ Sref U

2
∞

 can 
be expressed in terms of a surface integral over the down-
stream plane S1 of the control volume, and reads

In the above, subscript ‘ ∞ ’ refers to the uniform free-stream 
quantities. Equation 2 gives a mechanical description of the 
production of drag, by associating it to the properties of the 
flow (namely convection, pressure and turbulent stresses), 
which concurrently take part in all the various drag sources. 
The mechanical drag breakdown CMec

D
 ensues, and may be 

written as

where

and

According to this formulation, a sufficiently large plane S1 
must be considered, in order to compute a precise estimate 
of the total mean drag acting upon the model.

(2)

CD =
2

Sref ∫
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�
�

�∞

U

U∞

�
1 −

U
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�∞U
2
∞
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⟨u�u�⟩
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∞
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dS.

(3)CMec
D

= CConv
D

+ CPress
D
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D

,
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D

=
2
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S1

�

�∞

U

U∞

(
1 −

U

U∞

)
dS,

(5)CPress
D

=
2

Sref ∫
S1

P∞ − P

�∞U
2
∞

dS,

(6)CTurb
D

= −
2

Sref ∫
S1

�

�∞

⟨u�u�⟩
U2

∞

dS.

2.2  Phenomenological drag breakdown

Since the seminal work of Betz (1925), numerous phenom-
enological drag breakdown methods have been put forward, 
many of which are reviewed and compared in Méheut and 
Bailly (2008). We focus in this paper on the phenomeno-
logical drag breakdown put forward by the latter authors, 
which gives a complete drag breakdown, whose integration 
is reduced to the sole wake.

The cornerstone of Méheut and Bailly’s phenomenologi-
cal drag breakdown is Eq. 2. Unlike them however, we keep 
the Reynolds stress term, which is fully accessible using 
stereo-PIV data. (Neglecting turbulent stresses was required 
when wake data was measured with five-hole and Pitot 
probes, which only gave access to mean velocity fields.) 
Eq. 2 is then specialized to the aerodynamic case by express-
ing the ratio of fluid densities using the perfect gas constitu-
tive law, in which the stagnation pressure Pi and temperature 
Ti are introduced. The flow is supposed to be isenthalpic 
(i.e., there are no heat sources), such that the stagnation tem-
perature remains constant and equal to its free-stream value 
everywhere. Finally, the downstream plane is assumed to be 
located sufficiently far away from the model, such that the 
quantities measured downstream differ only slightly from 
those upstream. Within this small perturbation framework, 
one can define Pi = Pi∞ + �Pi ( Pi∞ being the free-stream 
stagnation pressure) and � = (U∞ + �u) �x + �v �y + �w �z , 
where the perturbations �Pi∕Pi∞ , �u∕U∞ , �v∕U∞ and �w∕U∞ 
are all small compared to one. Owing to an asymptotic 
expansion up to second order, Méheut and Bailly showed 
that Eq. 2 could be re-written in the form

where �  represents the heat capacity ratio, and 
Ma∞ = U∞∕

√
�rT∞ is the free-stream Mach number (r = 

287 J/kg/K being the specific gas constant for air). The equa-
tion above now has a strong physical meaning. Indeed, the 
latter authors showed that the first integral on the right-hand 
side of Eq. 7 translated the irreversible losses of energy, and 
was thus attributable to profile drag. By contrast, the second 
integral on the right-hand side of Eq. 7 is proportional to 
the transverse kinetic energy that has emerged downstream 
of the model. As such, it is representative of the induced 

(7)

CD =
1
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w

�
−

2

�M2
∞
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+
�
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∞
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��u2
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�
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drag resulting from trailing vortices. In addition, the works 
of Maskell (1972) and Cummings et al. (1996) showed 
that the integration domain of this second integral could 
be reduced to the wake only, by rewriting the transverse 
kinetic energy in terms of the streamwise vorticity com-
ponent � = (∇ × �) ⋅ �x , and the 2D mean streamfunction 
� = −(�2

yy
� + �2

zz
�) according to

As one may notice, the longitudinal velocity gradients must 
be negligible in the wake plane for Eq. 8 to be valid. As 
a result, the wake plane must be evaluated sufficiently far 
away from the model, in a location where the mean flow is 
dominated by longitudinal vorticity. In the case of trailing 
vortices behind NACA and cambered airfoils, this condition 
has been found to be reasonably achieved between 0.5 and 
1 chord downstream the trailing edge (Birch et al. 2004). 
Finally, turbulent stresses naturally vanish outside of the 
wake since they originate from shear. It is therefore possi-
ble to reduce the integration domain of the third integral on 
the right-hand side of Eq. 7 to the wake only, as well. In the 
end, the phenomenological total drag breakdown CPhen

D
 reads

where

and

As already stated, the integration domain of the phenom-
enological breakdown (9) is reduced to the actual wake w, 
while the control volume approach (3) requires an integra-
tion over the entire downstream plane S1 (with the exception 
of CTurb

D
 being in fact the same in both formulations). This 

particular feature of the phenomenological method makes 
it quite appealing experimentally speaking, as it drastically 
reduces the span of the domain to capture. There is how-
ever a trade-off with reducing the integration domain to the 
wake. Indeed, doing so focuses all the information scattered 
throughout space in a much smaller region, and especially 
in the viscous cores of the wake vortices. As a result, though 
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∞
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∞
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1
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(12)CTurb
D
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2

Sref ∫
w

�
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U2

∞
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the phenomenological method allows for smaller measure-
ments domains, it requires a fine spatial resolution to accu-
rately capture sharper velocity gradients.

2.3  Pressure calculation method

Inspecting Eqs. 5 and 10 above shows that the knowledge of 
both the static and stagnation pressure in the wake plane is 
required in order to evaluate drag using the mechanical and 
phenomenological approaches. Computing the pressure field 
from PIV velocity data, under the constraint of an incompress-
ible flow is a long standing issue, which has received con-
siderable attention in the past years (Van Oudheusden 2013; 
Rival and Van Oudheusden 2017). Note that in the more true 
to life case of a compressible flow, one may still compute 
the pressure field from velocity data, by invoking isentropic 
and isenthalpic relations, as put forward by Van Oudheusden 
et al. (2007). Owing to the low value of the free-stream Mach 
number Ma∞ = 0.10 , this particular study is restricted to the 
incompressible framework.

The pressure calculation strategy adopted here is based on 
the work of Jeon et al. (2018), and relies on integrating the 
pressure gradient of the Navier–Stokes equations

The different terms composing the pressure gradient are cal-
culated from the PIV measurements by spatial second order 
schemes. The pressure field is then obtained by minimizing 
a functional built on the difference of the pressure gradient 
based on the PIV measurements and the estimated pressure 
gradient, which is equivalent to solving a Poisson equation. 
The field is generally divided in sub-domains, based on the 
amplitude of the pressure gradient. The sequential pressure 
reconstruction is initiated from the outer domain, where the 
highest measurement accuracy is expected, hence where a 
reliable pressure reference can be taken. The pressure field 
in the other sub-domains is then computed by imposing Dir-
ichlet boundary conditions stemming from the previously 
computed outer domain.

Once the mean static pressure is reconstructed, the pres-
sure integration constant PBC is adjusted so that the average 
of the reconstructed pressure computed along the contour 
of the PIV domain coincides with the average of the static 
pressure computed from the isentropic relation

at the same location. The local stagnation pressure in the 
downstream plane eventually ensues from applying the local 
isentropic and isenthalpic relations to the previously deter-
mined local static pressure, following

(13)−∇P = 𝜌
�
� ⋅ ∇� + ∇ ⋅ ⟨�� ⊗ �

�⟩� − 𝜇𝛥�.

(14)PBC = P∞

�
1 + M2

∞

� − 1

2

�
1 −

‖�‖2
U2

∞

���∕(�−1)
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3  Experimental apparatus 
and instrumentation

3.1  Wind‑tunnel setup

This study was conducted on a model of the SACCON 
geometry, a generic flying wing configuration that was intro-
duced within the framework of aircraft control and stabil-
ity analyses (Loeser et al. 2010; Vicroy et al. 2010). This 
particular configuration was chosen here as it is known to 
induce complex vortical patterns above its upper surface at 
medium and high angles of attack (Roosenboom et al. 2012; 
Schütte et al. 2012). It is therefore an excellent case study 
to try and test wake integral methods. The particular model 
used here has a wingspan b = 1m , a reference chord cref = 
0.31 m and a reference area Sref = 0.3253m2 . It was placed 
inside the L1 wind-tunnel of Lille’s ONERA center, whose 
dodecagonal test-section is 2.4 m wide. The free-stream 
velocity was fixed at U∞ = 35 m/s throughout the cam-
paign, which corresponds to a free-stream Reynolds number 

(15)Pi = P

⎡
⎢⎢⎢⎢⎣

1 + M2
∞

� − 1

2

�
1 −

‖�‖2
U2

∞

�

1 + M2
∞

� − 1

2

⎤
⎥⎥⎥⎥⎦

−�∕(�−1)

.

Re∞ = � cref U∞∕� = 1.1 106 , and a free-stream Mach num-
ber Ma∞ = U∞∕

√
�rT∞ = 0.10 . Three different angles of 

attack � = 9◦, 13◦ and 18◦ were investigated. The wake was 
measured one chord away from the model’s wingtips (cf. 
Fig. 2). The maximum blockage, which was encountered for 
� = 18◦ , did not exceed 2%, hence no particular correction 
was applied to the data.

3.2  Measurement protocol

The stereo-PIV setup revolved around a dual cavity Nd:YAG 
Quantel Evergreen laser, which emitted at wavelength 
532 nm with an output energy of 200 mJ per laser head, and 
two LaVision Imager sCMOS cameras with a 5.5 Mpix-
els resolution. The PIV images were processed using 32 × 
32 pixels2 interrogation windows, with an overlap of 50%, 
which resulted in velocity fields with a spatial resolution of 
3 mm. Time averages were performed over 5000 consecutive 
frames acquired at 5 Hz. This relatively low acquisition fre-
quency was chosen in order to get statistically independent 
PIV snapshots, while still keeping a reasonable acquisition 
time (around 15 mn). The resulting dispersion on the mean 
flow was checked a posteriori for all cases, and was found 
to be of the order, or better than 0.1% of U∞ . Due to its large 
span, the wake was split into four 480 × 300mm2 overlap-
ping PIV frames, with an overlap of 50 mm between adja-
cent frames. The cameras were fixed on a motor driven table 
that enabled a precise positioning of the different frames 
with respect to each other in space. In order to minimize the 

Fig. 2  Overview of the stereo-PIV setup: (i) Quantel Evergreen laser; 
(ii) laser sheet. In order to discretize the axial gradients present in 
Eq. (13), three PIV planes have been subsequently shone at locations 

x = cref (solid line), and x = cref ± �x (dashed lines); (iii) 5.5Mpixels 
LaVision Imager sCMOS cameras; (iv) wake plane split into four 
480 × 300mm2 frames, with a 50 mm overlap



 Experiments in Fluids (2019) 60:167

1 3

167 Page 6 of 13

impact of edge effects when combining all frames together, 
the outer most frames were positioned such that they would 
contain the entire tip vortex. Finally, the longitudinal gra-
dients present in Eq. 13 were discretized by considering 
two additional planes, respectively located at x = cref ± �x , 
where �x = 30mm.

Subsequently to stereo-PIV measurements, the left half of 
the model’s wake was surveyed using a five-hole probe. In 
order to reduce the acquisition time, the probe was mounted 
on a traversing system which swept across the wake at the 
constant speed of 5 mm/s. Data points were recorded every 
2 mm, such that the characteristic traveling time �p of the 
probe between two measurements is �p = 0.4 s. By com-
parison, the characteristic time of the flow �u is reasonably 
associated to the turnover time of the tip vortex following 
�u = �∕‖�

⟂
‖ , where � is the size of the tip vortex, and ‖�

⟂
‖ 

the magnitude of the cross-flow. Based on the data given in 
Fig. 3, �u ∼ 0.03 s , which is one order of magnitude smaller 
than �p . As a result, the five-hole probe experiences many 

turnover times during its travel time from one measuring 
point to another. It is therefore reasonable to assume that 
it experiences a statistically steady flow despite its motion.

Alongside the stereo-PIV and five-hole probe measure-
ments, the lift, drag and side forces, as well as the rolling, 
pitching and yawing moments were measured using an 
in-house force balance. The balance’s dynamic range for 
the lift and drag components was ± 5890 N and ± 1730 N 
respectively, with an uncertainty lower than 1/1000th of the 
balance’s dynamic range.

3.3  General characterization of the wake

Figures 3 and 4 present the overall structure of the flow 
for � = 9◦ and 18◦, respectively. The mean flow is given in 
Fig. 3, in which the contour plot gives the mean streamwise 
velocity component, while the vectors illustrate the veloc-
ity field in the plane normal to the stream. Since the wake 
is slightly asymmetrical, all graphs have been evaluated on 
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the left half of the model, for the sake of a fair comparison. 
The right plots of Figs. 3 and 4 are in fact mirror images of 
the actual flow.

For � = 9◦ , the wake features a small vortex core, which 
forms at the very tip of the model around |y| = 0.45m . This 
primary vortex is accompanied by a narrow vortex sheet, 
which develops as the flow smoothly passes around the body 
of the model. At this setting, the level of turbulent fluctuations 
is negligible, and reaches only a couple of percents in the very 
core of the tip vortex. By contrast, the wake for � = 18◦ , is 
dominated by a large vortex in the form of a kidney bean. 
This particular shape is typical of several unsteady vortices 
interacting with each other. As a matter of fact, Schütte et al. 
(2012) showed that for � = 18◦ , the tip vortex merges with a 
secondary vortex originating from the apex of the model. The 
unsteadiness of this process is confirmed by the maps of turbu-
lent fluctuations displayed in Fig. 4, which shows a high level 
of normal turbulent stresses in the tip vortex region, reaching 
up to 10% of the free-stream kinetic energy.

In all cases, a strong cross-flow is induced in the vicinity of 
the tip vortices, whose intensity reaches, in average up to 10% 
for � = 9◦ and 20% for � = 18◦.

4  Experimental methods

4.1  Accuracy of the reconstructed pressure fields

The crux of the matter relies here in reconstructing the static 
and stagnation pressure fields in the downstream plane, from 
PIV measurements. In order to assess how reliable these recon-
structed fields are, Figs. 5 and 6 compare streamwise profiles 
of PIV-reconstructed static and stagnation pressure to profiles 
stemming directly from five-hole probe wake measurements. 
In both figures, the profiles are plotted along the left side of the 
model, as five-hole probe measurements were available only 
there. Figures 5 and 6 strikingly show that the reconstructed 
static and stagnation pressure fields compare quite differently 
to their five-hole probe counterparts. Indeed, the reconstructed 
static pressure (Fig. 5) is systematically lower than the direct 
probe measurements, while the reconstructed stagnation pres-
sure (Fig. 6) appears to be much closer to the probe measure-
ments, except for � = 18◦.

The discrepancy between the static and stagnation pres-
sure reconstructed from PIV data, and their directly measured 
counterparts is better quantified by defining Cp and CPi as

and

(16)CP = ∫
S1

(
P∞ − P

)
dy dz,

(17)CPi = ∫
S1

(
Pi∞ − Pi

)
dy dz,

and subsequently the relative differences �P and �Pi

(18)�P =

|||CP
5HP − CP

PIV|||
CP

5HP
,

Table 1  Relative differences 
between CP and CPi computed 
with five-hole probe data and 
PIV measurements

� �P �Pi

9◦ 0.85 0.04
13◦ 0.45 0.07
18◦ 0.18 0.17
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Fig. 5  Spanwise profiles of static pressure integrated vertically. Solid 
lines refer to direct pressure measurements with a five-Hole probe. 
Dashed lines refer to the reconstructed static pressure based on PIV 
measurements fed into Eq. 13
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and

where superscripts “5HP” and “PIV” refer to integrals 
evaluated with five-hole probe and PIV measurements, 
respectively.

Values of �P and �Pi
 are compared in Table 1 for all 

angles of attack investigated. According to this table, the 
reconstructed stagnation pressure is one order of magni-
tude more accurate than the static pressure at low angles 
of attack, despite the fact that its computation uses a 
rather crude estimate for the static pressure by virtue of 
Eq. 15. This observation suggests that underestimating the 
static pressure only weakly affects the stagnation pressure 
prediction.

This behavior is further investigated with Fig. 7, which 
compares two different methods of computing the stagna-
tion pressure, based on Eq. 15. The first method consists in 
deducing Pi from the static pressure, as done previously, 
while the second method consists in computing Pi by 
imposing a uniform pressure throughout the wake plane. 
This figure shows that the global features of the stagna-
tion pressure field can indeed be captured with the veloc-
ity field alone. However, in order to capture the stagnation 
pressure losses in the core of the tip vortex, it is preferable 
to compute Pi from a prior computed, albeit coarse, static 
pressure field.

(19)�Pi =

|||CPi
5HP − CPi

PIV|||
CPi

5HP
,

4.2  Wake identification

As accurate as the stagnation pressure estimate may be 
(whether directly measured or reconstructed), it still yields 
poor global results once integrated throughout the down-
stream plane, as stagnation pressure losses do not exactly 
vanish outside of the wake due to noise and uncertainties. 
It thus becomes necessary to extract the wake from its sur-
rounding to enforce that stagnation pressure losses are con-
fined there.

The wake is identified by investigating the stagnation 
pressure distribution function, which presents a sharp 
discontinuity. A threshold value on the maximum admis-
sible stagnation pressure loss is then imposed based on 
the value at which this discontinuity occurs (cf. the dotted 
line in Fig. 8). Figure  9 shows the outer envelop of all the 
points lying beneath the aforementioned threshold, and 
confirms that the discontinuity in the stagnation pressure’s 
distribution function indeed coincides with the physical 
boundaries of the wake. From here on, the integration of 
the stagnation pressure is limited to this boundary. The 
procedure above is illustrated here for � = 13◦ , but works 
equally well at other angles of attack.

4.3  Sensitivity to spatial resolution

Tables 2 and 3 show the sensitivity of the mechanical and 
phenomenological methods to the spatial resolution of the 
PIV data, which is given by the size of the interrogation 
windows (WS). Unsurprisingly, the two drag contributions 
that appear to be the most sensitive to the spatial resolu-
tion are those involving the reconstructed pressure field, 
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Fig. 7  Different options for the computation of the stagnation pres-
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result of computing Pi with Eq. 15 in which an isobar wake plane at 
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namely CPress
D

 and CProf
D

 , with a variation of forty to fifty 
drag counts between the highest and lowest resolutions 
(one drag count represents a 10−4 variation of the drag 
coefficient). Furthermore, decreasing the spatial resolution 
affects the turbulent and convective contributions by about 
10 and 30 drag counts, respectively, as a result of CTurb

D
 ’s 

and CConv
D

 ’s integrands missing the finer flow structures. 
Interestingly, the induced drag term is the least sensitive, 
and shows a variation of only 6 drag counts between the 
finest and coarsest cases, despite this term representing the 
velocity gradients in the plane perpendicular to the stream.

4.4  Sensitivity to longitudinal discretization

Earlier work focused on reconstructing a pressure field from 
planar PIV highlighted the necessity to evaluate the derivatives 
in the out of plane direction (cf. for instance Van Oudheusden 

(2013)) in order to get the most accurate predictions. The pur-
pose of the following test is to assess the impact of the stream-
wise gradients on the global drag predictions. To do so, we 
consider the three following schemes for the approximation 
of �x� in Eq. 13, where for any function �(x, y, z):

The first scheme is a shorthand for neglecting longitudinal 
velocity gradients altogether. In the following, an interro-
gation window of size 32 × 32 pixels2 is used. Practically 
speaking, �x = 30 mm is taken to be the spacing between 
adjacent PIV planes, while x = cref refers to PIV measure-
ments obtained in the middle plane located one chord away 
from the model’s wingtips (cf. Fig. 2).

Table 4 shows that in the case at hand, neglecting lon-
gitudinal velocity gradients in the pressure reconstruction 
algorithm has a somewhat larger effect on CPress

D
 , than CProf

D
 , 

with a variation of up to thirteen drag counts for the former 
vs. four for the latter. This again seems to indicate that the 
stagnation pressure is a more robust quantity than the plain 
static pressure. In any case, the sensitivity of either CPress

D
 or 

CProf
D

 to the discretization scheme appears to be marginal, 
when compared against their respective sensitivity to the 
spatial resolution of the data, which suggests that it is the 
latter that should be given priority when computing loads 
from wake data.

(20)

⎧⎪⎨⎪⎩

��

�x
= 0 + O(1)

��

�x
=

�(cref+�x)−�(cref)

�x
+ O(�x)

��

�x
=

�(cref+�x)−�(cref−�x)

2�x
+ O(�x2)

.
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Fig. 9  Wake contour for � = 13◦ , as identified by the threshold value found in Fig.  8. This figure showcases the importance of cropping the 
wake’s surrounding before integration, as the latter introduces artificial stagnation pressure losses, which have no physical meaning

Table 2  Sensitivity of the mechanical decomposition to spatial reso-
lution, for the � = 13◦ case

Computations are performed using PIV interrogation windows of 
increasing sizes (WS)

WS ( pixels2) C
Conv
D

C
Press
D

C
Turb
D

C
Mec
D

32 × 32 0.0352 0.0165 − 0.0016 0.0501
64 × 64 0.0342 0.0158 − 0.0012 0.0488
128 × 128 0.0325 0.0129 − 0.0007 0.0447

Table 3  Sensitivity of the phenomenological decomposition to spatial 
resolution, for the � = 13◦ case

Computations are performed using PIV interrogation windows of 
increasing sizes (WS)

WS ( pixels2) C
Prof
D

C
Ind
D

C
Turb
D

C
Phen
D

32 × 32 0.0205 0.0390 − 0.0016 0.0579
64 × 64 0.0196 0.0391 − 0.0012 0.0575
128 × 128 0.0151 0.0384 − 0.0007 0.0528

Table 4  Sensitivity of CPress
D

 
and CProf

D
 to the order of the 

discretization scheme used in 
Eq. (13), for the � = 13◦ case. 
Results are obtained with PIV 
interrogation windows of size 
32 × 32 pixels2

Scheme 
order

C
Press
D

C
Prof
D

0 0.0152 0.0201
1 0.0160 0.0207
2 0.0165 0.0205
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5  Results and discussion

To begin with, Table 5 gives the global lift and drag coeffi-
cients measured by the force balance, which will be used as a 
reference throughout the remainder of the text. The relatively 
high measurement dispersion of 8% on the drag coefficient 
for � = 9◦ comes from the low drag value occurring at this 
angle of attack, with respect to the balance’s dynamic range.

Tables 6 and 7 display the global drag predictions and 
their breakdown, stemming from the mechanical (Eq. 3) and 
phenomenological (Eq. 9) approaches, as well as the relative 
difference between the global predictions and the balance 
measurements. According to these tables, the mechanical 
and phenomenological methods yield global drag predic-
tions that all lie within 10% of the balance measurements. 
Furthermore, the mechanical breakdown tends to underesti-
mate the balance measured drag coefficients. (The overshoot 
measured for � = 9◦ likely results from the large dispersion 
on the balance measurement.) In light of Fig. 5, this behavior 

probably comes from the inaccurate pressure reconstruction 
from PIV measurements, which tends to miss the amplitude 
of the depressions occurring inside the different flow struc-
tures found throughout the wake. By comparison, the drag 
coefficients computed using the phenomenological decom-
position systematically overestimate those measured with 
the force balance.

The soundness of the induced drag coefficients given 
in Table 7 may be checked by comparing them to those 
deduced from the lifting line theory. While the latter does 
not strictly apply to the swept and twisted SACCON wing 
of this study, it can still be used to infer a lower bound 
for the induced drag coefficient. Indeed, according to the 
lifting line theory (c.f. for instance Anderson (1991)), the 
induced drag acting over a finite wing is minimum when 
it experiences an elliptical distribution of lift. The induced 
drag can then be expressed in terms of the total lift coef-
ficient via

Table 8 provides the induced drag coefficient predicted using 
the lifting line theory (i.e., Eq. 21 and the balance data pro-
vided in Table 5). Comparing Tables 7 and 8 shows a rea-
sonable agreement between the induced drag coefficients 
predicted by the lifting line theory and those measured by 
PIV. The maximum discrepancy is found to monotonically 
increase with the angle of attack (that is to say with the 
complexity and size of the wake), without exceeding 10% in 
the worst case ( � = 18◦ ). This behavior is sensible, given the 
fact that the lifting line theory assumes a wake originating 
from an aircraft’s trailing edge, while the swept SACCON 
geometry introduces secondary vortices originating from the 
leading edge of the model, which are bound to increase the 
total induced drag.

Table 7 sheds some light on the relative competition 
between the physical processes at play. In particular, the 
phenomenological breakdown displays a reversal in the 
competition between the induced and the profile drag, with 
the former dominating at low angles of attacks ( � = 9 and 
13◦ ), and the latter at � = 18◦ . By contrast such a reversal 
does not transpire in the mechanical breakdown, for which 
the convective term always dominates. This observation 
may be physically interpreted in the light of Schütte et al.’s 

(21)CInd
D

=
CL

2 Sref

� b2
.

Table 5  Reference lift ( CBal
L

 ) and drag ( CBal
D

 ) coefficients measured 
using a force balance, for � = 9◦ , 13◦ and 18◦

� 9◦ 13◦ 18◦

C
Bal

L
0.417 ± 0.0038

(± 0.9%)

0.592 ± 0.0041

(± 0.7%)

0.850 ± 0.0065

(± 0.8%)

C
Bal

D
0.0233 ± 0.0018

(±8%)

0.0543 ± 0.0016

(± 3%)

0.171 ± 0.0034

(± 2%)

Table 6  Total mean drag predictions and their breakdown, as given 
by the mechanical approach fed with PIV measurements. Com-
putations are performed using the finest PIV resolution of 3  mm 
( 32 × 32 pixels2 interrogation windows)

Values in parentheses are relative differences with respect to the bal-
ance measurements

� C
Conv
D

C
Press
D

C
Turb
D

C
Mec
D

9◦ 0.0215 0.0049 − 0.0007 0.0257 (+ 10%)
13◦ 0.0352 0.0165 − 0.0016 0.0501 (− 8%)
18◦ 0.1096 0.0687 − 0.0131 0.1653 (− 3%)

Table 7  Total mean drag predictions and their breakdown, as given 
by the phenomenological approach fed with PIV measurements

Computations are performed using the finest PIV resolution of 3 mm 
( 32 × 32 pixels2 interrogation windows). Values in parentheses are 
relative differences with respect to the balance measurements

� C
Prof
D

C
Ind
D

C
Turb
D

C
Phen
D

9◦ 0.0072 0.0190 − 0.0007 0.0255 (+ 9%)
13◦ 0.0205 0.0390 − 0.0016 0.0579 (+ 7%)
18◦ 0.1078 0.0823 − 0.0131 0.1770 (+ 4%)

Table 8  Lower bound for 
the induced drag coefficient 
following from the lifting line 
theory applied to a finite wing 
whose aspect ratio is similar to 
that of the model at hand

The computation is based on the 
balance measured lift coefficient 
given in Table 5

C
Ind
D

 (lifting line theory)

� = 9◦ � = 13◦ � = 18◦

0.0180 0.0363 0.0748
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study Schütte et  al. (2012), which shows that � = 18◦ 
coincides with the tip vortex being at the onset of burst-
ing. From this point onward, the tip vortex progressively 
detaches from the upper surface of the model, therefore 
decreasing lift, hence also decreasing induced drag. Simul-
taneously, the resulting flow separation promotes pres-
sure drag, which leads to an increase in profile drag. Such 
observations can prove quite valuable when optimizing 
an airframe for a particular flight regime, since tackling 
induced or profile drag requires radically different strate-
gies. For instance, optimizing profile drag hints at reduc-
ing skin friction or delaying the flow separation, while 
reducing induced drag is usually tackled by preventing the 
formation of trailing vortices with wingtip devices. Infer-
ring such strategies based on the mechanical decomposi-
tion alone would not be possible, since the competition 
between its different contributions may not automatically 
translate into physically interpretable drag sources.

The previous argument is illustrated with a more local 
point of view in Figs.  10 and 11, which present spanwise 
profiles of mechanical and phenomenological drag, obtained 
by, respectively, integrating Eqs. 3 and 9 along the z coordi-
nate. Here, the cases � = 9 and 18◦ are considered. As before, 
all graphs are evaluated along the left half of the wing, the 
right parts of Figs. 10 and 11 being mirror images. For 
� = 9◦ , the phenomenological decomposition (Fig. 10, right) 
concentrates drag in a narrow region of the wake which coin-
cides with the location of the tip vortex’s core. By contrast, 
the mechanical method (Fig. 10, left) associates drag for 
some part at the location of the tip vortex, but mostly along 
the model’s centerline, where a deficit in the longitudinal 
velocity component appears, as mean kinetic energy has 
been redistributed into the cross-flow. For � = 18◦ however, 
the region of the wake mainly associated to the momen-
tum deficit is clearly associated to the tip vortex. One must 
remain cautious when interpreting the wake in terms of drag 
production, since the latter only gives a picture of what the 
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Fig. 10  Spanwise profiles of drag contributions for � = 9◦ . (Left) 
mechanical decomposition: each black line represents a particular 
term of Eq. 3 integrated along z. (Right) phenomenological decompo-
sition: each black line represents a particular term of Eq. 9 integrated 

along z. For both cases, the red line represents the cumulative integral 
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flow encountered along the model’s surface, where drag 
was actually produced via pressure and skin friction. It can 
nonetheless yield some insight, especially in the presence of 
dominating flow structures such as here.

Finally, Figs. 10 and 11 show the cumulative integral of 
all the different contributions to the mechanical and phenom-
enological breakdown, where the value read on the model’s 
centerline corresponds to the total drag produced by one half 
of the model. It should be observed that though the mechani-
cal and the phenomenological methods translate in radically 
different spanwise profiles, they eventually integrate to simi-
lar values (within their respective accuracy), thus confirming 
that the two methods described in this paper are in fact two 
different points of view of the same phenomenon.

To put the current work in perspective with the existing 
literature, the global drag predictions obtained here (whether 
using the mechanical or phenomenological method) appear 
to be at par with those published in earlier studies dealing 
with the same issue. Indeed, as far as wake surveys using the 
phenomenological decomposition fed with five-hole probe 
measurements is concerned, Brune (1994) reports a relative 
difference better than 1% with respect to balance measure-
ments on the drag prediction of a 1.80 m long rectangular 
wing, while Crowder et al. (1997) reports a 13% difference 
between balance measurements and the wake drag prediction 
of civil aircraft model flying at Ma = 0.86 . In this case, the 
main source of error is attributed to the method not account-
ing for flow compressibility effects.

Regarding load evaluation using the mechanical approach 
fed with PIV data, Ragni et al. reports drag values that lie 
within 10% of those obtained using a Pitot wake rake behind 
a NACA0015 airfoil. In addition, De Kat and Bleischwitz 
(2016) measured drag coefficients from a wake survey 
behind a flat plate, and reported drag coefficients within 30% 
of direct force measurements. The latter authors computed 
the total mean drag based on Eq. (2) fed with a flow field 
reconstructed from PIV measurements of a sub-region of 
the wake. The flow in the entire downstream plane S1 was 
then inferred by invoking its symmetry with respect to the 
centerline, and its solenoidality. They thus attributed the 
relatively large discrepancies to the fact that they did not 
have access to the entire flow field. In that respect, the phe-
nomenological method would perhaps be more suitable, as it 
naturally vanishes outside of the wake. Based on the present 
work however, another aspect that may have had an impact 
in their results might be their assumption of an exactly sym-
metrical wake. Though reasonable in a first approximation, 
Fig. 9, and the cumulative values of Figs. 10 and 11 which 
are systematically lower than half the total drag coefficient 
give evidence that this may not always be exactly true.

6  Conclusion

This paper benchmarks two different expressions of the con-
trol volume approach, using stereo-PIV data acquired in the 
complex wake of a finite-size wing: the phenomenological 
approach, written in terms of the stagnation pressure, and 
the mechanical approach, which uses the static pressure. 
The former method expresses drag in terms of profile and 
induced drag, while the latter expresses drag in terms of 
the surrounding flow’s properties. Until now, the phenom-
enological decomposition was numerically evaluated with 
five-hole probe measurements.

In the particular case at hand, we have shown that the 
mechanical and phenomenological methods perform simi-
larly, as they yield integrated drag coefficients always within 
10% of the balance measurements. Furthermore, we have 
illustrated how the phenomenological method can be used 
to physically interpret the drag sources at play, which can 
ultimately be used to optimize an airframe’s geometry 
for a particular flight regime. By contrast, the mechanical 
approach does not allow one to distinguish between the dif-
ferent physical origins of drag, as it entangles the convective 
and pressure effects together.

As far as the implementation of the methods is concerned, 
this study highlights by comparing the PIV-reconstructed 
static and stagnation pressure to direct five-hole probe 
measurements, that the latter is accessible with reasonable 
accuracy, although the reconstructed static pressure underes-
timates the depression associated to the flow features occur-
ring throughout the wake. In that respect, the phenomeno-
logical method appears to be particularly well suited to the 
PIV investigation of aircraft wakes containing intense wake 
vortices, as it enables one to reduce the integration domain 
based on physical arguments alone.
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