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Abstract
The vortex dynamics and lift force generated by a sinusoidally heaving and pitching airfoil during dynamic stall are experi-
mentally investigated for reduced frequencies of k = fc∕U∞ = 0.06−0.16 , pitching amplitude of �

0
= 75◦ and heaving ampli-

tude of h
0
∕c = 0.6 . The lift force is calculated from the velocity fields using the finite-domain impulse theory. The concept of 

moment-arm dilemma associated with the impulse equation is revisited to shed light on its physical impact on the calculated 
forces. It is shown that by selecting an objectively defined origin of the moment-arm, the impulse force equation can be 
greatly simplified to two terms that have a clear physical meaning: (1) the time rate of change of impulse of vortical structures 
within the control volume and (2) Lamb vector that indirectly captures the contribution of vortical structures outside of the 
control volume. The results show that the trend of the lift force is dependent on the formation of the leading-edge vortex, as 
well as its time rate of change of circulation and chord-wise advection relative to the airfoil. Additionally, the trailing-edge 
vortex, which is observed to only form for k ≤ 0.10 , is shown to have lift-diminishing effects that intensify with increasing 
reduced frequency. Lastly, the concept of optimal vortex formation is investigated. The leading-edge vortex is shown to attain 
the optimal formation number of approximately 4 for k ≤ 0.1 , when the scaling is based on the leading-edge shear velocity. 
For larger values of k the vortex growth is delayed to later in the cycle and does not reach its optimal value. The result is that 
the peak lift force occurs later in the cycle. This has consequences on power production which relies on correlation of the 
relative timing of lift force and heaving velocity.

1 Introduction

Flow physics of oscillating surfaces has become a very 
important area of study for a wide range of applications, 
such as the development of micro-air vehicles and energy-
harvesting devices (Tuncer and Platzer 2000; Zhu 2011; 
Mackowski and Williamson 2015; Siala and Liburdy 2015). 
A large contribution to the existing knowledge has come 
through the studies of flapping flight of insects, birds and 
bats (Leishman 1994; Ellington et al. 1996; Ellington 1999; 
Madangopal et al. 2005; Platzer et al. 2008; Hubel et al. 
2009). The oscillatory/flapping kinematics of these natural 
fliers may exploit several lift-enhancing mechanisms such 
as dynamic stall and vortex-wake recapture, among others 
(Srygley and Thomas 2002). A common model of oscilla-
tory flight is the combined heaving and pitching motion of 

an airfoil at large angles of attack, in which the formation 
and shedding of leading-edge vortices (LEVs) exhibit a large 
impact on the flow behaviour and instantaneous aerody-
namic forces (Hubel and Tropea 2010; Moriche et al. 2017). 
Although the general role of LEVs is well understood; they 
produce regions of low pressure on the suction side of the 
airfoil to generate a large suction force, yet developing fun-
damental theories that can predict their effects on the tran-
sient aerodynamic forces remains to be quite challenging to 
the aerodynamics community.

Classical unsteady theories of aerodynamics, the most 
prevalent of which are the models of Wagner (1925) and 
Theodorsen (1934), have been used extensively with success 
in problems related to aeroelasticity and fluttering. However, 
since these models are based on potential flow theory, they do 
not capture the effects of separated flow and LEVs, thereby 
limiting their application to small amplitude kinematics where 
the boundary-layer remains attached throughout the unsteady 
motion. In recent years, more advanced models based on dis-
crete-vortex methods have been employed to model unsteady 
flows during dynamic stall (Xia and Mohseni 2013; Hammer 
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et al. 2014; Liu et al. 2016; Darakananda et al. 2016). In these 
methods, potential-flow theory is modified to include discrete 
point vortices to represent free vortical structures and shear 
layers. Typically, the trajectory of these point vortices is deter-
mined by the Kirchhoff velocity (Darakananda et al. 2016) 
or Brown–Michael equation (Brown 1954). However, such 
models are based on some ad-hoc criteria for LEV inception 
and shedding. For example, the LEV strength must reach an 
extremum before it is allowed to evolve as a simple point vor-
tex using the Brown–Michael equation. Furthermore, Ramesh 
et al. (2014) developed the leading-edge suction parameter 
(LESP), which is equivalent to the first Fourier coefficient 
( A0 ) in unsteady thin airfoil theory, to predict the onset of 
LEV formation. This method requires calibration using highly 
resolved simulations to determine a critical LESP value, at 
which the flow begins to separate from the leading edge. They 
show that the critical LESP value they determined is univer-
sal for a given airfoil geometry and Reynolds number. Once 
the LEV is formed, its evolution is determined using inviscid 
flow theory. While this method provides reasonable estimates 
of aerodynamic force coefficients, it still requires high-cost 
simulations to pre-determine the onset of flow separation. In 
addition, the exact contribution of LEVs and other free vor-
tices is not explicitly highlighted, which makes it difficult to 
develop fundamental theories of vortex dynamics and their 
role in aerodynamic force production.

One promising tool for computing the fluid dynamic forces 
is based on the concept of hydrodynamic impulse (Lin and 
Rockwell 1996; Epps 2010; Kim et al. 2013). Originally, the 
impulse concept was introduced to bypass the integration of 
total momentum which is not well defined in an infinite region, 
since in general the momentum integral is only conditionally 
convergent (Lamb 1932; Lighthill 1986; Saffman 1992; Batch-
elor 2000). The impulse-based force equation for an unsteady 
moving body in unbounded, incompressible flow can be writ-
ten as follows:

where � is fluid density, � is the position vector, �0 is the 
origin location of the position vector, � is the vorticity vec-
tor, � is the velocity vector, � is the normal unit vector and 
N = ∇ ⋅ � is the dimension of space. The details of the con-
trol volume used for the application of Eq. (1) are given 
in Fig. 1. The first term is evaluated over the entire flow 
field ( V∞ ) and represents the rate of change of flow impulse. 
The second term is evaluated over the body surface ( SB ) 
and it represents the inertial force of the fluidic body. One 
particular constraint with this formulation is that the entire 
vorticity field must be captured in the control volume ( V∞ ). 

(1)

� = −
�

N − 1

d

dt ∫V∞

(� − �0) × �dV

+
�

1 − N

d

dt ∮SB

(� − �0) × (� × �)dS

Practically, this limits its use to the early times of impul-
sively-started flows, where the entire vorticity field remains 
inside the control volume.

The use of impulse theory has also gained popularity in 
constructing semi-empirical low-order models. For exam-
ple Babinsky et al. (2016) and Stevens and Babinsky (2017) 
have applied a linearized version of the impulse formulation 
(Kármán 1938) to experimental data to model the transient 
lift force of impulsively pitching and surging airfoils. They 
decomposed the rate of change of impulse into two terms: 
vortex circulation growth and vortex advection, where both 
terms are calculated empirically from experimental data. They 
show that the total lift force at the beginning of the motion is 
primarily dictated by the LEV growth. Once the LEV stops 
growing, the LEV advection relative to the trailing-edge vortex 
(TEV) becomes more dominant. Overall, they obtain reason-
able lift force estimates by assuming that all relevant vorticity 
is contained within the LEV and TEV. Furthermore, Wang and 
Eldredge (2013) used the impulse-matching approach (Tch-
ieu and Leonard 2011) in conjunction with discrete-vortex 
methods to model the effects of LEVs on impulsively started 
flat plates at various angles of attacks. The impulse-matching 
approach is used as an alternative to the Brown-Michael equa-
tion to relax the vortex shedding criterion required by the latter 
method. One limitation associated with this approach that the 
authors address is the use of the Kutta condition to determine 
the vortex strength as a function of time. They suggest that 
calculating the vortex strength empirically might improve the 
accuracy of their model. Ideally, one may develop universal 
scaling laws of vortex dynamics for a wide range of opera-
tional parameters that can be used as inputs in such models. 
For example, the idea of optimal vortex formation number 
(Dabiri 2009) could potentially serve as a unifying principle 
in constructing low-order models under the proper conditions. 
Onoue and Breuer (2016) investigated the LEV formation 
number of pitching airfoils for a wide range of amplitudes, 

Fig. 1  Domain of integration for the evaluation of aerodynamic 
forces on an airfoil
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reduced frequencies and Reynolds numbers. They show that 
the time-history of LEV circulation growth collapses on a sin-
gle curve, where the maximum formation number was found 
to approximately equal to 4, agreeing remarkably well with the 
theory (Gharib et al. 1998).

Noca (1997) has expanded on the impulse theory and 
derived the force equation for arbitrary finite domains using 
the derivative moment transformation (DMT) identity (Wu 
et al. 2007). The force equation is written as follows:

where Vf is the fluidic volume, S is the exterior surface of the 
control volume and SB is the airfoil surface. The term ���� 
may be written as follows:

where � and � represent the identity and viscous stress ten-
sors, respectively. Unsteady force evaluation based on the 
finite-domain impulse theory has attracted wide attention 
among the experimental fluid dynamics community, as it is 
often not feasible to directly measure the aerodynamic forces 
on moving airfoils due to challenges in separating the iner-
tial contributions (Rival et al. 2009). This is especially prob-
lematic in wind tunnel experiments, where the density of the 
airfoil can be orders of magnitude greater than the density of 
air (Totpal 2017). Other force estimation techniques based 
on the integral momentum approach requires the evaluation 
of the pressure field which can be a non-trivial task in exper-
imental fluid dynamics (Van Oudheusden 2013). Although 
many researchers have successfully computed the pressure 
field and obtained reasonable force estimates (Liu and Katz 
2006; Charonko et al. 2010; Dabiri et al. 2014; Villegas and 
Diez 2014), these methods provide a global force estima-
tion, where the contributions of the local vortical structures 
are hidden. Several authors applied Eq. (2), or other forms 
of it, to experimental (Noca 1997; Baik et al. 2011; DeVo-
ria et al. 2014; Siala et al. 2018) and numerical (Li and Lu 
2012; Mohebbian and Rival 2012; Kang et al. 2018) data 
to calculate the unsteady lift force. The impulse approach 
offers various distinct advantages. First, it does not require 
the evaluation of the pressure field, which is very practi-
cal for experiments based on particle image velocimetry 

(2)

� = −
𝜌

N − 1

d

dt ∫Vf

(� − �0) × �dV

+ 𝜌
∮S

� ⋅

(
1

2
u2� − �⊗ �

)
dS +

∮S

� ⋅ ����dS

+
1

N − 1
𝜌
d

dt ∮SB

(� − �0) × (� × �)dS

(3)

���� =
𝜌

N − 1
�((� − �0) × �) −

𝜌

N − 1

[
�⊗ ((� − �0) × �)

]
+ �

+
1

N − 1

[
(� − �0) ⋅ (∇ ⋅ �)� − (� − �0)⊗ (∇ ⋅ �)

]

(PIV). Second, the force can be easily decomposed into cir-
culatory and non-circulatory contributions, which provides 
useful insights of the physical mechanisms responsible for 
force generation. In fact, this decomposition is similar to that 
found in Therodorsen’s model (Theodorsen 1934), except 
that it also includes the effects of free vortices. Third, and 
perhaps most importantly, the impulse-based force equation 
is linearly dependent on vorticity, which means that the total 
impulse in the flow field can be treated as a superposition 
of impulses of every individual vortex structure in the flow. 
Note that the impulse of each vortex structure, which is ulti-
mately determined by the motion of the vortex, is depend-
ent on all of the other vorticity in the fluid through their 
Biot–Savart influences on the velocity of the vortex. These 
advantages provide the impulse approach with great util-
ity for theoretical modeling of unsteady airfoils exhibiting 
dynamic stall, as it is easier to describe these flows in terms 
of vorticity.

One particular challenge with Eq. (2) is that it con-
tains cumbersome boundary integral terms with ambigu-
ous physical meanings, which makes it difficult to identify 
the mechanisms responsible for the lift production and to 
construct low-order models. Kang et al. (2018) proposed 
using the minimum-domain impulse theory, which greatly 
simplifies Eq. (2) by dropping many of the surface integral 
terms. The requirement for using their theory is that the 
control volume must not cut through regions of signifi-
cant vorticity. They follow the idea of Flood Fill (Torbert 
2016) to choose a different control volume at each instant 
in time to find a critical vorticity threshold under which 
the minimum-domain theory is valid. While this method 
is effective, it may be difficult to experimentally pursue, 
since one is highly limited by the field of view provided 
by the PIV imaging system.

In the pursuit of relaxing the criterion of the minimum-
domain theory of Kang et al. (2018), we provide in this 
paper an alternative approach to significantly reduce the 
finite-domain, impulse-based force equation. The reduced-
order impulse formulation is then used to provide insight 
into transient lift force production mechanisms of a heav-
ing and pitching airfoil at very large amplitudes of motion. 
We are specifically interested in operating at relatively low 
reduced frequencies associated with flow energy harvest-
ing applications (Zhu 2011), where there is a dearth of 
knowledge concerning the evolution of LEV strength, 
size and trajectory. The flow field around the heaving and 
pitching airfoil is obtained experimentally using two-com-
ponent PIV measurements. The results of this work will 
aid in constructing low-order models of the aerodynamic 
forces generated during dynamic stall for continuously 
oscillating/flapping airfoils (as opposed to impulsively 
started flows).



 Experiments in Fluids (2019) 60:157

1 3

157 Page 4 of 18

2  Methodology

2.1  Experimental setup

Experiments were conducted in a closed-loop wind tunnel 
(1.37 × 1.52 m) with turbulence intensities below 2%. The 
airfoil used in this study was manufactured in-house using 
fused deposition modeling and has a chord length, thickness 
and aspect ratio of 125 mm, 6.25 mm and 2, respectively. 
The airfoil is a flat plate and has elliptic leading and trailing-
edge tips with 5:1 major to minor axis ratio. Stationary end 
plates were placed approximately 2 mm away from the side-
edges to suppress the formation of tip vortices and to simu-
late two dimensional flow conditions. The airfoil is attached 
to a motion device using a titanium rod spanning through the 
mid-chord of the airfoil. The motion device is used to gener-
ate the heaving and pitching motion of the airfoil according 
to the following equations:

where h0 is the heaving amplitude, f the oscillation fre-
quency, �0 the pitching amplitude, Φ the phase shift between 
heaving and pitching and t is time. Heaving was achieved 
using a scotch-yoke mechanism and the pitching motion 
used a combination of a scotch-yoke mechanism and a rack 
and pinion arrangement. The motion device was controlled 
using a LabVIEW program. The airfoil motion was verified 
by recording a video of the oscillatory motion, which was 
then used to calculate the heaving and pitching motion using 
an object-tracking software (Totpal 2017). The root mean 

(4)h(t) = h0cos(2�ft)

(5)�(t) = �0cos(2�ft + Φ)

square error of the heaving and pitching motion was found 
to be less than 1% of the heaving and pitching amplitudes, 
respectively. The experimental setup in the wind tunnel and 
the motion device are sketched in Fig. 2.

Two-component, phase-locked PIV measurements were 
collected using a dual-head Nd:YAG-pulsed laser (Ever-
Green, 145 mJ/pulse, max repetition rate of 15 Hz) operating 
at the 532 nm wavelength. A light sheet of approximately 
1.5 mm thickness was generated at the mid-span of the air-
foil using a LaVision optics module. An in-house designed 
Laskin nozzle atomizer provided the seeding particles using 
vegetable oil. Particle images were collected using a CCD 
camera (Image Pro, LaVision) with a resolution of 1600 × 
1200 pixels. The camera was equipped with a 50 mm focal 
length lens and a band-pass filter centered at 532 nm. The 
PIV system was configured to obtain a vector field resolu-
tion of 1.8 mm (approximately 70 vectors per chord length). 
PIV images were processed with DaVis v8.4 software. Par-
ticle position displacements were determined using a cross-
correlation method on sequential images. The calculations 
were conducted on two passes of interrogation window size 
of 64 × 64 pixels, followed by two passes of interrogation 
window size of 32 × 32 pixels, where a 50 % overlap was 
used. A high-accuracy sub-pixel peak-fitting algorithm spe-
cific to  DaVis® software was used for the final passes. The 
time between pulses was set such that an average of 8 pixel 
displacement per interrogation window was achieved in the 
streamwise direction. Minimum peak validation of 1.2 (ratio 
of the highest to second highest correlation peaks) and mov-
ing-average validation schemes were used to reject outliers, 
with a vector rejection rate of less than 2%.

Fig. 2  a Drawing of the experimental setup illustrating the motion device, airfoil orientation and optical system and b zoomed-in view of the 
motion device. Figures are adopted from Totpal (2017)
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The phase-locked velocity fields were calculated by aver-
aging one hundred images at each phase of interest. A total 
of 116 phases throughout the downstroke motion with an 
equal spacing of Δt∕T  = 0.004 (where T is the oscillation 
period) were acquired. The PIV system and airfoil motion 
were synchronized using LabVIEW. The motion device was 
run for at least 5 minutes prior to collecting PIV measure-
ments to eliminate any initial transient effects.

The use of Eq. (2) to calculate the aerodynamic forces 
requires capturing the entire flow field surrounding the air-
foil. To obtain data in the shadow region caused by the laser 
illumination, the experiments were repeated at a phase delay 
of 180◦ for each phase of interest. The 180◦ out of phase 
flow fields were then mirrored and stitched to the rest of the 
vector field to construct the full flow field surrounding the 
airfoil. This can be done because the flow, airfoil shape and 
motion are all symmetric. A similar approach was used by 
Lua et al. (2015). Additionally, a second camera was used 
to capture the flow field in the downstream region. The two 
cameras were overlapped by 14 vectors and the overlapped 
region was smoothed with a 3 × 3 moving-average filter.

2.2  Uncertainty quantification

The particle displacement uncertainty was calculated using 
the statistical correlation technique developed by Wieneke 
(2015). Note that this method only estimates the random 
errors that are associated with camera noise, particle focus 
and out-of-plane motion, among others (Willert and Gharib 
1991), whereas the systematic errors that are typically influ-
enced by the calibration errors and peak-locking effects are 
not taken into account. For calibration, we use the pinhole 
fitting model, and the root mean square of the fit is 0.33 
pixels. The peak-locking effect was avoided using particle 
image size of approximately 2.1 pixels (estimated from the 
peak width of the autocorrelation peak of a typical particle 
image), which is greater than the minimum size of 1 pixel 
(Wieneke 2015). The particle displacement uncertainty 
was then propagated to velocity and vorticity calculations 
using the technique provided by Sciacchitano and Wieneke 
(2016). Finally, the uncertainty was propagated to estimate 
the uncertainty in the lift force. The maximum and mean 
uncertainties of the velocity components, span-wise vorticity 
and aerodynamic lift force are listed in Table 1 as a percent-
age of their respective maximum values. We also include 
uncertainty of free stream velocity measured in the wind 
tunnel without the airfoil and motion device. All uncertain-
ties are reported using a 95% confidence interval.

As pointed out in the previous section, one of the main 
motivations of this work is the need for an alternative tool 
to estimate the transient aerodynamics forces, since direct 
force measurement of high-amplitude oscillating airfoils 
operating in wind tunnels is usually unfeasible. Unsteady 

aerodynamic flows indicate that the time scale of airfoil 
motion is smaller than the time scale of the flow, where the 
degree of unsteadiness is often described by the reduced 
frequency ( k = fc∕U∞ ). The difficulty in measuring transient 
forces of highly unsteady airfoils is due to the inertial forces 
growing rapidly at high oscillation frequencies (proportional 
to f 2 ), whereas the aerodynamic forces grow with U2

∞
 . In 

fact, when k > 0.08 , the inertial forces become at least an 
order-of-magnitude larger than the aerodynamic forces, and 
therefore the accuracy of the force measurements becomes 
unreliable. For this reason in this study, accurate direct force 
measurements for k > 0.08 are not presented.

In Fig.  3, the transient lift force coefficient 
( Cy = 2Fy∕�U

2
∞
c ) obtained from the impulse formulation 

is compared with the results obtained from direct force 
measurements during the downstroke motion at k = 0.06 
and k = 0.08 . Note that the transient forces are shown only 
from t∕T = 0.02 to t∕T = 0.48 , as we were unable to obtain 
consistent impulse-based force measurements at these times 
due to unreliable curve-fitting of the raw data prior to taking 
the time derivative of the impulse term (first term of Eq. (2)). 
It is shown that the force magnitude and trend are well cap-
tured by the impulse formulation. The largest discrepancy 
occurs at the beginning of the downstroke, where the flow 
remains fully attached to the airfoil surface. Here, the force 
generation is dominated by the bound vorticity, which is not 
well resolved by the PIV experiments, and as a consequence, 
the impulse-based formulation under-predicts the force. 
Once the flow at the leading edge separates and forms an 
LEV, the impulse formulation and direct force measurement 
are in excellent agreement. At this point, it is expected that 
the contribution of surface vorticity to the lift force becomes 
negligible (Moriche et al. 2017). The explanation for this 
has been provided by Ford and Babinsky (2013), who have 
shown that the bound circulation (due to surface vorticity) of 
unsteady airfoils at large angles of attack tends toward zero 
and the LEV circulation is nearly equal and opposite to the 
circulation shed from the trailing edge. For the motion kine-
matics used in this study, the flow is observed to be attached 

Table 1  Maximum and mean uncertainty of free stream velocity, 
velocity components, span-wise vorticity and aerodynamic lift force 
at k = 0.16

All uncertainties are reported using a 95% confidence interval

Variable Maximum uncertainty (%) Mean uncertainty (%)

U∞ 0.3 0.2
u 3.5 1.3
v 5.8 2.1
wz 9.1 4.7
Fy 13.6 8.2



 Experiments in Fluids (2019) 60:157

1 3

157 Page 6 of 18

to the airfoil surface for only a relatively short period of 
time, thus providing validity in the use of impulse formation.

3  Results

In this section, we present results for reduced frequencies 
of k = 0.06 − 0.16 , while holding the heaving amplitude, 
pitching amplitude, phase shift and pitching axis fixed at 
h0∕c = 0.6 , �0 = 75◦ , Φ = 90◦ and xp∕c = 0 (mid-chord), 

respectively. The reduced frequency was varied by chang-
ing the free stream velocity, resulting in Reynolds numbers 
( Re = U∞c∕� , where � is the kinematic viscosity) ranging 
from 7,216 to 16,889 for k = 0.16 and k = 0.06 , respectively. 
These parameters have been shown to produce high energy 
harvesting efficiencies (Zhu 2011). Due to the symmetry of 
the problem, the results are only provided for the downstroke 
motion of the airfoil.

Figure 4 shows the non-dimensional spanwise vorticity 
evolution for k = 0.06, 0.10 and 0.14. The flow approaches 

Fig. 3  Comparison of the 
transient lift coefficient obtained 
from the impulse formulation 
with the results obtained from 
direct force measurements at a 
k = 0.06 and b k = 0.08 ; results 
are given for the half cycle 
beginning when the foil is at the 
top heaving position

t/T

C
y

0.1 0.2 0.3 0.4-2

-1

0

1
Impulse Model
Direct Measurement

(a)

t/T
0.1 0.2 0.3 0.4

(b)

Fig. 4  Vorticity field for 
discrete phases during the 
downstroke. Top row: k = 0.06 , 
middle row: k = 0.10 and bot-
tom row: k = 0.14
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from the left-hand side and the non-dimensional time 
t∕T = 0 corresponds to the top heaving position and 
t∕T = 0.5 is the bottom heaving position. For k = 0.06 , the 
leading-edge shear layer on the top surface of the airfoil is 
shown to be separated due to the LEV shedding during the 
upstroke motion. Once the angle of attack is large enough (in 
the negative direction), the shear layer becomes attached to 
the top surface, while it begins to separate and roll-up into 
an LEV on the bottom surface at t∕T ≈ 0.10 . The shear layer 
feeds the LEV with vorticity, which results in the increase of 
LEV strength and size over time. By the time the LEV grows 
past the trailing edge ( t∕T ≈ 0.26), the trailing-edge shear 
layer begins to roll-up into a trailing-edge vortex (TEV). 
Eventually, the LEV and TEV both shed into the wake to 
form a Karman-like vortex street (i.e. drag producing wake). 
For t∕T > 0.42 , the flow over the airfoil is completely sepa-
rated and full stall is attained.

Early in the cycle for k = 0.10 , it is shown that a coherent 
positive vortical structure is shed from the trailing edge. This 
corresponds to the TEV formed during the upstroke. Since 
the convective time scale of the flow for high reduced fre-
quencies is relatively larger than for lower reduced frequen-
cies, the formation and advection of flow structures occur at 
a slower rate for k = 0.10 when compared to k = 0.06 . The 
leading-edge shear layer separates and rolls into an LEV at 
t∕T ≈ 0.18. The TEV begins to form at t∕T ≈ 0.42, however, 
its size is significantly smaller than for k = 0.06.

For k = 0.14 , at early times a large negative vortex struc-
ture is observed in the near wake of the airfoil. This is the 
LEV that was shed during the upstroke. The convective 
time scale at this reduced frequency is significantly larger 
than the airfoil oscillation time scale, thereby enabling the 
airfoil at the beginning of downstroke to capture the LEV 
from the upstroke. Similarly to k = 0.06 and 0.10, the shear 
layer from the bottom surface eventually rolls into an LEV 
( t∕T ≈ 0.260). Furthermore, it is shown that by the time the 
LEV approaches the trailing edge, the airfoil is already at a 
relatively small geometric angle of attack and so the trailing 
edge shear layer is not strong enough to roll-up into a TEV.

The conclusions of the above discussion are as follows: 
first, the inception of the LEV is delayed in time for larger 
reduced frequencies. As the reduced frequency increases, 
the time scale of the airfoil motion becomes smaller rela-
tive to the flow time scale. This means that the shear layer 
takes a longer time to react to the change of angle of attack 
when k is larger, thus delaying flow separation. Second, the 
growth rate of the LEV decreases with increasing reduced 
frequency. This is the result of the decrease of the feeding 
shear layer velocity at higher reduced frequencies. This is 
explained as follows. The shear layer velocity can be approx-
imated as the vector sum of the local velocity of the leading 
edge and the component of the free stream in the direction 
of the airfoil motion (Onoue and Breuer 2016):

where ḣ and �̇� represent the heaving and angular pitching 
velocities, respectively. As the reduced frequency increases 
(by either decreasing the free stream velocity or by increas-
ing the oscillation frequency), the shear layer velocity 
decreases. Lastly, when k is less than 0.12, the trailing-edge 
shear layer rolls into a TEV. Siala et al. (2017) have shown 
that when the LEV reaches the trailing edge, a saddle point 
is created downstream of the airfoil trailing edge, which 
forces the trailing shear layer to roll-up into a TEV. This 
phenomena was also reported by Rival et al. (2014) and 
Widmann and Tropea (2015).

3.1  Leading‑edge vortex dynamics

In this section the LEV spatio-temporal dynamics are evalu-
ated which will aid in understanding the mechanisms respon-
sible for the lift force production. The LEV circulation and 
its trajectory are computed based on the vortex identification 
technique proposed by Graftieaux et al. (2001). In this method, 
two scalar functions Γ1 and Γ2 derived from the velocity vec-
tor field, are used to identify the vortex core location and its 
boundary, respectively, and are given by:

Subscript i denotes any point in the flow field, xp is the posi-
tion vector, ẑ is the unit vector in the z direction, N is the 
total number of points in a subregion and up is the average 
velocity evaluated in a sub-region. We evaluate Γ1 and Γ2 at 
every point in the flow field using a 3 × 3 sub-region (N = 
9). The vortex core is identified by |Γ1| ≥ than 0.9 and the 
vortex boundary is characterized by |Γ2| ≥ 2/� (Graftieaux 
et al. 2001). Overall, this procedure has been found to pro-
vide reliable and reproducible definitions of vortex struc-
tures (Morse and Liburdy 2009; Baik et al. 2012; Dunne and 
McKeon 2015). The LEV circulation is then calculated by 
integrating the vorticity enclosed by the contour |Γ2| = 2∕� . 
To calculate the LEV trajectory, the measured velocity vec-
tor field is rotated and translated at each instant in time 
according to the airfoil kinematics given in Eqs. (4) and 
(5). This is is done so that the LEV trajectory is calculated 
in the frame of reference of the airfoil. Then, the location 
of the largest value of Γ1 (on the condition that it is greater 

(6)USL = U∞sin(𝜃) − ḣcos(𝜃) −
�̇�c

2

(7)Γ1(p) =
1

N

N∑

i=1

((xp − xi) × ui) ⋅ ẑ

||xp − xi|| ⋅ ||ui||

(8)Γ2(p) =
1

N

N∑

i=1

((xp − xi) × (ui − up)) ⋅ ẑ

||xp − xi|| ⋅ ||ui − up||
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than 0.9) is tracked for the entire time until the LEV begins 
to leave the control volume.

In Fig. 5a the LEV circulation normalized by the aver-
age shear layer velocity and chord length is plotted versus 
t/T for all reduced frequencies. In general, once the LEV is 
formed, it entrains vorticity from the feeding shear layer and 
the circulation grows at a rate proportional to U2

SL4
 (Eldredge 

and Jones 2019). It is worthwhile to mention that this non-
dimensionalization of LEV circulation is analogous to the 
optimal vortex formation number given by Dabiri (2009). 
This concept is based on the argument that for a vortex 
generator with a given length scale and feeding shear layer 
velocity, the maximum possible vortex formation number is 
approximately equal to 4. Here, the airfoil can be thought of 
as a vortex generator with a length scale c and average feed-
ing shear layer velocity USL . It is shown that for k ≤ 0.10 , 
the maximum circulation is approximately 3.8–4. In this 
case, the shear layer feeds the LEV with vorticity until the 
LEV grows to the size of airfoil chord length (Fig. 5b). At 
this point, there is flow reversal due to TEV formation which 
interacts with the leading edge feeding shear layer. This 
results in the separation of the LEV from the shear layer. 

This mechanism of vortex detachment is similar to what 
is observed in flows past bluff-bodies (Widmann and Tro-
pea 2015). Conversely, when k ≥ 0.12, the relatively small 
oscillation time scales of the airfoil results in the maximum 
LEV circulation (Fig. 5a) and size (Fig. 5b) to be signifi-
cantly reduced. That is, the LEV begins to form quite late in 
the downstroke, and thus the end of downstroke is reached 
before the LEV reaches its maximum possible circulation 
and size. The result is much lower peak values of the nor-
malized strength of the LEV at higher reduced frequencies.

The normalized LEV circulation and diameter are plot-
ted versus time using the shear layer-based convective time 
scale, c∕USL in Fig. 5c and d, respectively. For k ≤ 0.12 , the 
LEV circulation and diameter are shown to collapse to a sin-
gle curve and their maximum respective values are attained 
at tUSL∕c ≈ 4 , agreeing remarkably well with the concept 
of universal vortex formation time (Gharib et al. 1998). For 
k ≥ 0.12 , both the circulation and diameter also collapse well 
with the rest of the data in the early times during the cycle; 
however, as discussed above, their maximum values are much 
smaller than for k ≤ 0.10 . In addition, there seems to be no 
universal vortex formation time for these higher reduced 
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∕c . For clarity, only every other data point is plotted
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frequency values, but rather the maximum formation time is 
seen to decrease with increasing reduced frequency. Lastly, it 
may be interesting to note that for all reduced frequencies, the 
time of LEV inception occurs at tUSL∕c ≈ 1.4 . This inception 
timescale was also observed by Siala et al. (2017) using the 
same reduced frequencies but different pitching and heaving 
amplitudes. This may suggest that the concept of optimal 
vortex formation may serve as a tool to predict the onset and 
growth of LEV circulation and size for combined heaving 
and pitching airfoils, at least for relatively low reduced fre-
quencies which are greatly influenced by the LEV dynamics.

In Fig.  6a the chord-normal trajectory of the LEV, 
YLEV∕c , is plotted versus t/T for all reduced frequencies. 
After LEV formation, the LEV remains very close to the 
airfoil surface ( YLEV∕c = 0 ) for a very short period of time. 
Meanwhile, the LEV is shown to convect along the chord 
at approximately the same rate for all reduced frequencies 
until it approaches the airfoil mid-chord ( XLEV∕c = 0 ), as 
is shown in Fig. 6b. Afterwards, the LEV begins to travel 
away from the airfoil surface, while it remains approximately 
stationary near the mid-chord for k ≤ 0.10 . For k ≥ 0.12 , 
however, the LEV does not stop convecting in the stream-
wise direction, but its rate of advection is slightly reduced. 

Eventually the rate of LEV chord-wise advection increases 
again and it approaches a constant value while it is being 
shed into the wake ( XLEV∕c < − 0.5 ). This is accompanied 
by a reduction in the rate of chord-normal trajectory, as 
shown in Fig. 6a. In fact, for k ≥ 0.08 , the LEV is shown to 
move back towards the airfoil surface. Note that this reversed 
motion of the LEV only occurs once the LEV travels beyond 
the airfoil mid-chord, XLEV∕c = 0 . Therefore as the airfoil 
begins to pitch back up in clock-wise direction at t∕T ≈ 0.25 , 
the latter half of the airfoil moves downwards and hence it 
gets closer to the LEV. On the other hand for k = 0.06 , the 
LEV slows down at t∕T ≈ 0.23 and then moves away quite 
rapidly again at t∕T ≈ 0.26 . We believe this is associated 
with the fact that at k = 0.06 , a very large TEV forms rela-
tively early in the cycle, around which the LEV has to travel, 
thus pushing it away from the airfoil surface. It is possible 
that the LEV at this reduced frequency eventually moves 
back towards the airfoil surface after it completely travels 
around the TEV, but this cannot be confirmed as the field of 
view is not large enough to capture this process.

In Fig. 6c and d, the chord-normal and chord-wise LEV 
trajectories of the LEV are plotted versus tUSL∕c . It is shown 
that the chord-normal LEV trajectories collapse quite well 
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from the inception time up until the reversed motion of 
LEV. Furthermore, the chord-wise trajectory is shown to 
collapse only up to tUSL∕c ≈ 2 . Beyond this time, the trajec-
tory becomes highly dependent on the value of the reduced 
frequency. The impact of LEV trajectory on the lift force 
production is discussed later in the paper.

3.1.1  Application of impulse equation to experimental 
data

Before presenting force results it is necessary to examine the 
effects of origin location when evaluating the terms. Although 
the impulse-based force equation is theoretically independent 
of the origin location ( �0 ), the presence of errors in the data 
can be significantly amplified by the origin location. As men-
tioned by DeVoria et al. (2014) and Rival and Van Oudheus-
den (2017), the error amplification due to the selection of the 
origin location selection in the current approach is similar to 
that resulting from the selection of the reference pressure loca-
tion in the direct integration of the Navier-Stokes equation. 
DeVoria et al. (2014) developed a technique that yields the 
origin location that mitigates the amplified error. This tech-
nique utilizes the DMT identity to relate the local and con-
vective accelerations (which are used to remove the pressure 
term, see DeVoria et al. (2014) for a complete discussion) with 
other terms that contain only the measured velocity. The con-
tribution of the viscous stress is not taken into account in this 
analysis because its influence on the forces is often negligible 
(as is shown later). The DMT (which is valid for any vector) 
is written here for the two vector quantities that are associated 
with the local and convective accelerations, respectively:

(9)

(N − 1)
∫

�dV =
∫

(� − �0) × �dV −
∮S+SB

(� − �0) × � × �dS

where the subscript S + SB indicates that the surface inte-
gral is performed at the exterior surface S and the airfoil 
surface SB . Note that for the local acceleration condition in 
Eq. (9), the velocity time derivative is not used to ensure 
that the error associated with the temporal discretization 
does not propagate in defining the origin location. The idea 
here is to determine the origin location �0 that best satis-
fies the left-hand side of both equations (which involve only 
the measured velocity). The objective origin is defined as 
the one that best satisfies the summation of these equations 
on a component-wise basis. This is determined as the ori-
gin which yields the smallest root mean square deviation 
(RMSD) over time between the left- and right-hand sides 
of the summation of Eqs. (9) and (10). The random velocity 
errors in the left-hand side leads to negligible error accu-
mulation (DeVoria et al. 2014). In this study the flow is 
assumed to be two-dimensional and thus N is set to 2. Since 
we are interested in the lift force, the analysis is conducted 
for the y component only because the x moment arm plays 
a much bigger role in the lift production than the y moment 
arm (Noca 1997). Equations (9) and (10) are non-dimen-
sionlized by 1

2
U2

∞
Tc and 1

2
U2

∞
c , respectively. We calculate 

the RMSD for 3600 origins uniformly distributed over the 
entire measurement plane. Figure 7a shows a contour plot of 
the RMSD (in percentage of the maximum value of the sum) 
as a function of the origin location for k = 0.06 . Figure 7b 
displays the coordinate system that is used. As shown, the 
RMSD is strongly dependent on the origin of the x-axis, 
while its dependence on the y axis is essentially insignifi-
cant. It is shown in Fig. 7a that the RMSD is minimized at 

(10)

− (N − 1)
∮S

1

2
(� ⋅ �)�dS =

∮S

(� − �0) × � × [� ⋅ ∇� + � × �]dS

(a) (b) (c)

Fig. 7  a Contour of the root mean square deviation between the left- 
and right-hand side of the sum of Eqs. (9) and (10), b coordinate sys-
tem and c comparison of the sum of the left-hand side (sold lines) 

with the sum of the right- hand side (symbols) of Eqs. (9) and (10) 
using the objectively defined origin. The black, red and blue colors 
represent k = 0.06, 0.10 and 0.14, respectively
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the downstream boundary ( x0∕c = 0 ) of the control volume 
(at this location the RMSD varies from 1.2% of the maxi-
mum value to 3.5%, depending on y0 ). The contour distribu-
tion of the RMSD is found to be essentially identical for all 
reduced frequencies tested. Figure 7c compares the sum of 
the left-hand side (solid lines) with the sum of the right-hand 
side (symbols) of Eqs. (9) and (10) for x0∕c = 0 , showing 
excellent agreement.

In addition, an analysis was conducted to investigate 
the effects of control volume size on the origin location as 
well as the calculated transient lift force. Six control vol-
umes were tested, which are shown in Fig. 8a. We varied 
the control volume size by adjusting the distance from the 
airfoil trailing edge to the downstream boundary (s/c). The 
largest control volume corresponds to a distance of 1 chord 
length from the trailing edge to the downstream boundary, 
whereas the smallest control volume corresponds to a dis-
tance of 0.25c. The cross-stream size of the control volume 
was found to have a negligible influence on the results. For 
all control volumes tested, the objective origin was always 
located at the downstream boundary with RMSD values 
below 4 %. Figure 8b shows the effect of control volume 
size on the calculated lift coefficient ( Cy = 2Fy∕�U

2
∞
c ) for 

k = 0.06 . It is shown that the transient lift force is signifi-
cantly altered by the distance of the downstream boundary to 
the airfoil trailing edge when s∕c < 0.85. As s/c is decreased, 
the time at which the force begins to deviate from the con-
verged force estimate (i.e. when s∕c > 0.85 ) is shifted to 
earlier times. For example when s∕c = 0.25 , the force begins 
to deviate from the converged force estimate at t∕T ≈ 0.19 , 
whereas for s∕c = 0.55 , the deviation occurs t∕T ≈ 0.23 . For 
all reduced frequencies considered in this study, the force 
deviation from the converged estimate seems to occur only 
when the LEV advects outside of the control volume while 
it is still growing (i.e. entraining vorticity from the shear 
layer). When s/c increases, there is sufficient area for the 

LEV to reach its maximum circulation before it begins to 
advect outside of the control volume. This effect is quite 
interesting and will be thoroughly addressed in a future pub-
lication. For the remainder of this paper, we use the largest 
control volume (s/c = 1) to conduct the rest of our analysis.

3.1.2  Reduction of the impulse equation

For convenience, the impulse-based force equation for a two 
dimensional flow is rewritten:

As was mentioned previously, the impulse force equation 
contains complex boundary integral terms that account for 
the finite control volume. The physical interpretation of 
these terms is not obvious, and therefore it is difficult to iso-
late the mechanisms responsible for the lift production. We 
now show that it is possible to greatly simplify this formu-
lation through the use of the objectively determined origin 
defined in the previous section.

To calculate the transient lift force, the flow impulse 
(denoted as T1 in Eq. (11)) was fitted to a cubic spline prior 
to taking the time derivative. The time derivative was cal-
culated using a central difference scheme with dt = 0.004 s . 
The results are filtered using an eight-point moving average 
to remove the high frequency fluctuations related to meas-
urement noise from the force signal. Note that data in the 
first and last t∕T = 0.02 of the downstroke are omitted due 

(11)

� =

T1

�������������������������������������������

−
𝜌

N − 1

d

dt ∫Vf

(� − �0) × �dV +

T2

�������������������������������������

𝜌
∮S

� ⋅

(
1

2
u2� − �⊗ �

)
dS

+

T3

�������������

∮S

� ⋅ ����dS+

T4
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𝜌
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d

dt ∮SB

(� − �0) × (� × �)dS

Fig. 8  a A schematic of dif-
ferent control volumes used to 
test control volume and origin 
location dependence and b 
time-history of the lift force 
for various control volumes at 
k = 0.06
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to unreliable fits. Figure 9 shows the total lift coefficient 
( Cy ), as well as the contribution of each individual term of 
the impulse equation for k = 0.06 and 0.14. As shown, the 
total lift coefficient is dominated by the first two terms, with 
the first, T1, dominant during the first part of the down-
stroke, and then a combination of T1 and T2 dominant dur-
ing the remainder of the downstroke. The third and fourth 
terms, T3 and T4, are negligible during the entire cycle. The 
inertial force of the fluidic body (T4) is typically negligible 
for thin airfoils moving in air. The impulse flux force, T3, 
is evaluated on the control volume boundaries, and vorti-
cal structures leave the control volume mainly through 
the downstream boundary. It is apparent that this term is 
dependent on the streamwise origin location x0 . By choos-
ing an origin located at the downstream boundary, this term 
becomes negligible (though not exactly zero, because some 
vortices may leave the upper and lower boundaries of the 
control volume). These results are consistent with the sug-
gestion by Noca (1997) that the impulse flux force contribu-
tion leads to the dilemmic dependence of the impulse force 
equation on the origin location. By locating the origin at 
the downstream boundary the contribution of � ⋅ �(� × �) 
is significantly reduced. This justification seems to resonate 
well with the objective origin definition proposed by DeVo-
ria et al. (2014).

Based on the above arguments, the force equation can be 
simplified by retaining T1 and T2 as follows:

The first term is the rate of change of impulse, which rep-
resents the force produced by vortical structures within the 
control volume. This term consists of the contributions of 
the vortex circulation growth and advection to the transient 
lift force (Stevens and Babinsky 2017). Moreover, Saffman 
(1992) showed that for an impermeable body, the second 

(12)

� ≈ −𝜌
d

dt ∫
(� − �0) × �dA + 𝜌

∮S

� ⋅

(
1

2
u2� − �⊗ �

)
dS

term on the right-hand side can be written in terms of the 
Lamb vector such as:

Note that Saffman (1992) shows that the velocity within a 
vortex can be written as � = �� + �� , where �� is the velocity 
induced by the vortex itself (which can be calculated using 
Bio-Savart law) and �� is the external velocity (Kang et al. 
2018). The Lamb vector of the self-induced velocity of the 
vortex, ∫ �� × �dV  , can be shown to equal zero, meaning 
that the total vortex force exerted by the vortex on itself is 
zero. Therefore the only contribution from the Lamb vec-
tor is ∫ �� × �dA . This can be interpreted as follows. The 
external velocity, which also includes the induced veloc-
ity by other vortical structures either inside or outside of 
the control volume, interacts with the vorticity of a specific 
vortex structure (e.g. LEV) within the control volume to pro-
duce a force on the airfoil. When the entire vorticity field is 
contained within the control volume, for example in starting 
flows, then the vortex force can be shown to equal zero. This 
suggests that the vortex force term due to vortices outside of 
the control volume can be thought of as a history effect of 
the vortex shedding in the far-wake.

Now that the impulse equation has been reduced to terms 
with clear physical meanings, the mechanisms responsible 
for the transient lift production can be analyzed. It can be 
noted that Eq. (12) is identical to the formulation developed 
by Kang et al. (2018) using the minimum-domain theory.

3.1.3  Transient lift force analysis

The transient lift coefficient is plotted in Fig. 10 for low and 
high reduced frequency ranges, k = 0.06−0.10 (Fig. 10a) 
and k = 0.12−0.16 (Fig. 10b). For the low reduced frequency 
range, the lift coefficient is shown to contain two peaks. The 
magnitude of the secondary peak, which occurs later in the 

(13)
∮S

� ⋅

(
1

2
u2� − �⊗ �

)
dS =

∫
� × �dA

Fig. 9  Evaluation of the four 
terms of Eq. (11) contributing 
to the lift force in the impulse 
equation as well as the total 
lift force for a k = 0.06 and b 
k = 0.14 . For clarity, only every 
other data point is plotted

t/T

F
or

ce
 c

oe
ff

ic
ie

nt

0.1 0.2 0.3 0.4-2

-1

0

1

Cy

T1
T2
T3
T4

t/T
0.1 0.2 0.3 0.4-3

-2

-1

0

1
(b)(a)



Experiments in Fluids (2019) 60:157 

1 3

Page 13 of 18 157

downstroke, is approximately 50–55% of the magnitude of 
the primary peak. The timing of both the primary and sec-
ondary peaks is delayed, and their magnitudes increase with 
increasing reduced frequency. For all reduced frequencies, 
the lift coefficient approaches positive values (i.e. opposite 
direction of lift) by the end of the cycle, where the magni-
tude also increases with increasing reduced frequency. The 
generation of two lift peaks for heaving and pitching airfoils 
has been reported in the literature by several researchers 
(Deng et al. 2014; Karbasian et al. 2016; Totpal et al. 2017). 
Furthermore, the high reduced frequency cases also show 
that an additional tertiary lift peak is produced early in the 
downstroke, whose magnitude relative to the primary peak 
lift increases with increasing reduced frequency. Similar 
to the smaller reduced frequency range, the primary and 
secondary peaks increase in magnitude and are delayed in 
time as k increases. It is seen that the lift coefficients at high 
reduced frequencies do not approach positive values at the 
end of the cycle.

Figure 10c and d shows results using a rescaling of the 
cycle time that is based on the leading-edge velocity as 
tUSL∕c . Interestingly, the primary peak force that occurs 
near tUSL∕c ≈ 1.75, is consistent for all reduced frequencies. 
Also, the value of this convective time scale is slightly after 
the time at which the LEV is initiated (see Fig. 5c). This 
seems to imply that the roll-up of the leading-edge shear 

layer into an LEV is the dominant mechanism of peak lift 
production. It also indicates that the leading-edge velocity 
scaling of the time of this peak is explicitly independent of 
the reduced frequency since this scaling collapses the data 
over this reduced frequency range. For the lower range of 
reduced frequencies in Fig. 10c the lift coefficient is shown 
to collapse fairly well up until the local minimum just after 
the primary peak is produced. For time tUSL∕c > 3.7 the lift 
coefficients begin to diverge. This corresponds to the time 
at which the trailing-edge shear layer begins to roll-up into a 
TEV. The results for the larger range of reduced frequencies 
in Fig. 10d show somewhat different trends. For these cases 
the TEV does not form and hence the lift coefficients do not 
significantly diverge at later times during the cycle. Also, for 
the larger reduced frequencies, the influence of the lagging 
LEV from the previous cycle near the top heaving position 
results in a third minor peak at early times in the cycle. The 
strength of this minor peak increases with increases reduced 
frequency while occurring earlier at the start of the down-
stroke. In fact, it is only this early cycle minor peak that 
distinguishes the effect of increasing reduced frequencies 
for the high k values.

To better understand the role of vortical structures, in 
particular the LEV and TEV, in lift force production, it is 
necessary to correlate them with the transient lift force. 
Rather than using the vorticity field alone, we use the local 

Fig. 10  Transient lift coefficient 
versus t/T for a k = 0.06−0.10 
and b k = 0.12−0.16 . Transient 
lift coefficient versus tŪSL∕c 
for c k = 0.06−0.10 and d 
k = 0.12−16
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integrand of the impulse and vortex forces of Eq. (12). For 
the vortex force, the lamb vector is used instead of the flux 
formulation to visualize its local contribution within the con-
trol volume. Figure 11 shows the total lift coefficient ( Cy ) for 
k = 0.06 , as well as the contributions of the impulse ( Cy,I ) 
and vortex ( Cy,V ) forces. In addition, contours of vorticity 
and the integrand of impulse ( Fy,I ) and vortex ( Fy,V ) forces 
for five snapshots during the downstroke motion are pro-
vided. Both force integrands are normalized by 2c∕�U2

∞
 . In 

snapshot (1), the LEV had just been formed, and it remains 
compact and quite close to the airfoil surface. The impulse 
force contour plot shows that the LEV is primarily produc-
ing a negative impulse (in the direction of lift). The total 
lift here is dominated by the LEV impulse force. While the 
LEV is shown to produce a vortex force, its contribution is 
approximately cancelled by the vortex force produced by 
the trailing-edge shear layer, hence Cy,V ≈ 0 . Slightly after 
peak force production in snapshot (1), the LEV begins to 
lift-off from the airfoil surface. As a result, the total lift is 
reduced from Cy ≈ −1.2 to Cy ≈ −0.5 in snapshot (2). This 
reduction in force is a consequence of the low pressure zone 
generated by the LEV being relatively far away from the 
airfoil, which reduces the pressure difference between the 
upper and lower surfaces. From the impulse analysis point 
of view, the LEV begins to produce a positive impulse force 
(lift-diminishing) that approximately cancels the negative 
impulse contribution (lift-enhancing), such that Cy,I ≈ 0 . 
Additionally, the LEV is also shown to produce a positive 
vortex force (lift-diminishing), however, the lift-enhancing 

effect clearly dominates. The total lift force at this snapshot 
is primarily due to the vortex force of the LEV.

The fact that the LEV produces lift-enhancing as well as 
lift-diminishing impulse and vortex forces is quite interest-
ing. Contrary to the conventional belief that LEVs on the 
suction side only provide lift-enhancing contributions, it is 
necessary to stress that there is no vortical structure that pro-
vides a purely single-sign contribution to the aerodynamic 
forces. Wu et al. (2007) have observed a similar phenom-
ena for drag force analysis for a flow past a cylinder. They 
explained that this observation is consistent with the fact 
that attached flows over an airfoil produce boundary layers 
at the upper and lower surfaces of the airfoil, but only the 
sum of the total vorticity in the boundary layer (i.e. net cir-
culation) yields the desired lift. Furthermore, an alternative 
explanation of the significant lift reduction in snapshot (2) 
can be understood by decomposing the force impulse into 
circulation growth and chord-wise trajectory of the LEV 
(refer to Section 4.3.2). At this instant in time ( t∕T ≈ 0.16 ), 
the rate of change of LEV circulation significantly decreases 
(Fig. 5a) and the LEV chord-wise advection approaches zero 
(Fig. 6b). Consequently, the LEV impulse force contribution 
is greatly decreased. The magnitude of the secondary lift 
peak in (3) is also shown to be dominated almost entirely 
by the vortex force produced by the LEV and its shear layer. 
The formation of the peak itself, however, is a result of the 
impulse force becoming less negative and ultimately going 
positive near t∕T ≈ 0.25 . This is equivalent to the convec-
tive time scale of tUSL∕c ≈ 3.7 , at which the TEV begins to 
form. In snapshot (4), the total lift force is shown to drop to 

Fig. 11  Synchronization of the transient lift force with the vorticity field and the local contours of the impulse and vortex forces for k = 0.06
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very small values. The LEV here has attained its maximum 
circulation (see Fig. 5a at t∕T ≈ 0.30 ), and thus no longer 
contributes to the force impulse. In addition, its advection 
relative to the TEV is also expected to significantly drop as 
it approaches the trailing edge of the airfoil (Stevens and 
Babinsky 2017). Meanwhile, the rolled-up TEV begins to 
generate a net positive impulse force (i.e. lift-diminishing), 
which almost cancels with the vortex force produced by the 
leading-edge shear layer and TEV. Beyond snapshot (4), 
the LEV begins to convect outside of the control volume, 
which is reflected by the impulse force going from posi-
tive to negative values in snapshot (5). This is accompanied 
by the change of the sign of the vortex force from positive 
to negative. IN snapshot (5) and beyond, the TEV begins 
to leave the control volume, and the impulse force decays 
from negative values to zero, whereas the Lamb force decays 
from positive values to zero, hence they cancel each other to 
result in Cy ≈ 0 by the end of the downstroke. This equal and 
opposite trend of the Lamb and impulse forces indicates that 
the Lamb vector is indeed picking up the contribution of the 
LEV and TEV as they leave the control volume.

As the reduced frequency is increased to k = 0.14 , the 
third lift peak is formed early in the cycle, as shown in snap-
shot (1) for k = 0.14 in Fig. 12. The negative LEV generated 
from the previous upstroke is shown to be captured by the 
airfoil as it begins heaving/pitching downward. The majority 
of the impulse force is shown to be sporadically distributed 
within the separated flow on the upper surface of the air-
foil. It should be kept in mind that Fy,I is calculated locally 
and therefore the noise level due to spatial and temporal 

derivatives may be high. However, the integrated value ( Cy,I ) 
clearly dominates the total lift production. Furthermore, the 
small positive vortex force at this instant is shown to be 
dominated by the upper-surface shear layer. In snapshot (2), 
this lift-enhancing effect has subsided and the upper shear 
layer begins to re-attach to the airfoil surface. The lift here 
is dominated by the impulse force from the nearly-attached 
boundary layer. However, we anticipate that the accuracy of 
the force calculation here to be somewhat hindered by the 
fact that the PIV measurements do not fully resolve the sur-
face vorticity. The mechanism responsible for the production 
of peak force in snapshot (3) is identical to the mechanism 
identified for the lower reduced frequency value. In snapshot 
(4), it is shown that the secondary peak force is a result of 
the slight increase (in the negative direction) of the impulse 
force Cy,I . Since the LEV is no longer growing at this instant 
of time (see Fig. 5a), the increase of the impulse force can 
then be associated with the enhanced chord-wise advection 
of the LEV (i.e. the slope of the chord-wise LEV position 
increases at this instant, as shown in Fig. 6b). Furthermore, 
a notable difference at this large reduced frequency case is 
the lack of TEV formation. As explained in the previous 
section, the LEV approaches the trailing edge of the airfoil 
quite late in the downstroke, where the angle of attack is not 
large enough to support the roll-up of the trailing-edge shear 
layer into a TEV. Consequently, the lift-diminishing effect 
of the TEV is avoided.

To conclude the above discussion, the lift-enhancing mech-
anisms for the low reduced frequency range ( k = 0.06 − 0.10 ) 
are all related to the LEV generation, its growth and its 

Fig. 12  Synchronization of the transient lift force with the vorticity field and the local contours of the impulse and vortex forces for k = 0.14
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trajectory relative to the airfoil surface. As the reduced fre-
quency is increased to k = 0.12 − 0.16 , the slower convec-
tive time scale of the vortical structures allows the airfoil to 
capture the influence of the previously shed LEV, whereas the 
lift-diminishing effect of the TEV is avoided. It is interesting 
to note the optimal vortex formation generated for the low-
frequency cases does not correlate with the peak lift. This 
contradicts the findings of Milano and Gharib (2005), who 
show that the peak lift force is produced when the LEV forma-
tion number reaches approximately 4. However, their results 
are for a flapping wing (pitching) while translating (not heav-
ing) which does not have the same effect on the trajectory of 
the leading-edge vortex motion relative to the surface. We 
believe that this discrepancy of lift force versus formation 
number is related to the fact that the LEV generated in our 
experiments begins to lift-off from the airfoil surface much 
before the optimal formation number is achieved. Therefore 
the correlation between the optimal vortex formation num-
ber and maximum lift production is not only dependent on 
the LEV size and strength, but also on the LEV trajectory 
relative to the airfoil. At larger values of k our results show 
that an optimal formation number is never reached due to the 
disconnection of the feeding shear layer from the leading-
edge vortex. For energy harvesting applications where it is 
important to correlate peak force with peak heaving velocity 
during the cycle, the delayed leading-edge vortex formation 
associated with higher k values improves power production 
even though the peak formation numbers are lower. Lastly, 
for all reduced frequencies, the impulse force produces the 
general trend of the transient lift, whereas the vortex force 
simply modifies the lift magnitude. The implication of this 
is that unlike impulsively moving airfoils where the entire 
circulatory force is dominated by the impulse force (Stevens 
and Babinsky 2017), the contribution of the vortex force must 
be taken into consideration when constructing low-order lift 
models of continuously oscillating airfoils.

4  Conclusions

In this paper, two-dimensional particle image velocime-
try measurements were conducted to investigate the vortex 
dynamics and lift force production mechanisms of an oscil-
lating airfoil undergoing dynamic stall at reduced frequen-
cies of k = 0.06 − 0.16 . The transient lift force was estimated 
from the velocity fields and its derivatives using the deriva-
tive moment transformation-based impulse force formulation. 
The moment-arm dilemma associated with the application of 
the force impulse equation to experimental data was investi-
gated. It is shown that the origin location that most effectively 
reduces the amplified error due to the position vector was 
always located at the downstream boundary of the control 
volume. In addition, it was found that the calculated lift forces 

were consistent when the distance from the airfoil trailing 
edge to the downstream boundary was equal to and greater 
than 0.85c. Upon using the objectively defined origin, the 
impulse force equation was shown to reduce to two dominat-
ing terms: the rate of change of the impulse within the control 
volume and the Lamb vector thereof that picks up the contri-
bution of vortices outside of the control volume.

For k = 0.06−0.10 , the lift force results show that there 
are two force peaks that form during the downstroke/
upstroke. The primary peak is associated with the forma-
tion of the leading-edge vortex and the secondary peak is 
associated with its enhanced time rate of circulation growth 
and chord-wise advection. Even though the optimal leading-
edge vortex formation number was attained for these lower 
reduced frequencies, it was observed that its timing was not 
well correlated with the timing of maximum lift force. In 
addition, at this low reduced frequency range, the trailing 
vortex sheet was observed to roll-up into a trailing-edge 
vortex. The trailing-edge vortex was shown to produce lift-
diminishing effects, whose intensity increases with increas-
ing reduced frequency. For k = 0.12−0.16 , a third lift peak 
was shown to form at the beginning of the downstroke due 
to a vortex capture-like effect from the LEV shed during the 
previous upstroke. No trailing-edge vortex formation was 
observed at these high reduced frequencies, hence the lift-
diminishing effect was avoided.

The results of this study may be of great importance in 
developing low-order models of transient lift forces pro-
duced by oscillating airfoils undergoing dynamic stall. In 
particular, the overall trend of the lift force was shown to be 
primarily dependent on the impulse force produced by vorti-
cal structures (leading and trailing-edge vortices and their 
associated shear layers) within the control volume. However, 
the Lamb force, which indirectly captures the influence of 
the far-field vortical structures may significantly alter the 
magnitude of lift. The implication of this is that the influence 
of vortical structures in the far-field must also be considered 
when constructing low-order models.
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