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Abstract
We propose a dot tracking methodology for processing background-oriented schlieren (BOS) images. The method improves 
the accuracy, precision and spatial resolution compared to conventional cross-correlation algorithms. Our methodology 
utilizes the prior information about the dot pattern such as the location, size and number of dots to provide near 100% yield 
even for high dot densities (20 dots/32 × 32 pixels) and is robust to image noise. We also propose an improvement to the 
displacement estimation step in the tracking process, especially for noisy images, using a “correlation correction”, whereby 
we combine the spatial resolution benefit of the tracking method and the smoothing property of the correlation method to 
increase the dynamic range of the overall measurement process. We evaluate the performance of the method with synthetic 
BOS images of buoyancy-driven turbulence rendered using ray-tracing simulations, and experimental images of flow in the 
exit plane of a converging–diverging nozzle. The results show that the improved spatial resolution results in a better accuracy 
of the tracking method compared to correlation-based methods in regions with sharp displacement gradients, and the correla-
tion correction step reduces the noise floor of the measurement, resulting in a fourfold improvement in the dynamic range.
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1  Introduction

Background-oriented schlieren (BOS) is an optical flow 
diagnostic technique used to measure density gradients in 
a flow field by tracking the apparent distortion of a target 
dot pattern. Since density and refractive index are pro-
portional for fluids, density gradients in a flow are associ-
ated with refractive index gradients, and an object viewed 
through a variable density medium will appear distorted 
due to the refraction of light rays traversing the medium. 
The distortion of the dot pattern is typically estimated by 
cross-correlating an image of the dot pattern without the 
density gradients (called the reference image) with a dis-
torted image viewed through the density gradients (called 
the gradient image) using techniques borrowed from par-
ticle image velocimetry (PIV) (Raffel 2015; Meier 2002; 
Dalziel et al. 2000; Richard and Raffel 2001; Settles and 
Hargather 2017). Alternatively, the distortion can also be 
estimated using optical flow algorithms (Atcheson et al. 
2009).

Low spatial resolution has been traditionally one of the 
limitations of BOS compared to the traditional schlieren 
technique (Hargather and Settles 2012; Elsinga et  al. 
2004), and is due to the large interrogation window sizes 
required for the PIV-type cross-correlation algorithms 
to ensure sufficient signal to noise ratio for the measure-
ments (Keane and Adrian 1992; Westerweel 1997). While 
multi-pass interrogation schemes and window overlap can 
increase the spatial resolution (Scarano and Riethmuller 
1999; Scarano 2002; Scarano and Riethmuller 2000), adja-
cent vectors still have some spatial dependence and do 
not constitute purely independent measurements. Further, 
correlation methods have been shown in PIV to suffer from 
bias and random errors in regions with sharp displace-
ment gradients due to peak broadening and peak splitting 
(Westerweel 2008; Kahler et al. 2012).

An alternative processing approach that can increase 
the spatial resolution is tracking individual dots from one 
image to the next, as done in particle tracking velocimetry 
(PTV) applications (Marxen et al. 2000; Cardwell et al. 
2011; Ishikawa et al. 2000; Keane et al. 1995; Fuchs et al. 
2017; Lei et al. 2012; Mikheev and Zubtsov 2008; Zhang 
et  al. 2015; Cierpka et  al. 2013; Ruhnau et  al. 2005). 
Despite the popularity of PTV methods, such analysis has 
not received attention for BOS images. The primary factor 
controlling the performance of PTV methods is the ratio of 
particle displacement across images to inter-particle dis-
tance in the same image, because it affects the reliability of 
matching the same particle between the two frames. Since 
typical displacements in PTV applications are about 10 

pixels, they are traditionally limited to low seeding densi-
ties. However, the displacements are typically very low in 
BOS applications (< 2–3 pixels in most cases), so large 
dot densities can be used before the accuracy of the dot 
matching procedure is affected. For example, even with 20 
dots in a 32 × 32 pixels window, the inter-dot distance is 
still about 3–4 pixels if a dot is about 3 pixels in diameter, 
so the ratio of dot displacement to inter-dot distance is low 
enough to ensure reliable measurements. Perhaps more 
importantly, the dot patterns used for BOS experiments 
are manufactured, and hence all the information about the 
dots such as their location, size and number is known. In 
addition, since there is no out of plane motion, the track-
ing method can be applied in an iterative manner till all 
the dots in the frame have been tracked, to achieve near 
100% vector yield. Due to these reasons, several of the 
constraints that are typical of standard PTV measurements 
are not present in BOS, and tracking can be performed 
with high accuracy and yield even at large dot densities. 
Finally, the displacement field in BOS is irrotational as 
opposed to traditional PTV applied to free-moving tracer 
particles in a flow, and hence, it can be described by a 
single scalar potential. This provides an opportunity to 
improve BOS measurements, especially in outlier detec-
tion, similar to divergence-based filtering applied in PIV. 
The advantage of tracking methods for BOS has also been 
noted by Charruault et al. (2018) who proposed a tracking 
algorithm for BOS based on Voronoi cells, and showed 
that their tracking approach can measure larger image 
deformations compared to correlation when applied to an 
air–cavity interface.

One contribution of this paper is to recognize that tracking 
methods are well suited for BOS measurements due to low 
displacements typically encountered in these experiments, and 
also because the dot locations are already known. In addition, 
the tracking method proposed in this paper is robust to image 
noise, as it does not require an intensity threshold to detect 
the peaks, but instead utilizes the prior information about the 
location of dots on the target. For 15–20 dots in a 32 × 32 win-
dow, dot tracking will result in nearly an order of magnitude 
more vectors compared to correlation processing, and improve 
accuracy in displacement estimation in regions involving sharp 
changes in density.

In the following sections, we will introduce a dot track-
ing methodology for BOS, and compare its performance 
with the traditional cross-correlation method using synthetic 
BOS images of buoyancy-driven turbulence and experimen-
tal images of the flow field in the exit plane of a converg-
ing–diverging nozzle.
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2 � Dot tracking methodology

A schematic of the dot tracking methodology is shown in 
Fig. 1. We first describe the standard tracking method, which 
consists of three steps: (1) particle identification, (2) sizing 
and centroid estimation and (3) tracking.

In standard tracking applications, the particles/dots in 
the image are isolated from the background using intensity 
thresholding and segmentation procedures. This can be done 
using a static intensity threshold or a dynamic threshold 
using a dilatation–erosion procedure, where the threshold 
is systematically varied to identify overlapping dots (Card-
well et al. 2011; Ohmi and Li 2000). The main limitation 
common to all these methods is the choice of the intensity 
threshold which can either lead to missed particles/dots if 
the threshold is high or falsely identified particles/dots if 
the threshold is low. This becomes especially problematic 
in cases with varying background illumination where the 
same threshold could be “high” in one part of the image with 
low illumination, and “low” in other parts of the image with 
higher background illumination. It also makes the method 
more error prone in the presence of image noise, due to 
noisy pixels being falsely identified as particles/dots.

Next in the sizing step, the geometrical properties (cen-
troid and diameter) of the identified particles/dots are esti-
mated to subpixel resolution. This can be accomplished 
using a variety of schemes ranging from a geometrical/
intensity-weighted centroid to Gaussian subpixel fitting 
schemes such as the three/four point Gaussian fits and the 
least square Gaussian fit (Brady et al. 2009).

Finally in the tracking step, for each dot in the first frame, 
its corresponding match in the second frame is estimated 

using a nearest neighbor algorithm. While the nearest 
neighbor is typically defined as the dot in the second frame 
that lies closest to the estimated location of the dot in the 
first frame, it can be generalized using a multi-parametric 
approach where other properties of the dot such as the peak 
intensity and diameter can be included to define a weighted 
residual. The dot in the second frame having the lowest 
weighted residual and within a pre-defined search radius is 
defined as the match of the given dot in the first frame, and 
the dot displacement between the two frames is calculated 
(Cardwell et al. 2011).

The primary novel contribution of this work is to rec-
ognize and utilize in an optimal fashion the prior informa-
tion about the dot pattern that is available from the target 
fabrication, and use this information to improve the overall 
accuracy and robustness of the method. In the identification 
step, instead of choosing an intensity threshold to separate 
from the dots from the background, we use the known loca-
tion of the dots on the target and the mapping function of 
the camera (obtained from calibration) to project the dot 
locations on the image plane and create a window around 
this location. The mapping function of the camera can be 
determined using a calibration process, and a polynomial 
mapping function as proposed by Soloff et al. is used in this 
work (Soloff et al. 1997). The size of the window is chosen 
to be slightly larger than the diameter of the dot, where the 
dot diameter can either be specified beforehand based on the 
manufacturing details or can be calculated from the diameter 
of the cross-correlation peak ( dp = dCC∕

√

2 ) (Raffel et al. 
2013).

This window will contain pixels corresponding to the 
true dot as well as noisy pixels. To separate the dot from 

Fig. 1   Schematic of the pro-
posed dot tracking methodology 
for BOS
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the noisy pixels, we use the dynamic segmentation proce-
dure based on erosion–dilatation proposed by Cardwell et al. 
(2011) to segment the window of pixels to create pixel blobs. 
In cases where more than pixel blob is detected, we sort 
the pixel blobs based on their pixel area, peak intensity and 
distance of the peak from the predicted dot location. We cal-
culate a weighted average of the three properties defined as,

where Ap, Ip,Δxp are the pixel area, peak intensity and dis-
tance, respectively, for the pth blob, and WA,WI ,WΔx are the 
associated weights. The pixel blob with the highest weighed 
average is considered to be the true dot and the pixels cor-
responding to the other blobs are set to zero. For the analysis 
reported in this paper, the weights were set to 1/3 (equally 
weighted), but these can be changed for other situations. 
Once the pixel map for the dot has been extracted, a centroid 
estimation procedure is performed based on subpixel fitting. 
An example of this procedure is shown in Fig. 2.

While it is straightforward to see that this approach will 
work for the reference image (without density gradients), 
it will also work for the gradient image (with density gra-
dients), because the dot displacements are generally very 
small (< 2 pixels). Hence, the actual location of the dot in 
the second frame will still be quite close to the predicted 
location, and since the window is taken to be larger than the 
dot diameter, it will be large enough to enclose the dot in the 

(1)
Cp =

(

WA ×
(

Ap

max(Ap)

)

+WI ×
(

Ip

max(Ip)

)

+WΔx ×
(

1 −
Δxp

max(Δxp)

))

WA +WI +WΔx

,

second frame as well. In situations where the displacements 
are greater, a hybrid tracking approach can be used where 
the displacements obtained from a coarse correlation pass 
can be used to estimate the location of the dot in the second 
frame. For the synthetic and experimental images considered 
in this paper, this was not required.

Further, the identification and sizing steps can be per-

formed in an iterative manner to ensure that all the dots 
on the target have been located. This is done by creating a 
residual image at the end of each iteration by removing the 
intensity contribution from the identified dots, as shown in 
Fig. 1. The intensity of the residual image is given by,

where Ik is the image intensity after k iterations, p is the dot 
index, Nk

p
 is the number of dots identified in the kth itera-

tion, and Xp, Yp, �p and I0,p are the positions, diameter and 
the peak intensity of the pth identified dot. In this way, we 
are able to improve the accuracy of the method by avoid-
ing incorrect matches and displacement errors due to failed 
identifications.

We also propose an improvement to the displacement 
estimation step after the dot matching procedure. Tradition-
ally, the displacement is estimated by subtracting the cen-
troids of the two matched particles/dots, but this is error 
prone because the subpixel fitting procedure is highly sen-
sitive to noise leading to a large position error. This will in 
turn lead to increased errors in the calculation of the dis-
placements, density gradients and the density field from 
2D integration of the density gradients. Further, since the 
displacements in BOS experiments are typically low, this 
also severely limits the dynamic range of the measurement. 
To alleviate this problem, we perform a correlation of the 
intensity maps of the dots in the two frames to estimate the 
displacement, as the noise in the pixels is expected to be 
uncorrelated between the two frames. The intensity maps 
used are the ones obtained at the end of the identification 
process where the pixels corresponding to noise/other peaks 
have been zeroed out, to further improve the correlation sig-
nal to noise ratio. In addition, a minimum subtraction opera-
tion is also performed where the minimum intensity is taken 
from the dot window prior to zeroing out the noisy pixels. 
We refer to this step as a “correlation correction” and in 
this way we are able to combine the spatial resolution ben-
efit of the tracking method with the noise robustness of the 

(2)

Ik+1 = Ik −

Nk
p

∑

p=1

I0,p exp

[

−

{(

X − Xp

)2
+
(

Y − Yp
)2

2�2
p

}]

,

Fig. 2   Illustration of the dot identification step using prior informa-
tion about the dot location
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correlation method. As the correlation windows are small 
(~ 5 × 5 pixels), we perform this using a direct correlation 
computation without the use of FFT acceleration, to avoid 
windowing-based artifacts on the processing. This step is 
illustrated in Fig. 3.

In the following sections, we will apply this tracking 
methodology to both synthetic and experimental BOS 
images and show a substantial improvement in the accuracy, 
precision and spatial resolution of the results.

3 � Error analysis with synthetic images

To provide a baseline for comparing the performance of the 
correlation and tracking methods, an error analysis was first 
performed using synthetic images rendered with density 
fields obtained from direct numerical simulation (DNS) data 
of homogeneous buoyancy-driven turbulence performed by 
Livescu et al. (2014) and Livescu and Ristorcelli (2007), and 
available at the Johns Hopkins turbulence database (Li et al. 
2008; Perlman et al. 2007). The flow involves sharp changes 
in density over small spatial regions, and hence provides a 
suitable test case for assessing the spatial resolution of the 
processing schemes.

3.1 � Image generation methodology

The synthetic BOS images are rendered using a ray tracing-
based image generation methodology described in more 
detail in Rajendran et al. (2019). The BOS experiment is 
simulated by generating light rays from the dot pattern and 
traced through the density gradient field and optical ele-
ments to the camera sensor. The trajectory of the light rays 
through the density gradient field is calculated by solving 
Fermat’s equation:

using a fourth-order Runge–Kutta algorithm following estab-
lished methods in gradient-index optics literature (Sharma 
et al. 1982; Brownlee et al. 2010). The refraction through the 
lens is modeled by Snell’s law and the diffraction pattern on 
the image sensor is modeled using a Gaussian distribution 
as in synthetic PIV image generation (Born and Wolf 1980; 
Raffel et al. 2007) The computationally intensive ray-trac-
ing process is parallelized using graphics processing units 
(GPUs) and images rendered using this methodology display 
real-world features such as blurring and optical aberrations 
which can be adjusted in a controlled manner. This meth-
odology has been tested and validated using known density 
fields (Rajendran et al. 2019). At the end of the ray-tracing 
simulations, the final light ray deflections on the camera sen-
sor for all rays originating from a dot are averaged and used 
as ground truth for displacement of that dot. This process 
is repeated for all dots on the pattern to estimate the true 
displacements throughout the field of view.

Two-dimensional (x, y) slices of the flow field from five 
time instants were chosen, and for each time instant, a three-
dimensional density volume was constructed by stacking the 
same two-dimensional slice along the z-direction, thereby 
ensuring that the gradient of density in the z-direction was 
zero. This was done to account for the depth integration lim-
itation of BOS measurements and decouple it from the error 
analysis. Further, the density data was multiplied by 1.225 
kg/m3 to simulate air and enclosed in a three-dimensional 
volume of size 32 mm × 32 mm × 10 mm.

Images of the density field at these snapshots are shown 
in Fig. 4, along with the density gradient, the theoretical 
light ray displacements and the light ray displacements 

(3)
d

d𝜉

(

n
dx⃗

d𝜉

)

= ∇n,

Fig. 3   Displacement estima-
tion by correlating the intensity 
maps of the two matched dots
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from the ray-tracing simulations. The theoretical displace-
ments were calculated by

where ΔX⃗ is the theoretical deflection of a light ray, (∇�)avg 
is the path-averaged value of the density gradient, K is the 
Gladstone–Dale constant, n0 is the ambient refractive index, 

(4)ΔX⃗ =
MZD

n0

zf

∫
zi

∇ndz ≈
MZDK

n0
(∇𝜌)avgΔz,

and Δz is the thickness of the density gradient field (Raffel 
2015). For the present simulations, the values of the param-
eters were M = 0.12 , ZD = 0.25 m , and Δz = 10 mm.

To ensure that the synthetic image analysis is consist-
ent with the experimental data to be shown in the follow-
ing sections, we generated BOS images with a regular grid 
of dots on the target. Due to optical distortions, the final 
light ray locations will be scattered on a warped grid on the 
image plane corresponding to the image of the dots. The 

Fig. 4   Contours of density, density gradients, theoretical displacements and simulated light ray displacements for the five snapshots of DNS data 
used in the error analysis
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deflections at these locations are interpolated to a regular 
grid for displaying the figures shown in Fig. 4, where the 
contours of simulated light ray deflections are seen to cor-
respond reasonably well to the theoretical displacements, 
and in both cases the regions of large displacements corre-
spond to regions of large density gradients. The simulated 
light ray deflections will not match the theoretical displace-
ments exactly, partly due to (1) small angle approximations 
used in the theory and (2) the spatial resolution limitation 
of the experimental setup due to the finite angle of a ray 
cone emerging from the target. Both of these are well-known 
characteristics of BOS experiments (Hargather and Settles 
2012). However, these features are common to the images 
processed by both the correlation and tracking algorithms, 
and these simulated light ray deflections are considered as 
the ground truth for conducting the error analysis.

For the present simulations, the dot diameter was 3 pixels 
and the dot density was 20 dots per 32 × 32 pixels window. 
As dot patterns can be manufactured in a controlled manner 
for BOS experiments, we use dot patterns without overlap-
ping dots. For each snapshot of the DNS, ten image pairs 
were rendered, and the images were corrupted with zero-
mean Gaussian noise with a standard deviation of 1, 3 and 
5% of the peak image intensity.

3.2 � Results

The images were processed using both traditional cross-cor-
relation and the dot tracking method described in Sect. 3. For 
the correlation, a multi-grid window deformation method 
was used with a window size of 32 × 32, followed by 16 × 16 
pixels without window overlap. For the tracking method, 
a three-point Gaussian subpixel fit was used for centroid 
estimation as well as for the displacement estimation using 
the correlation correction. Then the errors in the final dis-
placements were calculated using the light ray deflection 
from the ray tracing as the ground truth. Further, the errors 
were divided into two groups depending on whether the true 
displacement in that region was above or below a certain 
threshold. This was done to differentiate the errors due to 
background image noise, from errors due to lack of spatial 
resolution. The threshold was chosen to be half the standard 
deviation of the histogram of theoretical displacements. For 
each noise level, about 500,000 vectors were used in calcu-
lating the error distribution, to ensure statistical convergence 
of the results.

The CDF of the error distribution is shown in Fig. 5 for 
all the noise levels. For the case with zero noise, both track-
ing methods far outperform the correlation method, where 
nearly all the vectors have an error below 0.01 pixels as 
opposed to the correlation algorithm, where the error level 
corresponding to 90% of the vectors is over 0.1 pixels, which 
is an order of magnitude more than the tracking. Further, the 

error levels for the correlation are seen to be higher for vec-
tors above the displacement threshold, as these lie in regions 
with sharp displacement gradients that cannot be captured 
by the correlation algorithm.

As the noise level increases, the errors for the tracking 
methods are seen to increase while they remain nearly the 
same for the correlation method. The main contribution 
to error in the tracking method is the position error from 
the centroid estimation, which is sensitive to image noise. 
However, the correlation method is robust to image noise in 
general, because the pixel noise across the two frames will 
be uncorrelated and hence have a lesser effect on the signal 
to noise ratio of the correlation plane.

The performance of the processing algorithms can be 
further understood from looking at the error distributions 
for the vectors above and below the threshold separately. 
For the higher noise levels, it is seen that the error from 
tracking approaches the error from correlation for vectors 
below the threshold, as the error in this region is dominated 
by position error due to image noise. However, the tracking 
methods still outperform the correlation method for vectors 
above the threshold, as the error in this region is dominated 
by spatial resolution requirements due to sharp displacement 
gradients in the flow field. The tracking methods are seen to 
be robust to this effect, with nearly the same noise levels for 
vectors both above and below the threshold.

Finally, it is seen that the tracking method with the cor-
relation correction performs best even for the highest image 
noise as it combines the spatial resolution benefit of tracking 
and the smoothing effect of the correlation. This is particu-
larly evident from Fig. 5g where it is seen that for vectors 
below the threshold, the noise level is so high that the pure 
tracking method performs poorer than the correlation; how-
ever, tracking with correlation correction still maintains the 
same error level as full correlation. For vectors above the 
threshold the tracking method with correlation correction is 
still able to maintain the high spatial resolution and performs 
best overall.

Also shown are the errors in the estimates of the gradient 
of displacements, corresponding to the second derivative of 
density. This quantity is needed to perform 2D integration 
of the density gradient field by solving the Poisson equation, 
which requires the calculation of the Laplacian of the den-
sity field (Venkatakrishnan and Meier 2004). Again, the dot 
tracking methods far outperform traditional cross-correlation 
for all noise levels both above and below the threshold, pos-
sibly because the displacement gradient is even more sensi-
tive to the spatial resolution of the schemes.

The results of this analysis using synthetic images of 
physically realistic flow fields demonstrate that the pro-
posed tracking approach, with non-overlapping dots, a 
priori identification and correlation correction provides a 
significant reduction in error compared to the conventional 
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cross-correlation method as well as a large improvement 
in the spatial resolution for flow fields with sharp density 
gradients.

4 � Application to experimental images 
of flow exiting a converging–diverging 
nozzle

The tracking methodology was also applied to visualize 
the exit plane of a converging–diverging nozzle for vari-
ous pressure ratios. This flow field was chosen because of 

the presence of shocks, expansion fans and other interest-
ing small-scale features that appear at high-pressure ratios, 
and serve as a good assessment of the spatial resolution 
offered by the algorithms. The nozzle geometry, along with 
the experimental layout and a sample image of the target, 
is shown in Fig. 6. A regular grid of dots was printed on 
a transparency and back-illuminated with an LED to serve 
as the dot pattern. The dots were 0.15 mm in diameter and 
had a spacing of 0.15 mm, designed to provide a dot diam-
eter of 3–4 pixels to improve the subpixel position estima-
tion, and a dot spacing of about 6–8 pixels to have about 
15–20 dots in a 32 × 32 window for high spatial resolution. 
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Fig. 5   Error levels for the displacement and displacement gradient estimates obtained by the correlation and tracking methods
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The chamber pressure was varied from 0 to 60 psi in steps 
of 5 psi, while the exit pressure was maintained at atmos-
pheric conditions (14.7 psi). For each pressure condition, 
the flow was allowed to reach steady state before capturing 
the images. The images were recorded using a PCO Pixelfly 
camera and a zoom lens set at a focal length of 32 mm. A 
sample zoomed-in image of the dot pattern for one of the 
cases shows the sharp displacement gradients involved in 
this flow field. The changes in displacements happen over a 
very short length scale, leading to blurring of the dot images. 
Therefore, this case serves as a good test to gauge the spatial 
resolution increase obtained by the tracking method.

The images of the dot pattern with and without the flow 
were analyzed using the tracking and correlation methods 
described before. For correlation, the images were processed 
using a two-pass window deformation approach (Scarano 
2002) with 32 × 32 pixels interrogation windows with 50% 
overlap, and with smoothing and universal outlier detection 
(UOD) (Westerweel and Scarano 2005)-based validation for 
the first pass. The final pass results are validated by a thresh-
old validation of 3 pixels displacement. The interrogation 
window size was chosen to 32 × 32 pixels to ensure that a 
sufficient number of dots were contained in an interrogation 
window for measurement reliability (Keane and Adrian 1992). 
For tracking, to initialize the dot identification procedure, the 
dot locations on the target were calculated using a third-order 
mapping function of the imaging system proposed by Soloff 
et al. (1997) to account for higher-order lens distortions. As 
the dot pattern used in the experiment resembles a typical cali-
bration target albeit with a higher number of dots, the map-
ping function of the imaging system was first calculated using 
the position of every fourth dot in the image, obtained using 

an intensity-weighted centroid-based subpixel estimation 
scheme to reduce computational effort. Further, as there is no 
out of plane motion in BOS measurements, the mapping func-
tion was only calculated based on one z-plane. Based on the 
mapping function, the locations of all the intermediate dots 
were calculated and used to initialize the multi-parametric dot 
identification procedure with the dynamic segmentation, and 
the centroids were estimated using a least square Gaussian 
subpixel fit. At the end of the tracking procedure, the correla-
tion correction was performed on the tracks and the subpixel 
estimation on the correlation plane was again performed using 
a least square Gaussian fit. The displacement contours for two 
chamber pressures are shown in Fig. 7.

From the displacement fields, it can be seen that the 
results from the tracking analysis shown in Fig. 7c–f better 
capture small-scale features of the flow as compared to the 
correlation results shown in Fig. 7a, b, which appear highly 
smoothed. Further it is seen that the tracking with correla-
tion correction, shown in Fig. 7e, f, provides a smoothing 
of the noisy displacement field compared to Fig. 7c, d while 
maintaining the high spatial resolution. The increase in spa-
tial resolution is also evident from the line plots shown in 
Fig. 7g, h, where tracking is able to better capture the sharp 
jumps in the displacement field.

To quantify the improvement offered by the tracking-
based methods, statistical analysis was performed to esti-
mate the dynamic range of the displacement gradients meas-
ured by the three processing methods. The displacement 
gradients are calculated in the post-processing of BOS data 
to perform density integration, and are sensitive to the spa-
tial resolution of the measurements. For the tracking results, 
the displacements were first interpolated onto a regular grid 

Fig. 6   Details of the experi-
mental setup used to visualize 
the flow in the exit plane of a 
converging–diverging nozzle
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using a natural neighbor interpolation based on Delaunay tri-
angulation (Sibson 1981), with the grid spacing chosen to be 
8 pixels corresponding to the dot spacing in the images. The 
displacement gradients for all three methods were estimated 
using a noise-optimized fourth-order compact Richardson 
finite difference scheme proposed by Etebari and Vlachos 
(Etebari and Vlachos 2005).

Figure 8 shows the PDF and CDF of displacement gradi-
ents evaluated over the entire field of view for both pressure 
conditions using the three processing methods. The flow 
fields considered here exhibit sharp displacement gradients 
confined to small portions of the field of view. Therefore, a 
successful processing methodology must capture both the 
large displacement gradients in the regions with the shocks 
and expansion fans, as well as the extended zero displace-
ment regions, due to high spatial confinement of these fea-
tures. Observing both figures, it can be seen that the range 
of displacement gradients measured by the correlation-based 
method is lower than the tracking methods due to a lack of 
spatial resolution. It can be also seen that the pure tracking 
method results in a very broad histogram with a short peak 
at 0. This is a direct result of the effect of image noise on the 
subpixel centroid estimation as well as due to dot blurring, 
and hence differences in displacements between successive 
dots due to intensity fluctuations are also being picked up 
as displacement gradients. On the other hand, the tracking 
method with correlation correction is able to maintain both 
a strong peak at 0, and provide a large displacement gradient 
range at the same time.

Further, the dynamic range of the measurements is also 
calculated as the ratio of the maximum displacement gradi-
ent to the minimum resolvable displacement gradient of the 
method. The maximum displacement gradient is calculated 
from the experimental data and the minimum displacement 
gradient, which represents the noise floor of the measure-
ments, is estimated from the error analysis presented in 
Sect. 3.2 for each processing method. The error analysis 
results are used to estimate the noise floor because a ground 
truth of the given flow field is not available for estimating 
an error. The noise floor is defined as the root mean square 
(RMS) of the displacement gradient error corresponding to 
the vectors below the threshold, and the errors correspond-
ing to the highest image noise level (= 5%) are used for 
this calculation, as this noise level was representative of the 
experimental images and provides a conservative estimate. 
The results in Table 1 show that the tracking methods offer a 

large improvement in the dynamic range as compared to the 
standard cross-correlation method. While the pure tracking 
method results in an improved spatial resolution as seen in 
Fig. 7, it also suffers from a higher noise floor, but the cor-
relation correction is able to minimize this effect and achieve 
a fourfold improvement in the dynamic range as compared 
to the standard correlation.

Overall, the dot tracking methodology with identifica-
tion based on prior dot location and correlation correction 
appears to be more reliable when applied to BOS experi-
mental data using dot patterns of high dot densities, while 
also increasing the spatial resolution of the measurements. 
The method is able to resolve displacements in regions 
with sharp gradients, while simultaneously maintaining a 
low noise floor, resulting in a fourfold improvement in the 
dynamic range. While it is possible that the results from 
the standard correlation analysis can be improved by using 
smaller windows and increased window overlap, adjacent 
vectors will still have overlapping information and do not 
constitute independent information. Further, the interro-
gation windows need to be centered on the dot centroids 
to avoid clipping the dot image and introducing Fourier 
transform-based errors due to aliasing and spectral leakage 
(Eckstein and Vlachos 2009).

5 � Conclusions

In this paper, we proposed a dot tracking methodology for 
processing BOS images with high dot density based on two 
features of BOS experiments: (1) low displacements (2–3 
pixels) and (2) availability of prior information about dot 
locations and size from manufacturing. We use the prior 
information about the dot locations to perform dot identifica-
tion and sizing without the need for an intensity threshold, 
making the method more robust to image noise. We also pro-
posed an improvement to the final displacement estimation, 
where we correlate the intensity maps of the matched dots 
instead of subtracting their centroid locations, to improve the 
performance in high noise situations. In this way, we are able 
to combine the high spatial resolution benefit of tracking 
with the noise robustness property of correlation methods.

We analyzed the performance of this method and com-
pared it to the conventional cross-correlation algorithm using 
synthetic and experimental BOS images. For synthetic BOS 
images of buoyancy-driven turbulence, the tracking methods 
far outperformed the correlation method especially with low 
image noise and in regions with a requirement for high spatial 
resolution. For higher noise levels, the errors in the tracking 
algorithms increased due to the position error from the sub-
pixel fit being sensitive to image noise; however, the tracking 
method with the correlation correction at the end was robust 
to this effect, as the final displacement estimation does not 

Fig. 7   Flow in the exit plane of a converging–diverging nozzle 
obtained from the different processing methods. Left column is for a 
chamber pressure of 30  psig, and right column is for 55  psig. a, b 
Correlation, c, d tracking without correlation correction, e, f tracking 
with correlation correction, g line plot of displacements along X for 
Y = 600 pixels, h line plot of displacements along Y for X = 500 pixels

◂
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depend on the centroid estimation process, and performed 
best overall. For experimental BOS images of the flow field in 
the exit of a converging–diverging nozzle, the tracking meth-
ods were able to resolve sharp changes in the density field in 
the presence of shocks and expansion fans, and improved the 
dynamic range in the displacement gradient measurement.

The proposed method is applicable to BOS experiments 
which involve small dot displacements (2–3 pixels or < dot 
spacing), and where the targets are fabricated in a controlled 
manner such that the dot locations are known. This opens up 
a new processing paradigm for BOS measurements using dot 
tracking methods, and helps in improving the spatial resolu-
tion limitation of BOS in comparison to qualitative schlieren 
measurements. This will enable improved investigation of 
flows with small-scale features such as shocks, expansion 
fans and small-scale compressible turbulence.

A limitation of the spatial resolution improvement offered 
by the tracking method is in situations where there are strong 
displacement gradients on a scale equal to or less than the 
dot diameter itself, which will lead to blurring of the dot 
image as seen in Fig. 6d. In this case, the dot tracking 
method can only provide an average displacement in this 
region. Therefore, further improvements in the methodology 
can include a method to extract additional information about 
the displacement/density gradient field from the blurred 
shape of the dot. It is likely that the blurring is related to 
second-order gradients of the density field.

Another limitation of the method is that it requires non-
overlapping dots to reduce position errors in the identifica-
tion and sizing process. In situations where the dot pattern 
cannot be manufactured in a controlled manner, the tradi-
tional correlation-based approach may be preferable. The 

correlation-based algorithms may also perform better when 
used with very dense or speckle-type dot patterns, thus pro-
viding the ability to use smaller interrogation windows. 
However, the dot patterns still need to be on the diameter of 
about 3 pixels for accurate subpixel fitting, and hence this 
places a limit on the maximum achievable dot density. It is 
not clear if the correlation algorithms with speckle patterns 
and small windows can achieve the same spatial resolution as 
the tracking-based method with dense non-overlapping dots.

Finally, a code package implementing the dot tracking 
method proposed in this paper is available at: https​://githu​
b.rcac.purdu​e.edu/lraje​ndr/dot-track​ing-packa​ge, so that 
all readers can assess the contribution and benefit from it.
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