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Abstract
A wavelet-based optical flow method for high-resolution velocimetry based on tracer particle images is presented. The 
current optical flow estimation method (WOF-X) is designed for improvements in processing experimental images by 
implementing wavelet transforms with the lifting method and symmetric boundary conditions. This approach leads to speed 
and accuracy improvements over the existing wavelet-based methods. The current method also exploits the properties of 
fluid flows and uses the known behavior of turbulent energy spectra to semi-automatically tune a regularization parameter 
that has been primarily determined empirically in the previous optical flow algorithms. As an initial step in evaluating the 
WOF-X method, synthetic particle images from a 2D DNS of isotropic turbulence are processed and the results are compared 
to a typical correlation-based PIV algorithm and previous optical flow methods. The WOF-X method produces a dense 
velocity estimation, resulting in an order-of-magnitude increase in velocity vector resolution compared to the traditional 
correlation-based PIV processing. Results also show an improvement in velocity estimation by more than a factor of two. 
The increases in resolution and accuracy of the velocity field lead to significant improvements in the calculation of velocity 
gradient-dependent properties such as vorticity. In addition to the DNS results, the WOF-X method is evaluated in a series 
of two-dimensional vortex flow simulations to determine optimal experimental design parameters. Recommendations for 
optimal conditions for tracer particle seed density and inter-frame particle displacement are presented. The WOF-X method 
produces minimal error at larger particle displacements and lower relative error over a larger velocity dynamic range as 
compared to correlation-based processing.

1 Introduction

Quantitative velocity measurements are paramount in fluid 
dynamics research for understanding flow physics. Over the 
last 30 years of application and refinement, particle image 
velocimetry (PIV) has become a well-established and the 
most utilized experimental method for determining fluid 
velocities. PIV is a field measurement that allows velocity 
to be determined at multiple spatial positions simultaneously 
over an entire image domain. This facet enables the deter-
mination of multiple components of the velocity vector and 
spatial derivative quantities, including vorticity, and strain 
rates, which is a primary advantage of the technique. Tracer 
particles are seeded into the flow and illuminated with suc-
cessive laser sheets with a known time separation. Scattered 

light from the tracer particles is collected onto a camera (or 
series of cameras) and the velocity is calculated by deter-
mining displacements of the particle fields between the two 
image frames and using the known time separation between 
laser pulses (Adrian 2005; Westerweel 1997).

The standard approach for determining the particle dis-
placement in PIV is by cross correlation of regions in the 
image domain known as interrogation windows (Westerweel 
et al. 2013). The interrogation windows are subdomains 
within the image and typically range in size between 64 × 64 
and 16 × 16 pixels. One velocity vector is produced for each 
interrogation window, which is assumed to represent the 
velocity at every pixel inside the window. This type of veloc-
ity field estimation is called “nondense”, because it produces 
fewer velocity vectors than pixels in the source images. This 
implies that the spatial resolution of the PIV-based veloc-
ity measurement is more than an order-of-magnitude lower 
than the spatial resolution of the detector, since the PIV 
resolution is directly related to the size of the interroga-
tion window (Kähler et al. 2012). This is a drawback of the 
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cross-correlation method for determining particle displace-
ments because it can lead to inaccuracies in high-gradient 
regions of flows and in calculating derivative quantities. The 
inherent spatial resolution limitations of PIV with correla-
tion-based analysis is a well-recognized issue and there have 
been many efforts to improve the spatial resolution of PIV 
and related measurement techniques (e.g. Kähler et al. 2012; 
Hart 1999; Takehara et al. 2000; Scarano 2002; Susset et al. 
2006; Schanz et al. 2016); the discussion of which is beyond 
the scope of this manuscript.

Optical flow motion estimation presents an alternative to 
cross-correlation-based processing of tracer particle images. 
Unlike cross-correlation analysis, optical flow produces 
velocity fields that are dense (one velocity vector for every 
pixel). In addition, some methods have been shown to be 
more accurate than cross-correlation algorithms on synthetic 
particle images from a direct numerical simulation (DNS) 
of isotropic turbulence (Heitz et al. 2010; Chen et al. 2015; 
Liu et al. 2015). However, optical flow methods are not with-
out their potential drawbacks. The majority of the previous 
methods appearing in the literature require small displace-
ments [O(1) pixel] to achieve sufficient accuracy (Liu and 
Shen 2008). To address this, optical flow methods are typi-
cally embedded into sequential coarse-to-fine multiresolu-
tion schemes (Heitz et al. 2010), although this approach can 
lead to “freezing” of large-scale motions as the algorithm 
proceeds (Dérian et al. 2012). Due to the assumption of con-
servation of brightness described below in Sect. 2.1, opti-
cal flow methods may exhibit difficulties with experimen-
tal noise or events such as particles entering or leaving the 
image plane that commonly occur in experiments (Stanislas 
et al. 2003, 2005, 2008). Optical flow methods also require 
a regularization parameter that has been tuned empirically 
previously and is dependent on the flow under considera-
tion (Corpetti et al. 2002, 2006; Dérian et al. 2012). Several 
optical flow methods in the literature also are designed and 
optimized for divergence-free motions (Chen et al. 2015; 
Kadri-Harouna et al. 2013), or use periodic boundary condi-
tions that are not well suited for experimental data (Kadri-
Harouna et al. 2013; Dérian et al. 2013). Finally, optical flow 
methods typically are computationally intensive, requiring 
approximately ten times the amount of processing time per 
image pair compared to correlation-based methods, although 
some optical flow methods can take advantage of paralleli-
zation for faster processing (Plyer et al. 2016; Dérian and 
Almar 2017). These issues make confidently applying the 
existing optical flow methods as a primary diagnostic tool 
to real-world experimental data difficult.

The objectives of this work are to present an optical flow 
method for processing tracer particle images that addresses 
many of the previous weaknesses listed above, and to 
develop guidelines for experimental design when an optical 
flow method is to be used for velocimetry. Specifically, a 

wavelet-based optical flow method (WOF-X) is described 
that is designed for use on experimental data to achieve 
higher resolution and accuracy compared to correlation-
based PIV processing. In the first part of the current manu-
script, the WOF-X method is presented, validated with syn-
thetic particle images generated from a DNS of isotropic 
turbulence, and compared with the other methods in the 
literature including both optical flow and correlation-based 
methods. In the second part of this manuscript, a series 
of Lamb–Oseen vortex flow simulations are presented to 
determine experimental “design guidelines” for WOF-X 
equivalent to the well-known recommendations for corre-
lation-based PIV (Keane and Adrian 1990). In particular, 
recommendations for two critical design parameters, particle 
density and displacement, are given.

2  Method

2.1  Optical flow

“Optical flow motion estimation” or OFME is a well-rec-
ognized method within the computer vision community 
that has been used for determining rigid motion in image 
sequences since its introduction by Horn and Schunck 
(1981). Fundamentally, optical flow methods assume the 
conservation of brightness or intensity from one image in 
a sequence to the next, and use the temporal and spatial 
variations of intensity to infer the underlying motion. More 
specifically, OFME seeks to estimate the multidimensional 
motion that leads an image at time t to evolve to its state at 
time t + Δt . In this manner, the intensity in an image I(x, t) 
obeys an advection equation of the form Horn and Schunck 
(1981):

where v is the velocity. Equation 1 is integrated from time 
t0 to t1 assuming constant velocity over the time interval to 
yield the displaced frame difference (DFD) equation. Since 
the time interval Δt = t1 − t0 is a constant, it can be taken as 
unity during integration (and omitted) yielding:

OFME has been applied to fluid flows, with the initial work 
using similar algorithms and methodologies as developed for 
rigid motions with varying levels of success (Liu and Shen 
2008). More recently, advanced optical flow methods have 
been presented by the applied mathematics and computer 
vision communities that may be better suited for the nonlin-
ear and multiscale nature of fluid dynamics (e.g. Chen et al. 
2015; Corpetti et al. 2006; Atcheson et al. 2009; Cassisa 
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et al. 2011; Zillé et al. 2014; Cai et al. 2018). For example, 
Corpetti et al. (2002) correctly point out that the advec-
tion equation and the DFD equation shown in Eqs. 1 and 2 
implicitly assume that the velocity field is divergence-free, 
i.e., ∇ ⋅ v = 0 . They alternatively propose the use of the inte-
grated continuity equation (ICE), which is a time-integrated 
version of the continuity equation in fluid mechanics, but 
with image intensity substituted for density:

This formulation is based on the assumption that the meas-
ured intensity is proportional to the integrated density across 
a measurement domain. This assumption is not generally 
valid for many flow visualization experiments including par-
ticle scattering experiments. Nevertheless, this formulation 
produced encouraging results using particle scattering meas-
urements in a mixing layer and cylinder wake (Corpetti et al. 
2006). As discussed by Liu and Shen (2008), the fortuitous 
results were due to the fact that the integrated continuity 
equation has the same form as a more rigorously defined, 
physics-based equation that relates optical to fluid flow.

Although optical flow was not originally developed for 
the study of fluid flows, one can recognize that Eq. 1 is 
the transport equation for a nondiffusive passive scalar in 
a divergence-free flow, with scalar quantity I (Tokumaru 
and Dimotakis 1995). The general fluid dynamic transport 
equation describing the evolution of any flow tracer (gas or 
particle) in a constant-density flow is an advection–diffusion 
equation:

where �
(
x, t

)
 represents any general scalar, D

(
x, t

)
 is the 

diffusion coefficient, and R
(
x, t

)
 is a source or sink of the 

quantity � . The diffusion term can be neglected, since the 
time interval between frames, Δt , typically is short and the 
diffusion coefficient is very small for discrete particles. The 
current tracer particles are inert, so if particle loss due to 
out-of-plane particle displacement is neglected, then the sca-
lars are passive and R

(
x, t

)
= 0 . This is a common assump-

tion in correlation-based PIV, as well. This leads to a sim-
plification of Eq. 4:

The field quantity, �
(
x, t

)
 , can be considered as particle 

density (particles per unit volume, N) for the present case 
and the collected signal or intensity on the detector is pro-
portional to N. In this manner, �

(
x, t

)
∝ I

(
x, t

)
 . Thus, if the 

flow is divergence-free, Eq. 1 is the appropriate transport 
equation and Eq. 2 is a valid expression for obtaining veloc-
ity from particle images. This is consistent with the work 
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from Liu and Shen (2008) who show that Eqs. 1 and 2 are 
appropriate in the limit of a thin laser sheet, divergence-free 
flow conditions, and constant particle density across the thin 
laser sheet. In general, ∇ ⋅ u

(
x, t

) ≠ 0 for 2D imaging even 
when the density is constant, since fluid can move through 
the laser sheet in a real 3D flow (Liu and Shen 2008). When 
divergence-free assumptions are not appropriate, Eq. 5 can 
be integrated to obtain the formulation shown in Eq. 3. Thus, 
Eqs. 2 and 3 represent physically sound models for OFME 
in fluid flows.

It is noted that Eq. 3 is a highly nonlinear function of 
the unknown velocity field u , and in fact, we observe that 
the DFD equation (Eq. 2) actually produces more accurate 
results than the ICE (Eq. 3) for the data analyzed in the 
present study. This result may be due solely to the fact that 
the velocity fields examined in the current work are diver-
gence-free, but the optical flow method presented in this 
manuscript has features that overcome several limitations 
previously identified by Corpetti et al. (2002) in applying 
the DFD equation. Therefore, it is possible that the present 
method performs best with the DFD equation (as opposed 
to the ICE) even when flows are not divergence-free. This 
aspect will be examined extensively in future work, and it 
should be pointed out that implementing the ICE in the cur-
rent framework instead of the DFD equation is extremely 
simple. For all results presented in this manuscript, the DFD 
equation (Eq. 2) is used.

In the current work, Eq. 2 is cast as a minimization prob-
lem for the velocity field v by forming a penalty function 
(such as a quadratic function) JD from the DFD equation. 
However, it should be noted that the resulting minimiza-
tion problem is under-constrained, since there are more 
unknowns than equations. For example, in the 2D problem, 
there are two components of v and only one DFD equation 
[with input I

(
x, t

)
 ]. This is frequently addressed by the addi-

tion of a convex regularization term JR to JD that enforces 
some smoothness constraint on the velocity field, often act-
ing on its derivative(s) (e.g. Corpetti et al. 2002). The terms 
are balanced by a parameter � that is determined empirically 
in the literature. Thus, the estimated velocity field v̂ is found 
by solving:

2.2  Wavelet‑based optical flow

The present method uses an approach for estimating the 
velocity field from Eq. 6 using wavelet transforms as first 
proposed by Wu et al. (2000) and further developed by 
Dérian et al. (2013). Our method is based on the approach 
described by Kadri-Harouna et al. (2013) with some key dif-
ferences as described below. Thus, only a brief description 
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of the general wavelet-based optical flow (WOF) methodol-
ogy will be included here, with a focus on the distinctions 
of the current approach. Appendix 1 gives a brief descrip-
tion of wavelet transforms and signal decomposition as well 
as some of the features specific to WOF-X. The reader is 
referred to Kadri-Harouna et al. (2013) and Dérian et al. 
(2013) for a more complete discussion of applications of 
wavelets to optical flow.

The main idea of WOF is to perform the minimization in 
Eq. 6, not over the velocity field v , but instead over its wave-
let transform �  . A key feature of wavelet transforms is their 
ability to compress regular signals, which means that a suffi-
ciently regular signal can be accurately represented by a sig-
nificantly reduced number of non-zero wavelet coefficients 
compared to the number of samples in the signal (Mallat 
2009). Wavelet transforms convert a signal (or image in two 
dimensions) into sets of coefficients at different scales, form-
ing a multiresolution analysis (Mallat 1989). If the image 
has 2F × 2F pixels, its wavelet transform will have F scales 
and the finest scale has 2F−1 × 2F−1 coefficients, and the next 
finest has 2F−2 × 2F−2 , and so on. Compression is commonly 
achieved in a linear fashion by setting wavelet coefficients 
above a scale L to zero, where L < F.

WOF is performed by starting at a selected coarsest scale 
C (often 0) and proceeding to a predetermined finest esti-
mated scale L, subject to 0 ≤ C ≤ L < F . At each scale S, 
a velocity field with 2S × 2S nonzero wavelet coefficients is 
estimated by inverting �  to find v and evaluating Eq. 6. The 
result at each scale is then inserted into the next finer scale 
until the velocity field is estimated at S = L . Since even the 
finest possible scale, S = F − 1 , has four times fewer nonzero 
coefficients than the total number of velocity components 
in the field and hence half as many coefficients as there are 
pixels in the images, Eq. 6 is over-constrained and no longer 
ill-posed.

It is important to examine the effect of the truncation of 
fine scales on the reconstruction of the velocity field. Due 
to the properties of wavelets, if the velocity field is spatially 
well resolved, its spatial variations are smooth and can be 
well approximated by reconstructions at coarser scales. To 
demonstrate this, Fig. 1 shows vorticity fields and velocity 
spectra calculated from truncated wavelet transforms of a 
velocity field from a DNS of isotropic turbulence with F = 8 , 
the details of which are given in Sect. 3. The true vorticity 
field and velocity spectra determined from the DNS also are 
shown in Fig. 1 for comparison. It is observed that trunca-
tion of the two finest scales does not introduce significant 
errors, so this velocity field with 256 × 256 × 2 = 131072 
velocity components can be accurately represented by only 
64 × 64 × 2 = 8192 wavelet coefficients.

WOF has several advantages as compared to other opti-
cal flow techniques. Because of the multiresolution analysis 
inherent in the wavelet-based estimation strategy, there is no 
need to use coarse-to-fine pyramidal schemes to handle large 
displacements such as the ones often used in the conventional 
optical flow approaches (Chen et al. 2015; Corpetti et al. 2006; 
Yuan et al. 2007), as the displacements are estimated at the 
coarse scales and refined as S increases. Velocity estimates 
from truncated wavelet transforms also inherently correct 
for local violations of the DFD equation due to occlusions 
or other effects and address motion ambiguity caused by the 
aperture problem (Ullman 1979). This is because the estimated 
velocity at each pixel is not determined solely by the intensity 
information at that particular pixel, but it is informed by the 
velocity estimations at nearby pixels as well due to the nature 
of wavelet scaling functions. In some ways, the multiresolu-
tion properties of wavelet scaling functions can be thought 
in a similar manner to how interpolating functions estimate 
function values between sampled points (for a discussion on 

Fig. 1  a Vorticity fields from 
a DNS of isotropic turbulence 
produced from the truncated 
velocity fields with 272 , 262 , and 
25

2 nonzero wavelet coefficients. 
b One-dimensional velocity 
spectra for the velocity field and 
truncated velocity fields at vari-
ous scales. �
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the relation between multiresolution approximation and inter-
polation, see Sect. 7.6 of Mallat 2009).

A final advantage of WOF compared to the other 
approaches is that certain properties of wavelet transforms can 
be exploited to easily penalize the derivatives of the velocity 
field when computing the regularization term JR in Eq. 6. Spe-
cific details are given in Kadri-Harouna et al. (2013) and rely 
on the results derived by Beylkin (1992). In short, the magni-
tude of the derivatives of v can be attenuated by penalizing the 
components of its wavelet transform �  . The implementation 
is simple, efficient, and numerically stable, and, hence, does 
not require complex schemes such as those used in Yuan et al. 
(2007) and Chen et al. (2015).

2.3  Wavelet‑based optical flow for experimental 
data

As described above, the wavelet formalism itself addresses 
several of the difficulties commonly associated with optical 
flow methods outlined in Sect. 1, namely the handling of large 
displacements and dealing with non-ideal experimental condi-
tions. The other issues of empirically tuning the regularization 
parameter � in Eq. 6, boundary conditions, non-divergence-
free motion, and computation time are addressed in this sec-
tion, where the differences between the current method and 
that of Kadri-Harouna et al. (2013) are highlighted. For clarity 
our method will be referred to as WOF-X (wavelet-based opti-
cal flow for experimental data), since it is designed specifically 
to be used in future work to analyze data from experiments.

WOF-X is currently implemented in MATLAB. Similar to 
the work of Dérian et al. (2013), it uses the l-BFGS algorithm 
(Schmidt 2005) to minimize Eq. 6, which is highly efficient 
in terms of memory and speed. However, in the current work, 
the objective function JD is not a simple quadratic function as 
in Kadri-Harouna et al. (2013) and Dérian et al. (2013), but 
rather a Lorentzian (Black and Anandan 1996) of Eq. 2 is used 
instead. Thus, JD takes the following form:

where Ω represents the image domain and � is a parameter 
describing the strength of the penalty function. Results of 
optimization are not very sensitive to the value of � and it is 
set to 2 in the present work. A Lorentzian penalty function 
is “softer” than a quadratic, meaning that it is less sensitive 
to outliers and noise, potentially leading to higher accuracy 
in experiments. WOF-X uses a bi-cubic warping operator to 
create the motion-compensated image in the DFD equation 
[I1(x + v(x))] that takes advantage of MATLAB’s efficient 
architecture for interpolation of gridded data. The gradient 
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calculus of variations:

The issues of computational burden and boundary condi-
tions are both addressed with the use of an alternative wave-
let function. Previous works have used orthogonal Daube-
chies wavelets or Coiflets which inherently produce periodic 
velocity fields and are implemented with circular convolu-
tions. The current WOF-X method uses biorthogonal 9–7 
wavelets. Biorthogonal 9–7 wavelets are popular in image 
compression and are used in the JPEG-2000 standard (Taub-
man and Marcellin 2002) because their inverse transforms 
produce smooth functions and the wavelets are symmetric, 
which allows them to be implemented with symmetric (i.e., 
zero-gradient) boundary conditions. Furthermore, they can 
be implemented with the efficient lifting transform (Daube-
chies and Sweldens 1998) which is significantly faster than 
convolution. The total speed improvement using the combi-
nation of biorthogonal 9–7 wavelets and the lifting transform 
is about a factor of 2.5 compared to that in Kadri-Harouna 
et al. (2013). While WOF-X currently is still slower than a 
correlation-based program such as DaVis, Dérian’s wave-
let-based optical flow algorithm, named Typhoon, has been 
implemented on NVIDIA’s CUDA platform, so that parallel 
processing can be performed on GPUs, yielding a speedup 
of a factor of 10–100 (Dérian et al. 2015). In principle, a 
similar implementation could be done for WOF-X if pro-
cessing time compared to correlation methods becomes a 
significant obstacle, as could be the case for large images 
( > 1024 × 1024 pixels) or three-dimensional measurements. 
Currently, for smaller 256 × 256 pixel images, WOF-X is 
approximately five times slower than LaVision’s DaVis 8. 
However, this is primarily a function of the fact that WOF-X 
yields more than an order-of-magnitude more velocity vec-
tors than correlation-based methods.

The regularization term JR in Eq. 6 performs third-order 
smoothing of the velocity field; that is, it penalizes the mag-
nitude of the third derivative of both components of velocity, 
unlike the second-order smoothing in Kadri-Harouna et al. 
(2013). This is computed in the wavelet domain using the 
operator discrete approximation method described in Kadri-
Harouna et al. (2013). The expression for JR is given in 
Appendix 1. The third derivatives penalized do not include 
cross derivatives (e.g., �3

�x2�y
 ) due to the fact that the two-

dimensional wavelet transforms are constructed from two 
one-dimensional transforms. The penalty function used for 
JR is a simple quadratic. This regularization method does not 
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penalize the divergence or curl of the flow field like common 
regularization schemes as first presented by Corpetti et al. 
(2006), Horn and Schunck (1981). Penalization of the diver-
gence or curl leads to “physical smoothing” of the velocity 
gradient fields and a significant underestimation of their 
magnitudes. Alternatively, the penalization of the third 
derivative of velocity (“jounce”) enforces smoothness in the 
velocity field as well as its first two derivatives without 
attenuating the velocity gradient magnitudes. This is very 
important in determining derivative-based kinematic proper-
ties such as strain rate and vorticity accurately. Performing 
this penalization in the wavelet domain is simple and effi-
cient, and does not require the complex schemes needed for 
direct high-order derivative penalization (Yuan et al. 2007; 
Chen et al. 2015). It, therefore, represents a physically sound 
regularization term for fluid flows that only marginally 
increases the computational complexity of the optical flow 
problem.

Perhaps the most significant improvement in WOF-X 
compared to other optical flow methods for application to 
experimental data is the ability to compute the regulariza-
tion coefficient � with minimal empiricism. It is similar in 
principle to the methods of Héas et al. (2013) and Beyou 
et al. (2013) in that it uses properties of the estimated veloc-
ity field to tune the regularization term, but, unlike these 
methods, it exploits the known physical behavior of velocity 
spectra instead of the statistics of the velocity field from one 
time instance to the next. The small amount of user input 
involved in estimating � in the proposed method makes the 
approach more versatile and potentially more accurate than 
the simpler parameter-free method of Cai et al. (2018) that 

is based on an a priori scaling argument. First, it is observed 
that for sufficiently high regularization, the results of any 
WOF method are identical for several values of the highest 
estimated scale L. Therefore, the finest estimated scale is 
always set to L = F − 1 and the effect of changing L does 
not need to be considered as in Dérian et al. (2013). It is also 
observed that the same value for � produces similar results 
for all image pairs in a given data set acquired from the same 
flow, so � can be optimized for a single image pair and then 
applied to the entire data set.

The underlying principle in determining � in the current 
work is to use the properties of the turbulence spectra of 
fluid flows (Pope 2001). The method presented here should 
be valid for the spectrum of either component of velocity 
along either spatial direction, but it is recommended to use 
E11

(
�1
)
 (see Sect. 6.5 of Pope 2001) where E11

(
�1
)
 repre-

sents the energy spectrum in the principal flow direction. 
The principal direction is taken as the one that affords the 
largest number of pixels for the Fourier transform when 
computing the spectrum. This strategy only requires that the 
spectrum shows a net transfer of energy from larger scales to 
smaller scales over the majority of wavenumber space, and, 
therefore, is applicable to a wide range of flows.

It is first recognized that increasing � has the effect of 
removing energy from the flow, first at higher wavenumbers 
and finally at lower ones, as shown in Fig. 2a. Note that 
the wavenumber �1 is a normalized wavenumber. It is also 
noted from Fig. 2a that, for sufficiently small values of � , the 
regularized spectra and the un-regularized ( � = 0 ) spectrum 
coincide at low wavenumbers. Finally, it is observed that the 
slope of the � = 0 spectrum (in log–log space) increases at 

Fig. 2  a Spectra for the same 
image pair with increasing value 
of � . � = 0 is shown in black. �

1
 

is a normalized wavenumber. b 
Spectra with the location of the 
slope deviation point, the linear 
fitting point, and the objective 
end point. A line is fit to the 
� = 0 spectrum between the 
deviation point and the linear 
fitting point, which is projected 
forward in wavenumber space 
until the objective end point. 
The spectrum is matched to this 
line by a heuristic algorithm. c 
The spectrum for � = 0 and the 
spectrum after optimization
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some value of � where the optical flow algorithm is artifi-
cially adding energy to the flow at fine scales to more pre-
cisely minimize the DFD equation (cf. Dérian et al. 2013). 
This spectral feature is not physical, as kinetic energy in 
fluid flows is primarily dissipative, and thus, the energy cas-
cade should be reflected in a spectrum that has a constant or 
decreasing slope as the wavenumber increases.

To address this facet, the current algorithm first locates 
the point where the slope of the � = 0 spectrum begins to 
deviate in the positive direction; it is marked in Fig. 2b with 
a red circle. Subsequently, the spectrum is smoothed with a 
moving average filter to mitigate noise. The user then selects 
a point on the spectrum at a lower wavenumber than the 
deviation point, such that the spectrum is approximately 
linear between the selected point and the deviation point. 
This location is referred to as the “objective start point” and 
is denoted in Fig. 2b. A line is fit to the spectrum between 
the objective start point and the slope deviation point and 
projected forward in wavenumber to a point specified by the 
user (denoted as the “objective end point”). This “objective 
line” and the objective end point also are shown in Fig. 2b. 
Once the objective line is computed, a heuristic algorithm 
is used to find the value of � that produces a spectrum with 
minimal error along this line. That value of � is taken to 
be the optimum and is shown in Fig. 2c. The precision of 
the heuristic algorithm increases with each iteration, but it 
is found that a sufficiently precise value for � is produced 
after 14 executions of the WOF-X algorithm. This routine 
for optimizing � has been successfully tested on numerous 
synthetic data sets as well as some preliminary experimental 
data that are not presented in the current manuscript. These 
data sets include turbulent flows with widely varying Reyn-
olds numbers, as well as some laminar flows.

To summarize this section, a step-by-step description of 
the operation of the WOF-X algorithm at a given scale S is 
given below. In this example, the images are square with 
2F × 2F pixels. Starting at a coarse scale S = C and proceed-
ing to a finer scale S = L , the following steps are performed 
for each value of S.

1. The wavelet transform of the velocity field from the pre-
vious (coarser) scale �

S−1
 is used to initialize the 

l-BFGS minimization algorithm.
2. An estimate of the velocity field v is found by perform-

ing an inverse wavelet transform of the transformed 
velocity field �  . The transform in WOF-X is performed 
using biorthogonal 9–7 wavelets and a lifting transform, 
unlike in previous wavelet-based optical flow methods 
(Kadri-Harouna et al. 2013; Dérian et al. 2013)

3. Both the penalty function of the regularization term JR 
and its gradient J′

R
 are computed from the velocity field 

as described in Eqs. 13 and 14 in Appendix 1.

4. The motion-compensated image I1
(
x + v

(
x
))

 in Eq. 2 is 
computed using bi-cubic spline interpolation with not-
a-knot end conditions.

5. The objective function to be minimized in Eq.  6 is 
evaluated using the penalty function of the data term 
JD (Eq. 7) and the regularization term JR , both of which 
depend on the estimate of the velocity field v found in 
step 2 from � .

6. The gradient of the motion-compensated image is com-
puted with centered finite differences, which is then used 
to compute the gradient of the data term in the objective 
function J′

D
 (Eq. 8).

7. The gradient of the objective function formed from J′
D
 

and J′
R
 is transformed into the wavelet domain by a for-

ward wavelet transform.
8. The objective function and its gradient (steps 5 and 7) 

are used by the l-BFGS minimization algorithm to 
obtain a new estimate for �  at scale S and steps  2 
through 7 are repeated until the objective function in 
step 5 is minimized.

When the algorithm converges to a final result at scale 
S = L , the resulting estimate �

L
 is transformed with an 

inverse wavelet transform to the physical domain to obtain 
the final estimate v̂ . Two wavelet transforms are required at 
each iteration of the l-BFGS algorithm: an inverse transform 
in step 2 to find v from �  , and a forward transform of the 
gradient of the objective function in step 7. The improve-
ments implemented in WOF-X compared to the wavelet-
based optical flow method in Kadri-Harouna et al. (2013) 
include the use of the Lorentzian penalty function, biorthog-
onal 9-7 wavelets with symmetric boundary conditions, the 
choice of third-order smoothing instead of second-order, and 
the semi-automatic tuning procedure to find the weighting 
coefficient � for JR.

3  Validation on synthetic data

WOF-X was first validated on a set of synthetic data. The 
velocity fields and particle images were generated from a 
DNS of isotropic turbulence with periodic boundary condi-
tions and Reynolds number 3000 by Carlier and Wieneke 
(2005) that has been used to evaluate several optical flow 
algorithms. A sample particle image and vorticity field 
are shown in Fig. 3. Each image is 256 × 256 pixels, with 
100 images in the sequence. Using synthetic data does not 
address certain complexities of experimental data includ-
ing 3D effects, noise, and nonuniform illumination. How-
ever, these issues are intentionally avoided in the current 
manuscript to assess the accuracy of the method in an ideal 
environment where a ground truth velocity is known. The 
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sensitivity of WOF-X to other factors present in experimen-
tal data will be addressed in subsequent work in a systematic 
way.

The estimated velocity from the WOF-X method is com-
pared against the true velocity from the DNS, as well as 
velocity estimations using a cross-correlation-based PIV 
algorithm (DaVis, LaVision Inc.), the Typhoon WOF algo-
rithm by Kadri-Harouna et al. (2013), Dérian et al. (2015), 
and the DenseMotion optical flow algorithm by Corpetti 
et al. (2002), Corpetti et al. (2006). The optimal value for � 
was found according to the procedure described in Sect. 2.3 
and was determined to be 1.433 × 10−13 for this data set. 
Results from DaVis were produced by preprocessing the 
images with a sliding background filter and then perform-
ing two passes each at interrogation windows of 96 × 96 
pixels and 16 × 16 pixels with 75% overlap. The correlation 
algorithm uses a multigrid approach with image deforma-
tion using sixth-order B-splines and Gaussian weighting of 
the interrogation windows. The Typhoon algorithm used 
the second-order regularization with a value for the regu-
larization parameter of 0.04, which produced minimal error. 
The DenseMotion algorithm contains several user-specified 
parameters, which were combined to produce minimal error 
in the estimation.

Velocity estimation errors are computed using root-mean-
square endpoint error (RMSE) and average angular error 
(AAE):

In Eqs. 9 and 10, N is the number of velocity vectors, v
ref

 is 
the true (reference) velocity, and v̂ is the estimated velocity. 
To mitigate boundary effects, the velocities at the boundaries 
are ignored when computing the errors. The vectors closest 
to the boundaries are ignored in the correlation results, and 
the corresponding eight closest vectors to the boundaries 
are ignored in the optical flow results, since the optical flow 
estimations are 8 × 8 times more dense than the correlation 
estimation.

Figure 4 compares the RMSE and AAE for the examined 
velocimetry methods. The results show that the optical flow 
methods outperform the correlation-based approach. The 
RMSE and AAE errors for the WOF-X method are approxi-
mately the same as those for the Typhoon algorithm, both 
of which are more accurate than DenseMotion. This dem-
onstrates the high accuracy of wavelet-based optical flow 
approaches. It should be noted that although points on the 
boundaries are ignored when computing the error metrics, 
the boundary conditions in the WOF methods still influence 
the overall error because of the influence of nearby points in 
the domain on one another as explained in Sect. 2.2. Recall 
that the Typhoon algorithm uses periodic boundary condi-
tions. Since the DNS also has periodic boundary conditions, 
this leads to small amount of additional accuracy when using 
the Typhoon algorithm for this particular case. However, it 
should be noted that actual experimental data do not have 
periodic boundary conditions. A comparison between results 
using the current WOF-X and the Typhoon algorithm for 

(9)RMSE =
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Fig. 3  a A sample particle image from the DNS of Carlier and Wie-
neke (2005) used for validation of the WOF-X method. b Sample vor-
ticity field derived from an instantaneous velocity field

Fig. 4  a RMSE for several 
particle-based velocimetry 
analysis methods over the entire 
DNS image sequence. b AAE 
for the same data and analysis 
approaches
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data without periodic boundary conditions is performed in 
Sect. 4.2.

The advantages of the WOF-X method compared to 
a correlation-based PIV approach are further illustrated 
by examining results from a single image pair in the 
sequence. Figure 5 shows slices of the horizontal compo-
nent of velocity taken along four horizontal cuts through 
the domain. The locations where the correlation-based 
approach (analyzed with the DaVis software) produces a 
velocity vector are marked, clearly illustrating the advan-
tage of dense estimations. Using WOF-X, velocity vectors 
are produced at every pixel as opposed to one vector per 
interrogation window. The generation of a single veloc-
ity vector per interrogation window (when using corre-
lation) produces a lower-resolution result which tends 
to smear out sharp gradients in the velocity field, which 

is observed in Fig. 5. In contrast, the WOF-X algorithm 
accurately reproduces rapid fluctuations in the veloc-
ity field, thus accurately preserving velocity gradients. 
Figure 6 shows calculated probability density functions 
(PDFs) of the error for both scalar components of velocity 
using the WOF-X method and correlation-based methods. 
The PDFs are generated using the data from the entire 
image sequence from the DNS database and the error is 
calculated as 𝜖vi = v̂i − vi,ref . The PDFs demonstrate the 
increased accuracy of WOF-X compared to correlation-
based methods, both in terms of overall accuracy (i.e., 
an increased number of vectors with low error) and fewer 
outliers with high error magnitude. Gaussian fits to the 
calculated PDFs are also shown in Fig. 6, where the error 
distributions for both methods are approximately Gauss-
ian over about 2 decades of values beyond which both 
methods exhibit some high-magnitude error deviations 
from a Gaussian distribution. Note that the asymmetry 
in the PDFs for errors with large magnitudes is likely an 
artifact of the specific flow being studied. In addition, 
there are relatively very few velocity samples with large 
magnitudes, and thus, the statistics are not converged for 
these values. The results of Figs. 4, 5, and 6 show that 
the WOF-X approach produces both higher accuracy and 
resolution as compared to the correlation-based approach.

Figure  7 shows one-dimensional turbulence energy 
spectra calculated from the velocity results determined 
using both correlation and the WOF-X approach. In addi-
tion, the one-dimensional energy spectrum from the “true” 
velocity from the DNS also is shown for comparison. 
Because of its lower spatial resolution, the correlation-
based result only can estimate the spectrum in the lower 
two-thirds of the wavenumber space. However, the energy 
spectrum determined using the WOF-X method matches 
the true spectrum very closely, even at high wavenumbers. 
This is a result of proper determination of the regulariza-
tion parameter �.

-2

-1

0

1

2

u
 (

p
ix

el
s/
∆

t)

True Velocity
WOF-X
Correlation (DaVis)

0 128 256
x (pixels)

-2

-1

0

1

2

u
 (

p
ix

el
s/
∆

t)

0 128 256
x (pixels)

Fig. 5  Results from the correlation-based and WOF-X methods com-
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Fig. 6  Probability density func-
tions of the error for each veloc-
ity component estimated from 
the DNS data using WOF-X and 
correlation. Gaussian fits to the 
PDFs are shown as dashed lines
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The higher resolution and accuracy of the velocity esti-
mation produced by WOF-X means that the calculation 
of derivative quantities such as vorticity is more accurate 
than those calculated with correlation-based approaches. 
Figure 8 shows an example set of instantaneous vorticity 
fields. The leftmost image is the vorticity field calculated 
from the 2D DNS of isotropic turbulence, which is con-
sidered the “truth.” The center image is determined from 
the velocity field estimated with WOF-X, while the right-
most image is calculated from the velocity field using the 
correlation-based PIV algorithm. While the correlation-
based approach captures the larger features in the vorticity 
field, it does not have the spatial resolution required to 
reproduce the details of true vorticity field. The WOF-X 
method clearly shows a significant improvement in the 
estimation of the vorticity field. In fact, the vorticity field 
estimated with the WOF-X method captures the majority 
of the true topology of the vorticity field, including the 
complex small-scale structure. This point is further dem-
onstrated in Fig. 9, which shows horizontal slices through 
the vorticity field. The correlation-based results clearly 
show a low-pass-filtered version of the vorticity field, 
while there are minimal differences between the true vor-
ticity profiles and the WOF-X estimations.

4  Determination of experimental design 
parameters

Because of the maturity of the correlation-based PIV meth-
odology, design parameters for PIV experiments are well 
known. Two key parameters are the seeding or “image” den-
sity and the maximum in-plane particle displacement in the 
interval between successive frames. According to Keane and 
Adrian (1990), each interrogation box should contain at least 
12 particles, which corresponds to approximately 0.05 par-
ticles per pixel (ppp) for a 16 × 16 pixel interrogation win-
dow, and the maximum displacement should be less than or 
equal to one quarter of the size of the interrogation window. 
Correlation-based algorithms are more accurate for smaller 
displacements, but this guideline is intended to maximize 
the method’s dynamic range.

Similar quantitative guidelines for experiments do not 
yet exist for optical flow approaches. Establishing these 
guidelines is an important step towards freely using optical 
flow methods for evaluation of experimental data. Qualita-
tively, it has been suggested that the seeding density used 
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Fig. 8  (Left) True vorticity field 
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for optical flow might be higher than for correlation and that 
the inter-frame displacement should be kept small (Liu and 
Shen 2008); however, these suggestions have not been rigor-
ously tested, nor have they been considered in the context of 
wavelet-based optical flow.

4.1  Vortex flow simulation

A set of flow simulations with synthetic particle tracers were 
performed to determine optimal experimental design param-
eters for the WOF-X method. A suitable flow should meet 
several requirements. First, the time step between frames 
(and, therefore, the fluid displacement) should be variable 
without changing other features of the flow, so that results 
with different displacements can be reliably compared. Sec-
ond, the particle image density from synthetic images must 
be variable, again without changing any flow features. Third, 
the flow should ideally have an exact expression for veloc-
ity at any spatial position and not just at the explicit grid 
points, such that particles can be transported accurately and 
an error between the estimated and true velocities can be 
determined without bias. Finally, the flow should be non-
trivial; that is, it should be temporally evolving and have 
complex spatial topography which includes large spatial 
variations in velocity.

The selected flow field is a set of 32 non-temporally 
decaying Lamb–Oseen vortices of random size, strength, 
location, and sign. The vortices are permitted to move under 
one another’s influence, creating a temporally evolving flow 
with rapidly spatially varying characteristics. The induced 
velocity of a single Lamb–Oseen vortex is given by the 
following:

where V�,max is the maximum velocity produced by the vor-
tex at a radius of rmax and � is a parameter approximately 
equal to 1.25643 that relates rmax to the circulation contained 
in the vortex. The expression is analytic, so the velocity pro-
duced by a set of Lamb–Oseen vortices can be determined at 
any location in the domain without approximation by sum-
ming the velocity induced by each vortex at that location.

The computational domain for the flow is a 360 × 360

-pixel region, where only the central 256 × 256 pixels are 
used when producing images for velocimetry calcula-
tions. This creates realistic boundary conditions for the 
central image domain. The time step of the computa-
tion is taken to be unity for simplicity. Values for V�,max 
are randomly sampled from a uniform distribution on 
[−11.25,−8.75] × 10−3 ∪ [8.75, 11.25] × 10−3 . These val-
ues for V�,max ensure that the vortices are all of comparable 
strength, so that the flow field is not dominated by one or 

(11)V�(r) = V�,max

(
1 +

1

2�

) rmax

r

[
1 − exp

(
−�

r2

r2
max

)]
,

two strong vortices. In addition, they set the maximum Cou-
rant number to approximately 0.025 when accounting for the 
interaction of two strong vortices. This Courant number is 
sufficiently small for convergence of the tracer particle loca-
tions. The simulation is run for 32,000 time steps by time-
marching the positions of the vortices using a fourth-order 
Adams–Bashforth–Moulton (ABM4) scheme.

Tracer particles are treated as sizeless, inertialess Lagran-
gian trackers. 51,840 particles are initialized at t = 0 at 
random locations in the 360 × 360-pixel domain (particle 
density = 0.4 ppp). These particles are grouped into sets of 
1296 (particle density = 0.01 ppp) which allows a paramet-
ric evaluation of the effect of particle density. The particles 
are convected by the velocity field using the same ABM4 
scheme used to solve the motion of the vortices. Particle 
positions are treated as periodic with respect to the bounda-
ries of the 360 × 360-pixel computational domain, so that 
no new particles are generated during the course of the 
simulation.

Synthetic particle images are created from the parti-
cle locations as described in Appendix 1. Each particle is 
assigned a diameter and center brightness along with its 
location. The diameter and center brightness values for a 
given particle are constant in time. Because the particles 
are subdivided into groups of 1296, images at the same time 
instance with varying particle density are created by consid-
ering only a subset of particle groups. In this way, images 
with particle densities between 0.01 and 0.4 ppp are created 
for each sequence for the exact same flow.

To produce data sets with larger displacements than the 
one determined by the temporal resolution of the simulation, 
a specified number of time steps are skipped when creating 
particle images. Sets of 51 images and velocity fields (50 
image pairs) are created from the complete 32,000 image 
sequence, with various values of the number of time steps 
skipped, ranging from 0 to 640. Each set begins at t = 0 , 
which is the first time step in the complete flow simula-
tion. Therefore, velocimetry algorithms can be evaluated on 
image sequences of the same flow, but with different values 
for the maximum particle displacement and particle den-
sity, both of which can be varied independently. A sample 
synthetic particle image with particle density of 0.1 ppp 
and the corresponding velocity vector field are shown in 
Fig. 10. Figure 11 shows example velocity slices extracted 
from the domain for the same velocity field. Similar to 
the isotropic turbulence DNS results shown in Sect. 3, the 
WOF-X method produces higher resolution as compared to 
the correlation-based PIV analysis. However, the correla-
tion-based PIV and WOF-X results appear to show similar 
accuracy based on the sample velocity profiles, which is in 
contrast to the turbulent flow results shown in Sect. 3. This 
is due to the fact the velocity field produced by the set of 
Lamb–Oseen vortices is fairly smooth without significant 
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gradients. It is well known that correlation-based PIV yields 
accurate results under these conditions. In the few instances 
of sharper gradients (see panel 3 in Fig. 11), the current 
WOF-X approach is able to accurately resolved the high-
spatial-gradient regions, whereas the correlation-based 
method cannot.

4.2  Results

Optimal tracer seeding density and inter-frame displacement 
for the WOF-X method are determined by analyzing veloci-
metry results with all combinations of the two parameters 
for the vortex flow simulation described in Sect. 4.1. The 
error metric for a given combination of particle density and 
maximum displacement is the median RMSE (see Eq. 9) 

normalized by the rms velocity of the 50-image pair series 
with those parameters, denoted �v . Velocimetry results were 
determined with both WOF-X and the DaVis correlation-
based PIV algorithms. In addition, a “hybrid” method was 
analyzed. The hybrid method seeks to combine optical flow 
and correlation-based approaches to arrive at a method with 
the advantages of both. Specifically, the hybrid WOF-X 
method would have the high-spatial resolution and accu-
racy of WOF-X, but the ability to handle large particle dis-
placements, characteristic of correlation. The hybrid results 
are achieved by first determining the velocity using a cross-
correlation-based PIV algorithm (DaVis). Subsequently, this 
output is interpolated to a dense grid to initialize the WOF-X 
algorithm. Initialization begins at a scale of C = 4 instead of 
C = 0 for the pure WOF-X approach to retain some of the 
features of the results from DaVis. Finally, the WOF-X algo-
rithm is applied from C = 4 to L = F − 1 . Cross-correlation 
results were similarly used to estimate coarse-scale motions 
in non-wavelet-based optical flow approaches by Alvarez 
et al. (2009) and Heitz et al. (2008).

Figure 12 shows the error as a function of the particle 
density for correlation, WOF-X, and the hybrid WOF-X 
methods for several values of the particle displacement Δx . 
A few observations can be made from the results shown 
in Fig. 12. First, for any value of particle displacement the 
error is highest for low particle densities and then decreases 
rapidly before asymptoting towards a constant value as 
the particle density increases. This result is observed for 
all the methods. The correlation-based method approaches 
its minimal error at lower seed densities than the WOF-X 
or hybrid methods. For the correlation-based method, the 
error decreases significantly until a value of 0.05 ppp and 
then either remains constant or decreases slowly for increas-
ing seed densities. For the WOF-X or hybrid methods, the 
error decreases significantly until a seed density of approxi-
mately 0.1 ppp with some further decrease as the seed 

Fig. 10  a A sample particle 
field with density 0.1 ppp from 
the vortex flow simulation. b A 
corresponding velocity vector 
field from the simulation
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density increases. The correlation results were produced 
with 16 × 16-pixel interrogation windows, so the value 
of 0.05 ppp corresponds to 12–13 particles per interroga-
tion window, in agreement with the suggested guideline of 
the minimum particle image density recommended within 
the literature (Keane and Adrian 1990). The WOF-X and 
hybrid methods perform better with higher seeding densi-
ties, which agrees with intuition based on the dense nature 
of the estimation approach. It can also be observed that the 
correlation-based method has lower error only for conditions 
of low particle densities and small displacements (where �v 
is high for all methods); otherwise, the WOF-X and hybrid 
methods produce more accurate results.

Error as a function of particle displacement is shown in 
Fig. 13 for three values of particle density. First, it is noted 
that, for flows with a maximum displacement ≳ 5 pixels, the 
WOF-X method fails to find a solution. Estimations from the 
correlation and the hybrid methods converge to solutions at 
these large displacements, but they are less accurate than the 
results from smaller displacements. Over the range where all 
three methods are applicable, it is observed that the correla-
tion-based method produces a more accurate result only for 
the extreme conditions of displacements and seeding den-
sities. For example, the correlation-based method is more 

accurate for all displacements less than 15 pixels for a very 
low seeding density of 0.02 ppp and displacements less than 
0.15 pixels for a seeding density of 0.05 ppp, which are not 
recommended operating conditions for achieving accurate 
results for any method. For all other operating conditions, 
the WOF-X and hybrid methods appear to be more accurate. 
Another important observation from the results of Fig. 13 is 
that the minimum error for WOF-X and the hybrid method 
occurs at similar displacements compared to that of cor-
relation. In this manner, WOF-X and the hybrid approach 
are suited for maximizing both accuracy and dynamic range 
(increased Δx ) simultaneously. Finally, it is noted that the 
hybrid method represents a methodology that can extend the 
usable range of particle displacements to that consistent with 
correlation-based analysis with minimal loss of accuracy as 
compared to WOF-X. Trends in error as a function of these 
two parameters in Figs. 12 and 13 agree qualitatively with 
those observed in Liu et al. (2015) for a non-wavelet-based 
optical flow method.

The information from Fig 12 suggests that the error is 
nearly independent of particle seed density for levels greater 
than 0.05 ppp. Thus, Fig. 13c can be used to determine gen-
eral experimental parameters. Figure 13c shows that the cor-
relation-based estimation has a peak accuracy in flows with 
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a particle displacement between 0.5 and 8 pixels. This result 
is in agreement with established PIV design criteria, which 
suggests that particles should move a maximum of one quar-
ter of an interrogation window, which would be 4 pixels for 
the current 16 × 16 pixel interrogation window. However, it 
is noted that the initial window size of 96 × 96 pixels in the 
multipass schemes extends this somewhat. The WOF-X and 
hybrid methods produce slightly different results, displaying 
a distinct minimal error for particle displacements of about 
2.5 pixels. This is a surprising result, as previous research-
ers have suggested that optical flow methods would be most 
accurate for very small displacements (Liu and Shen 2008). 
The WOF-X method is accurate for large displacements until 
the method fails to converge (approximately Δx = 5 pixels), 
and the hybrid method is reasonably accurate for very large 
displacements up to ∼ 10 pixels. The fact that WOF-X (and 
the hybrid method) is accurate at relatively high values of 
displacement is likely due to the multiresolution strategy 
built into the wavelet formalism discussed in Sect. 2.2. The 
initial estimations at coarse scales capture the large dis-
placements and subsequent estimations at finer scales refine 
motions occurring over small scales.

A final result from the vortex flow simulation demon-
strates the importance of the symmetric boundary conditions 
utilized by WOF-X. Fig. 14 compares the RMSE and AAE 
of WOF-X, correlation, and Typhoon for a 50-image pair 
series with “on design” values for particle density and dis-
placement, specifically 0.3 ppp and a particle displacement 
of 2.5 pixels. As in Sect. 3 (Fig. 4), pixels near the bounda-
ries are ignored when computing errors. It is observed that 
WOF-X is approximately a factor of two more accurate than 
correlation-based PIV and approximately 20% more accurate 
than Typhoon in terms of RMSE and AAE, respectively, 
for flows with more realistic boundary conditions such as 
those found in experiments. This is due to the fact that the 
estimations at the image boundaries influence the results 
in the interior in WOF methods. For real flows (that do not 
have periodic boundary conditions), the use of wavelets with 
periodic boundary conditions will produce significant errors 
at the boundaries, which can influence the results away from 
the boundaries. WOF-X reduces this effect using wavelets 
with symmetric boundary conditions.

5  Conclusions

A wavelet-based optical flow method was presented for 
highly accurate and highly resolved velocimetry measure-
ments based on tracer particle images. The current WOF-X 
method was designed specifically for processing experimen-
tal image data and was compared to previous optical flow 
methods and a conventional correlation-based method. The 
WOF-X method contains several improvements compared 

to existing optical flow methods, including previous wave-
let-based methods, that mitigate many of the documented 
drawbacks of optical flow velocimetry techniques. Unlike 
many previous optical flow methods, it uses only minimal 
empiricism, but rather takes advantage of inherent turbulent 
flow properties and uses turbulence energy spectra and a 
semi-automated heuristic algorithm to optimize the weight-
ing parameter for the regularization term. In the current 
manuscript, the WOF-X method is assessed on synthetic 
data generated from a 2D DNS calculation of isotropic tur-
bulence. This data set serves as an appropriate initial test 
bed to analyze the potential benefits of the proposed meth-
odology as it represents an “ideal case.” For the synthetic 
data sets presented, the WOF-X method is shown to yield a 
factor of 1.5–2 improvement in velocity estimation accuracy 
compared to the correlation-based approach, along with the 
benefits of a dense estimation of the velocity field, which 
yields approximately an order-of-magnitude higher spatial 
resolution as compared to conventional correlation-based 
PIV. Such improvements in velocity accuracy and spatial 
resolution are critical in resolving important derivative 
quantities such as vorticity. The improvements in accuracy 
and spatial resolution cost approximately a factor of 5–10 in 
processing time compared to cross correlation.

A series of vortex flow simulations were performed to 
determine the sensitivity of WOF-X results to user-selected 
experimental parameters of particle density and particle 
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inter-frame displacement. These parameters are systemati-
cally varied to develop recommendations for experimental 
design. WOF-X was found to be most accurate for parti-
cle densities ≥ 0.1 ppp compared to ≥ 0.05 ppp for corre-
lation. However, it is noted that WOF-X is more accurate 
than correlation-based analysis for all seeding densities 
greater than 0.02 ppp. For WOF-X, maximum displace-
ments ≤ 5 pixels yield the highest accuracy which is the 
same for correlation with 16 × 16-pixel interrogation win-
dows. WOF-X fails to converge to a solution for maximum 
displacements ≳ 5 pixels, but a hybrid method is introduced 
that is accurate for maximum displacements up to 10 pixels. 
The hybrid approach uses the results of a correlation-based 
method to initialize WOF-X at a finer initial scale compared 
to pure WOF-X and is able to converge to a solution for 
higher displacements. The hybrid approach will likely be 
the best approach for experiments, as it is shown to be only 
marginally less accurate compared to “pure” WOF-X but 
gains the robustness of a correlation-based method. The 
additional time cost of processing the image data with tra-
ditional PIV software prior to processing with WOF-X is 
small (10–20%) compared to the computational time for 
WOF-X alone. A surprising result is that WOF-X and the 
hybrid method achieve minimal error for maximum dis-
placements of 2.5 pixels, which is much greater than previ-
ous assertions concerning optical flow methods. In addition, 
WOF-X retains higher relative accuracy as compared to the 
correlation-based approach over a broad range of particle 
displacements and thus maximizes the accuracy of the 
velocity estimation over a larger range of velocity values. 
Finally, it is noted that the current WOF-X method showed 
increased accuracy compared to the previous wavelet-based 
optical flow methods for flows without periodic boundary 
conditions, as will be encountered in real experimental data. 
Future work is required to study the influence of nonideal 
experimental effects (i.e., noise, laser sheet intensity fluctua-
tions, and out-of-plane particle displacement), three-dimen-
sional, and divergent flows on the accuracy of the WOF-X 
method before it can be applied freely to experimental data.
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Appendix 1: Wavelet transforms and signal 
decomposition

A wavelet is a mathematical function that can be used to 
divide a given function f(x) into different scale components. 
A wavelet transform is the representation of f(x) through a 
linear combination of a set of basis functions that are transla-
tions and dilations of a fast-decaying function known as the 

mother wavelet, � , along with an associated scaling func-
tion, � . Specifically, a wavelet transform of f(x) first com-
putes the set of inner products of f(x) with a wavelet atom 
�j,n at scales j and positions n, resulting in a set of detail 
coefficients, dj[n] = ⟨f ,�j,n⟩ . Wavelet atoms are defined by 
scaling and translating the mother wavelet �  as 
�j,n =

1

2j
�

(
x−2jn

2j

)
 . Associated with the “high-pass” mother 

wavelet is a scaling function � that gives a low-pass repre-
sentation of the function f(x). Thus, at each scale j and posi-
tion n, approximation coefficients are computed as 
aj[n] = ⟨f ,�j,n⟩ , where �j,n =

1

2j
�

(
x−2jn

2j

)
 . The wavelet trans-

form at each scale j produces a set of detail coefficients dj 
and approximation coefficients aj , both of which are con-
tained within � as shown below.

In signal processing, one has a discrete signal f
[
xi
]
 with a 

length of 2F . The wavelet transforms are applied at increas-
ingly coarser scales, starting from the finest scale (j = F) 
down to a predetermined coarse scale j0 < F . At each sub-
sequent scale, the approximation coefficients are divided into 
coarser approximations and details; that is, the transform 
at each scale j − 1 operates on the coarse approximation 
from the next finest scale aj to produce dj−1 and aj−1 . Thus, 
a discrete wavelet transform (DWT) applied to f

[
xi
]
 forms a 

multiscale representation of the signal, where the detail coef-
ficients from all scales dj0 , dj0+1, ..., dF−1, dF and the remain-
ing coarse approximation aC are stored as:

which also has a length of 2F like the original signal f
[
xk
]
 . 

The exact mathematical details of the lifting DWT used by 
WOF-X are given in Mallat (2009) and Daubechies and 
Sweldens (1998). If the wavelets and scaling functions form 
an orthonormal basis as is the case of the biorthogonal 9–7 
wavelets used by WOF-X, then the wavelet transform can 
be inverted and f

[
xk
]
 is recovered exactly. Thus, it is con-

cluded that the output from a wavelet transform is a set of 
wavelet coefficients that exactly describe the input signal in 
the wavelet basis.

Wavelet transforms of images

The above procedure can be applied to higher-dimensional 
signals (i.e. images) by applying the wavelet transform along 
each dimension isotropically at each scale, demonstrated 
schematically in Fig. 15.

For the wavelet-based optical flow described in the cur-
rent manuscript, the generic signal f

[
x1
k1
, x2

k2

]
 is replaced 

with the individual velocity components vi
(
x
)
 (which are 

two-dimensional). Truncated transforms are formed by set-
ting all detail coefficients, including the mixed coefficients, 
above a specified scale L to zero. The truncated transform is 

(12)�
[
ni
]
=
[
aj0 , dj0 , dj0+1,… , dF−1, dF

]
,
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then inverted to obtain a coarse approximation of the origi-
nal signal fL

[
x1
k1
, x2

k2

]
.

Derivative regularization in the wavelet domain

This section outlines the construction of the regularization 
term JR in Eq. 6 and its gradient. The proof that the follow-
ing definition of JR indeed penalizes the third derivative 
of the velocity field is described in Kadri-Harouna et al. 
(2013) and will not be given here. Kadri-Harouna et al. 
(2013) show that the regularization term JR for penaliza-
tion of the third derivative of a velocity field v is given by 
the following:

where �  is the wavelet transform of the velocity field v and 
the superscript V indicates the vectorization operation. � is 
a matrix matching the dimensions of �  whose elements are 
43j (see Fig. 15) for every scale above j0 and 0 for every ele-
ment corresponding to a

j0
 . Its gradient with respect to �  is 

easily found:

Appendix 2: Synthetic particle image 
generation

Synthetic particle images are generated in a similar manner 
as described by Carlier and Wieneke (2005). Each particle 
i is centered at a location 

(
xi
0
, yi

0

)
 in the image domain, with 

diameter di and a center brightness value ci . The di values are 
selected from a normal distribution with mean d̄ and stand-
ard deviation �d . The center brightness is a simulation of 

(13)JR =

(
�V

)T

⋅

(
�V

⋅ �V
)
,

(14)J�
R
= �V

⋅ �V .

out-of-plane displacement in a real-world experiment, and is 
given by ci = d2

i
exp

(
−b2

i

)
 , where bi is normally distributed 

with a mean of zero and a standard deviation �b . The ci val-
ues are then normalized, such that the largest particle in the 
domain has a value of ci = 1 . The intensity distribution of par-
ticle i is then given by the following:

A simulated digitized image can be created by considering 
the brightness at some pixel k. Its brightness is computed 
by summing the contribution of each particle and “digitiz-
ing” by integration over the pixel. The integration is done 
by convolving the intensity function of each particle with a 
rectangle function and the Dirac delta function as follows 
in Eq. 16:

Carrying out the convolution for pixel width � , the resulting 
synthetic image is determined by the following:

Pixels are synthetically saturated when their calculated pixel 
value I

(
xk, yk

)
 is greater than one. These pixel values are 

then set to a value of one.

(15)Ii(x, y) = ci exp

(
−
1

2

(
x − xi

0

)2
+
(
y − yi

0

)2
d2
i

)
.

(16)I
(
xk, yk

)
=

N∑
i

Ii(x, y) ∗ Π(x, y) ∗ �
(
x − xk, y − yk

)
.

(17)

I
�
xk, yk

�
=

N�
i

cid
2
i

�

2

�
erf

�
xk +

�

2
− xi

di

√
2

�
− erf

�
xk −

�

2
− xi

di

√
2

��

×

�
erf

�
yk +

�

2
− yi

di

√
2

�
− erf
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2
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di

√
2
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Fig. 15  Schematic of an isotropic 2D wavelet transform. The trans-
form is performed in two steps at each scale. (1) Apply a 1D wave-
let transform to each column in the image in the vertical direction to 
obtain vertical approximation and detail coefficients. (2) Apply a 1D 
wavelet transform to each row in the vertically transformed image. 
This gives new approximation coefficients a

F−1
 and detail coefficients 

d
F−1

 in the diagonal blocks, and sets of mixed coefficients in the off-
diagonals. Step 3 is to repeat this procedure on the upper-leftmost 
block containing approximation coefficients a

j
 at each scale j until 

scale j
0
 is reached. The inverse transform is performed by simply 

reversing these steps
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