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Abstract
Using Lagrangian techniques to find transport barriers in complex, aperiodic flows necessitates a careful consideration of the 
available dimensional support (3D versus 2D) and temporal resolution of the data to be analyzed, a particular challenge in 
experimental data acquisition. To illustrate and diagnose the detrimental effects that can manifest in the computed Lagran-
gian flow maps and Cauchy–Green strain tensor that are calculated as part of most Lagrangian coherent structure analyses, 
planar finite-time Lyapunov exponent (FTLE) fields are computed from analytically defined, experimentally collected, 
and numerically simulated velocity fields. The FTLE fields calculated using three-component, three-dimensional velocity 
information (3D FTLE) are compared with calculations using two-dimensional data considering only the in-plane velocities 
(2D FTLE), data that are typically gathered during fluid dynamics experiments. In some regions, where the vortex rotation 
axis is perpendicular to the plane of interest, the 2D FTLE may perform well. However, in regions where the vortex rotation 
axis has a non-zero component parallel to the plane of interest, whole structures can fail to be captured by the 2D FTLE. A 
quantitative analysis of the error in the 2D FTLE field as it relates to instantaneous vorticity deviation core angle is conducted 
using Hill’s spherical vortex and the wake of a bioinspired pitching panel. The effect of decreasing temporal resolution is 
studied using simulated 3D experiments of a fully turbulent channel flow, where the time resolution of the velocity data is 
artificially degraded. The resultant 3D FTLE fields progressively worsen with degrading velocity field temporal resolution 
by the visible elongation of coherent structures in the streamwise direction, indicative of the poorly resolved intermediate 
velocity fields. This effect can be mitigated with a simple method that invokes Taylor’s frozen eddy hypothesis. Both dimen-
sional support and temporal resolution problems in experimental velocity fields can cause major errors in the resulting FTLE 
fields. With fundamental understanding about the flow field of interest, such as local vortex orientation or relevant length 
and time scales, some of the pitfalls may be avoided.
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Graphical abstract

1 � Introduction and motivation

There are numerous criteria that seek to define coherent 
structures, or vortices, from collected velocity field data 
using techniques that detect the presence of locally rotat-
ing flow, low pressure, or hyperbolic stretching between 
regions of qualitatively distinct flow. Each of these meth-
ods works best in certain situations, but most can pro-
vide information in any scenario as long as their relative 

strengths and limitations are considered. Many commonly 
used vortex identification analyses, including vorticity or 
scalar fields such as the Q (Hunt et al. 1988) or � (Chong 
et al. 1990) criteria, are Eulerian. They are computed using 
the instantaneous velocity field and its derivatives. For 
that reason, Eulerian criteria can be simple and quick to 
compute, but share a few disadvantages.

On the other hand, Lagrangian methods define a sca-
lar field at a given time by using the information along 
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integrated particle trajectories (Haller 2015). In this paper, 
the finite-time Lyapunov exponent (FTLE) is used as the 
example Lagrangian quantity as it, like many Lagrangian 
methods, requires the evaluation of the Cauchy–Green 
strain tensor, which is constructed from the flow map in 
the domain of interest. This requires adequate dimensional 
support and temporal resolution to ensure accurate particle 
trajectories (Allshouse and Peacock 2015). FTLE ridges 
are often considered hyperbolic Lagrangian coherent 
structures (LCS), but that is not the case in general (Haller 
2011). Regardless, most techniques used to calculate LCS 
also rely on the accurate calculation of the Cauchy–Green 
strain tensor, and, therefore, are subject to the same inac-
curacies caused by lack of dimensional support or tem-
poral resolution that may plague FTLE. FTLE is one of 
the most basic representations of the Cauchy–Green strain 
tensor among the techniques used to determine LCS, and 
many techniques used to locate hyperbolic LCS rely on the 
FTLE fields as the basis for further refinement.

Even on its own, FTLE has proven to be a powerful tool 
for the purposes of identifying and tracking coherent struc-
tures in complex vortex-dominated fluid flows. This method 
has been used for both periodic (Green et al. 2011; Bour-
geois et al. 2012; Kourentis and Konstantinidis 2011; Miron 
and Vétel 2015; Rockwood et al. 2016; Bose and Sarkar 
2018) and aperiodic (Beron-Vera et al. 2008; Blazevski and 
Haller 2014; O’Farrell and Dabiri 2014; Mulleners and Raf-
fel 2011; du Toit and Marsden 2010) flow fields, and can 
be implemented using velocity field data from analytical 
solutions, numerical simulations, and experiments. While 
methods to find the FTLE field from experimental data 
are both possible and promising using existing techniques, 
there is still considerable work to be done to address how 
the accuracy of Lagrangian scalar fields can be established 
and when FTLE should be considered less reliable than the 
instantaneously computed Eulerian criteria. For many com-
plex 3D flows, three-component velocity fields covering a 
sufficiently large, 3D portion of the fluid domain over a suf-
ficient period of time are achievable experimentally only 
in special circumstances. It is imperative to develop guide-
lines and metrics to determine when FTLE analyses can be 
considered accurate and reliable to most appropriately take 
advantage of the additional information they can provide on 
flow physics and dynamics.

The effect of spatial resolution, noise, and smoothing 
on LCS found as FTLE ridges has previously been inves-
tigated by Olcay et al. (2010), who found that poor spatial 
resolution had a significant impact on the location of the 
LCS. Several studies have been conducted to investigate 
how spatial and temporal resolution affects LCS in ocean 
flows (Beron-Vera 2010; Keating et al. 2011; Hernández-
Carrasco et al. 2011; Poje et al. 2010), and found that 
flows with unresolved small-scale energetic motion can 

have large errors in the FTLE field, and therefore should 
be used with caution. Keating et al. (2011) determined 
that a temporal resolution to spatial resolution ratio below 
about 1/16 days/km was required to avoid overshoot of 
small-scale structures in trajectory calculations using 
ocean models. BozorgMagham and Ross (2015) studied 
how FTLE results change when small-scale structures are 
not resolved in atmospheric flows.

Multiple techniques have been introduced that implement 
a variety of theories to ensure the accuracy of computed 
LCS. The variational theory method proposed by Haller 
(2011) found an exact relationship between the LCS and the 
invariants of the Cauchy–Green strain tensor that allowed for 
LCS to be defined as the locally strongest attracting or repel-
ling material surfaces. In order to allow the usage of data 
with low spatial resolution, an approach that used sparse 
trajectory information presented a cluster-based approach 
to determine regions of the flow with coherent groups of 
particles that highlight the dynamically different regions 
found by FTLE (Froyland and Padberg-Gehle 2015). Tang 
and Walker (2012) related diffusion statistics to portions of 
the flow demarcated by LCS, and found good agreement.

There are several techniques that have been proposed that 
attempt to move away from using the Cauchy–Green strain 
tensor directly, the majority of which still rely on accurate 
particle trajectory integration (Balasuriya et al. 2018). One 
such method uses distinguished trajectories that can reveal 
both hyperbolic and non-hyperbolic flow regions in time-
dependent flows (Rempel et al. 2013). These trajectories are 
used to find both the stable and unstable manifolds in the 
same calculation. The function “M” defined by these trajec-
tories is less sensitive to integration time than the standard 
FTLE calculation and does not use the Cauchy–Green strain 
tensor, but still relies on accurate tracking of particle trajec-
tories. A study by Banisch and Koltai (2017) determined a 
method to obtain Lagrangian sets of coherent fluid with-
out using the Cauchy–Green strain tensor, but also relied 
on accurate tracking of particle trajectories. The finite-size 
Lyapunov exponent (FSLE) has also been used to extract 
LCS, but to extract true LCS, the FSLE must meet a strin-
gent set of requirements that increase the difficulty of the 
calculation (Karrasch and Haller 2013). The calculation of 
the FSLE field also relies on accurate integration of particle 
trajectories, and therefore on adequate spatial and tempo-
ral resolution (Hernández-Carrasco et al. 2011; Poje et al. 
2010). A method proposed by Leung (2011, 2013) and You 
and Leung (2018) relies on partial differential equations and 
Eulerian data to predict the FTLE field instead of using par-
ticle trajectories and the Cauchy–Green strain tensor. While 
this method may eliminate the need for accurate particle 
trajectory information, it has yet to be implemented using 
experimental data. A method proposed by Froyland et al. 
(2010) used probabilistic methods to study the evolution of 



	 Experiments in Fluids (2019) 60:74

1 3

74  Page 4 of 16

probability densities to find the regions that remain coherent 
and relatively non-dispersive.

Any analysis that tracks trajectory behavior through 
multi-dimensional space and time is subject to possible 
degradation when short time-scale dynamics or dynamics 
out of the known dimension are not captured in the acquired 
data sets. Sulman et al. (2013) investigated FTLE fields 
calculated with varying magnitudes of out-of-plane shear 
and velocity magnitude in two steady analytical test cases. 
Large values of out-of-plane shear of the in-plane veloci-
ties were determined to be a significant contributor to errors 
in 2D FTLE fields that neglected the out-of-plane velocity 
component. The current study extends this line of thinking 
into unsteady experimental results and studies the differ-
ence between 2D and 3D FTLE as the orientation of nearby 
coherent structures varies.

In this paper, two main limitations of a Lagrangian analy-
sis are discussed: dimensional support and temporal reso-
lution. Lagrangian methods that depend on tracking fluid 
trajectories in 3D flow fields are at a disadvantage if the 
available velocity data only exist in a 2D plane within the 
flow domain, common in particle image velocimetry (PIV). 
This is shown by implementing FTLE analyses on the ana-
lytical Hill’s spherical vortex in Sect. 2.1 and the experimen-
tal wake behind a pitching panel in Sect. 2.2. Depending on 
the organization and alignment of the coherent structures 
in the flow field, however, a Lagrangian analysis of a 3D 
flow with 2D data can still be suitable, but prior knowledge 
about the relevant flow structure is needed. Additionally, if 
the available velocity data are collected at a coarse temporal 
resolution such that interpolation schemes cannot be used to 
estimate intermediate velocity fields, the Lagrangian calcu-
lations will not be accurate. In Sect. 3 this is shown directly 
with turbulent channel simulation data, and a potential 
method of using velocity field evolution models to generate 
more accurate intermediate velocity fields is shown to alle-
viate this problem. In the examples presented here, the lack 
of dimensional support and temporal resolution is shown to 
significantly affect the FTLE fields, which could result in 
large-scale misidentification of structures. Much of this can 
be anticipated or mitigated, however, with a general physical 
understanding of the flow field of interest.

1.1 � Implementing coherent structure analyses

Commonly used Eulerian criteria (vorticity, Q, � , �2
ci

 , �2 ) 
evaluate the spatial structure of quantities derived from the 
instantaneous velocity field and its gradient, and large mag-
nitudes highlight regions of the flow that are highly rota-
tional, e.g. vortex cores (Hunt et al. 1988; Zhou et al. 1999; 
Chong et al. 1990; Jeong and Hussein 1995). An objective 
Eulerian criterion, the instantaneous vorticity deviation 
(IVD), was proposed by Haller et al. (2016) to address some 

of the shortcomings of previous Eulerian techniques. IVD 
is defined in Eq. 1 as the magnitude of the vorticity at each 
location minus the vorticity averaged over the entire spatial 
domain at that instant in time.

An IVD center is defined as the largest IVD value inside 
of a vortex. If level sets of IVD are non-increasing in an 
outward direction from the IVD center, and satisfy a con-
vexity deficiency criterion, the structure is considered an 
Eulerian vortex. The Eulerian vortex boundary is defined 
as the outermost IVD level set that satisfies the convexity 
deficiency criterion. This yields a frame invariant method 
to determine the locations of vortices and their boundaries 
in Eulerian data. While this technique removes some of the 
common problems that many Eulerian criteria share related 
to frame invariance and thresholding, it is still sensitive to 
errors in the velocity field due to the use of spatial gradients. 
A key measure in this manuscript is the out-of-plane IVD 
core angle, hereafter referred to as the IVD core angle. This 
is the angle between the fluctuating vorticity (IVD) vector 
at the IVD core and the plane of interest. A 90◦ IVD core 
angle corresponds to a vortex that is perpendicular to the 
plane, and a 0◦ IVD core angle corresponds to a vortex that 
is parallel to the plane.

Lagrangian methods identify coherent structures based 
on the flow properties along fluid particle trajectories. Many 
of these methods start with the computation of the idealized 
particle trajectories through the fluid velocity fields. More 
precisely, �(t, x0, t0) denotes the flow map, which contains 
the positions of all trajectories at time t that began at posi-
tions x0 at time t0 . The flow map is defined from a grid of 
particle trajectories in the flow domain that are advected in 
time using a fourth-order Runge–Kutta integrator. The coef-
ficient of expansion, �� , is defined in Eq. 2 as the largest 
eigenvalue of the Cauchy–Green strain tensor, (∇∗

x0
∇

x0
) , 

where ∇
x0
= ��(t0 + �, x0, t0)∕�x0 , � is the integration time, 

and ∗ denotes the matrix transpose operator.

One method for identifying Lagrangian coherent structures 
is the finite-time Lyapunov exponent field (FTLE, � ), a sca-
lar field defined on the grid from the Cauchy–Green tensor 
via �� as follows:

As FTLE is calculated from the largest eigenvalue of the 
gradient of the flow map, it can be described as a measure 
of the maximum rate of separation among neighboring par-
ticle trajectories initialized near each point. The regions of 
large magnitude in the FTLE field often depict where there is 

(1)IVD(x, t) = |�(x, t) − �(t)|

(2)��(x0, t0) = �max(∇
∗
x0
∇

x0
).

(3)��(x0, t0) =
1

2�
log ��(x0, t0).
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separation between qualitatively distinct regions in the flow 
during the flow map integration, e.g. transport boundaries.

The maximizing ridges of the FTLE field are nearly mate-
rial lines over the time interval of the particle integration 
(Shadden et al. 2005). The ridges identified from FTLE cal-
culated by integrating in forward (positive) time are repel-
ling material lines (pFTLE), but FTLE fields can also be 
computed by integrating flow map trajectories backwards in 
time. The trajectories that separate in negative (backward) 
time would converge in positive (forward) time, and, there-
fore, ridges of the negative FTLE field (nFTLE) indicate 
local attraction. In this work, only nFTLE fields are cal-
culated as they generally provide more easily identifiable 
ridges throughout the domain than pFTLE ridges for flows 
with a significant freestream velocity.

One advantage of using FTLE ridges for analysis in 
experimental flow fields is their relative insensitivity to 
short-term anomalies in the velocity field. The method 
has been shown to be robust and relatively insensitive to 
imperfect velocity data as long as the errors remain small 
in a time-weighted norm (Haller 2002). While individual 
trajectories may be sensitive to velocity field noise or errors, 
those errors would have to be significantly large and persis-
tent for the resulting trajectories to manifest different nearby 
topological features. Eulerian criteria often depend on the 
gradients of the velocity field, making them sensitive to 
small-scale errors that are common in PIV results. In addi-
tion, most Eulerian criteria require a user-defined threshold 
to indicate the regions where a flow structure exists, which 
introduces a level of ambiguity in the definition of the struc-
ture itself. Thresholding FTLE results, however, narrows the 
ridges of FTLE, but does not change their location.

More recently, Haller (2011) has exposed some of the 
vulnerabilities associated with using the ridges of the FTLE 
fields and showed that not all LCS are FTLE ridges, and 
that not all FTLE ridges depict hyperbolic LCS in the flow. 
While the work presented in this paper does not apply the 
new formalism of that work in identifying hyperbolic LCS, 
much of the recent work on finding Lagrangian coherent 
structures starts with a calculation of particle trajectories or 
the Cauchy–Green strain tensor, if not the FTLE field itself, 
and, therefore, the observations of this paper remain appli-
cable. In the same way that the lack of dimensional support 
and temporal resolution significantly reduce the accuracy 
of the FTLE analysis, it is expected that these factors will 
affect the variety of methods that extract Lagrangian coher-
ent structures from experimentally obtained fluid dynamic 
data.

The simulated trajectories used for the 3D and 2D FTLE 
calculations were initialized only within each 2D plane 
studied. The 3D FTLE calculation allowed the particles to 
advect throughout the full 3D domain using all three compo-
nents of velocity. The 2D FTLE calculation constrained the 

particles to the plane by setting the out-of-plane component 
of velocity to zero. The 2D calculation simulated the use 
of two-dimensional, two-component or three-component 
velocity data that would be expected from PIV experiments. 
While stereoscopic PIV is commonly used to extract three-
component two-dimensional PIV data, the lack of velocity 
information in the rest of the domain outside of the PIV 
plane makes it impossible to track particles during the FTLE 
integration if the particles leave the data plane. Therefore, 
the trajectories would still be projected back into the plane in 
the same manner as they are when the out-of-plane velocity 
was not known.

A vortex with an IVD core angle lower than 90◦ will 
induce velocity out of the data plane. During a 2D nFTLE 
calculation errors may begin to arise when particles would 
leave the plane if the out-of-plane velocity information was 
considered, as in the 3D nFTLE calculation. The particles 
may no longer experience the same flow physics as they 
travel through a different portion of the domain and experi-
ence different velocities in the 2D and 3D nFTLE calcula-
tions. Errors in particle trajectories would be large relative 
to the “time-weighted norm,” and could result in significant 
errors in the nFTLE ridge locations that could potentially 
lead to the misrepresentation of the coherent structures in 
the flow.

2 � Data dimension

Two test cases were investigated to identify how FTLE fields 
are affected when the three-dimensionality of the flow field 
is not captured. These included an analytical case using 
Hill’s spherical vortex and an experimental case using a 
full volume reconstruction of the wake behind a trapezoidal 
pitching panel.

2.1 � Hill’s spherical vortex

2.1.1 � Analytical test case

In order to quantify the degradation of FTLE as a function of 
the local vortex angle, the simple example of Hill’s spheri-
cal vortex was used as the first test case. This flow is an 
analytical solution to Euler’s equation that allows for easy 
calculations of local vortex angles and FTLE boundaries for 
a single vortex. The velocity field is defined by Hill (1894) 
and results in a spherical vortex ring with a prescribed 
radius. For illustrative purposes, a midspan cross section of 
the streamlines in this axisymmetric spherical vortex ring 
is shown in Fig. 1a. The velocity components inside and 
outside of the vortex are as follows:
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2.1.2 � Inside vortex

2.1.3 � Outside vortex

where the vortex strength parameter, � , is set as 2, and the 
vortex radius, r, is unity for this case. While the spherical 
vortex is 2D (axisymmetric), it provides a systematic change 
in vortex angle in 3D Cartesian space. Hill’s spherical vortex 
is a ring around the z axis, so y-constant planes are used for 
this analysis. At y∕r = 0 , two vortex cores can be seen per-
pendicular to the plane in Fig. 1a. As the plane of computa-
tion shifts ( y∕r > 0 ), the IVD core angle, which is initially at 
90◦ , begins to decrease as the vortices gradually tilt towards 
their respective y-constant planes. For this case, the IVD 
core angle is calculated at the location of maximum IVD 
within each vortex core.

The trajectories used to calculate FTLE were initial-
ized on a 100 × 100 grid with domain [x∕r] ∈ [− 2.0, 2.0] 
and [z∕r] ∈ [− 2.0, 2.0] , resulting in a spatial grid spacing 
of 0.04 in x / r and z / r. An integration time of 1.33t+ was 

(4)u = �xz∕5,

(5)v = �yz∕5,

(6)w = (�∕5)(r2 − z2 − 2x2 − 2y2),

(7)u = �r5xz
/[

5(x2 + y2 + z2)(5∕2)
]
,

(8)v = �r5yz
/[

5(x2 + y2 + z2)(5∕2)
]
,

(9)w =
− �r2

{[
2(x2 + y2 + z2)(5∕2)

]
− 2r3z2 + r3y2

}

15
[
(x2 + y2 + z2)(5∕2)

] ,

used, where t+ = tW∞∕r , and W∞ is the far-field velocity in 
the z direction. An integration step size of 0.003t+ was used 
in both the 2D and 3D calculations. Since there is only one 
vortical structure in the flow, a further increase in integra-
tion time resulted in thinner FTLE ridges and did not change 
their location. The out-of-plane velocity (v) was set to zero 
for the 2D FTLE calculation.

The FTLE ridge overlap percentage, hereafter referred 
to as the overlap percentage, was calculated by first normal-
izing the 2D and 3D FTLE fields by their respective global 
maximum. Then all values below the chosen threshold 
(55% of the maximum in this case) in the region of interest 
were set to zero. The number of locations with both 2D and 
3D FTLE ridges above the threshold were divided by the 
number of locations where the 3D ridges were above the 
threshold. This yields the percentage of the 3D FTLE ridge 
locations that are also captured by the 2D FTLE ridges. The 
overlap percentage was chosen over the normalized cross-
correlation coefficient because the normalized cross-correla-
tion coefficient is sensitive to small changes in amplitude or 
area of the ridges, which are not physical changes that affect 
the identification of vortices.

2.1.4 � Analytical results

Figure 1a shows the y∕r = 0 plane with streamlines high-
lighting the two cores that are visualized in a planar cut of 
Hill’s spherical vortex, while Fig. 1b shows the locations of 
the three FTLE planes displayed in Fig. 2.

Slices of 3D and 2D nFTLE ridges are shown in Fig. 2 
for planes at y∕r = 0.00 , y∕r = 0.32 , and y∕r = 0.64 . Only 
FTLE values greater than 0.55�max are plotted, and a black 
line at the location of the prescribed radius is included. 
As the normal distance from the y = 0 plane increases, 
the radius of the vortex boundary intersecting the plane of 

Fig. 1   Hill’s spherical vortex. 
a Streamlines in y∕r = 0.0 
plane. b Locations of FTLE 
planes: green ( y∕r = 0.0 ), blue 
( y∕r = 0.32 ), and magenta 
( y∕r = 0.64)
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interest decreases, which is consistent with the 3D nFTLE 
ridges. While this occurs, the local vortex angle decreases, 
and the 2D FTLE fails to capture the vortex boundary accu-
rately. The ridge of 2D FTLE defining the boundary of the 
vortex erroneously shifts farther toward the vortex center 
than the 3D nFTLE ridge does.

Figure 3a displays the overlap percentage values as a 
function of IVD core angle. The three points that are labeled 
in the figure (2a, 2b, and 2c) correspond to Fig. 2. When the 
IVD core is aligned perpendicular to the plane of interest at 
the midsection of the sphere ( 90◦ , Fig. 2a), the 2D FTLE is 
identical to that of the correct 3D FTLE, as represented by 
the 100% overlap percentage value. The red 3D FTLE ridges 
cannot be seen in Fig. 2a as they are obscured by the blue 
2D FTLE ridges. As the vortex becomes less perpendicular 
to the plane, the error in the 2D FTLE increases, resulting in 
a lower overlap percentage. At y∕r = 0.32 , where the IVD 
core angle is 70◦ , the overlap percentage is only 37%. As an 
alternative to using the overlap percentage to quantify the 
error, the difference between the 3D and 2D vortex radius 
as defined by the location of maximum FTLE was extracted 

and is presented in Fig. 3b. As the IVD core angle decreases, 
the error in the radius of the vortex determined by the 2D 
FTLE increases, as high as 40% in the y∕r = 0.64 plane. The 
FTLE errors caused by out-of-plane flow not captured by the 
2D FTLE calculation can result in the misidentification of 
the vortex boundary.

2.2 � Experimental wake behind a trapezoidal 
pitching panel

2.2.1 � Experimental test case

A 3D experimental test case was investigated to determine 
the relationship between lack of dimensional support and 
FTLE results in a more complex flow field using experi-
mental data. The test case analyzed was the wake behind a 
trapezoidal pitching panel (Kumar et al. 2016; King et al. 
2018; Kumar et al. 2018). The panel approximately models 
the shape of a fish caudal fin and is made of rigid acrylic. 
The panel was 1.59 mm thick, had a midspan chord of 101 
mm (c), a 52-mm leading edge span, and a 254-mm trailing 

Fig. 2   3D nFTLE (red) and 2D 
nFTLE ridges (blue) for Hill’s 
spherical vortex at various y/r 
values. The prescribed radius is 
shown in black
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edge span. The sweep angle of the panel leading edge was 
45◦ , and the panel was pitched about its leading edge through 
an angle of ± 7.5◦ with 0◦ inline with the streamwise direc-
tion (x). Data at a Strouhal number based on the pitching 
amplitude of 0.37 and at a Reynolds number based on chord 
of 7400 were collected using stereoscopic PIV.

Two 1.3 megapixel HiSenseMKI CCD cameras were used 
to collect three-component velocity data at one plane with a 
field of view of [x∕c, y∕c] = [2.48, 3.07] . A New Wave Gem-
ini Nd-YAG 200-15 laser was used to illuminate polyamide 
seeding particles with a diameter of 20μm . 29 spanwise-con-
stant ( z = constant ) planes of data were taken along the full 
trailing edge span of the pitching panel using a traverse sys-
tem. The planes were spaced �z∕c = 0.100 apart, except near 
the midpsan, where the spacing was �z∕c = 0.050 , and near 
the tips of the panel, where the spacing was �z∕c = .020 . 
Dantec DynamicStudio was used to calculate the vector 
fields using an interrogation area of 16 × 16 pixels with a 
50% overlap, resulting in a vector field of 120 × 130 with 
a spacing of 0.021 in x / c and 0.024 in y / c. The result-
ing velocity fields were phase-averaged into 24 phases per 
pitching period, T. The spanwise-constant planes of veloc-
ity were interpolated onto a common volumetric grid using 
a cubic spline. This resulted in a final velocity spacing of 
0.020 × 0.020 × 0.025 in x / c, y / c, and z / c, respectively. 
This resolution was fine enough to allow for accurate calcu-
lations of velocity gradients. Representative images of the 
panel wake at one instant in time visualized by IVD colored 
by �z for two different views are shown in Fig. 4.

A study on the effect of integration time on the nFTLE 
fields was conducted, and the results for the midspan for the 
four integration times studied are presented in Fig. 5. The 
nFTLE fields did not have well-defined ridges throughout the 
domain until an integration time of 1.5T. Further increases in 
integration time had a negligible effect on the nFTLE field, 

so an integration time of 1.5T was used with an integration 
step size of 0.005T (or 10 times the temporal resolution of 
the phase-averaged velocity fields) for both the 2D and 3D 
calculations. The integration step size was decreased from 
the step size of the phase-averaged velocity data by linearly 
interpolating the velocity values at each spatial point for 
each time between successive velocity fields. This method 
reduces errors during the particle integration by reducing 
the step size. It is common for experimentally measured data 
to have lower temporal resolution than numerical simula-
tions, so an integration step size 5–10 times smaller than 
the velocity data step size can be used to reduce the error in 
the particle locations. While this can help reduce errors in 
the trajectory calculation, significant errors will still occur 
if the velocity data temporal resolution is not high enough to 
capture the appropriate length and time scales of the flow, as 
will be shown in Sect. 3. Generally, 15 to 20 velocity fields 
per relevant time scale are sufficient to avoid large errors.

Similar to the Hill’s vortex case, the overlap percent-
age of 2D and 3D nFTLE ridges were used as a method 
to systematically study the relationship between IVD core 
angles and the corresponding accuracy of 2D FTLE. The 
IVD core angles for each vortex analyzed in this portion 
of the study were calculated by averaging the IVD core 
angle for all points within its outermost IVD level set that 
satisfied a convexity deficiency of 40%. This value of con-
vexity deficiency means that 40% of the area of the convex 
hull was not contained within the contour of IVD that was 
used. The standard deviation distribution of the IVD core 
angles throughout the domain is roughly Gaussian, with a 
mean of 13.9◦ , a minimum of 0◦ , a maximum of 30.2◦ , and a 
standard deviation of 4.1◦ . A large contributor to the fairly 
large spread of IVD core angles within a vortex is due to 
the magnification of any errors in the velocity field by the 
spatial derivative used to calculate vorticity and IVD. The 

(a) Overlap percentage between 2D and 3D
nFTLE ridges

(b) Radius percent error difference between
2D FTLE and 3D FTLE

Fig. 3   Error metrics between 2D and 3D FTLE as a function of IVD core angle
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FTLE ridge overlap percentage was calculated locally on 
each spanwise-constant plane in a small region surrounding 
the portion of the vortex that intersects the plane. An ellipse 
was fit to the IVD core outer contour, and then the major and 
minor axes of this ellipse were doubled in size to capture the 
associated FTLE ridges. A number of ellipse sizes ranging 
from the IVD outer contour size to tripling the ellipse axes 
were studied, and the chosen size qualitatively captured the 
correct FTLE ridges for a majority of the vortices. Areas 
that were too large captured FTLE ridges associated with 
neighboring vortices, and areas that were too small did not 
capture enough of the associated FTLE ridges. Changes in 
the area considered around each vortex for the overlap per-
centage calculation did not significantly affect the trend of 
the results. The relevant area is expected to vary for other 

flow fields with different vortex sizes and spacing. FTLE 
values above 0.55�max were used for the overlap percentage 
calculation.

2.2.2 � Experimental results

Figure 4 shows a representative snapshot of the coherent 
structures in the wake at one phase in time. The panel peri-
odically sheds spanwise-oriented vortices from its trailing 
edge as it pitches, and two vortices with oppositely-signed 
spanwise vorticity are shed each pitching period. The vor-
tices are detected using an isosurface at 28% of the global 
maximum of IVD and are colored by spanwise vorticity. 
3D effects result in the vortices bending near the panel 
tips, resulting in a wide range of IVD core angle values 

Fig. 4   Pitching panel IVD 
colored by �z

Fig. 5   Variation of 3D nFTLE with integration time in the wake of a trapezoidal pitching panel at the midspan location
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throughout the domain. This, coupled with the near constant 
vortex diameter and relative isolation of each vortex, makes 
this flow an ideal case for a systematic study.

Comparisons between 3D and 2D nFTLE fields at the 
panel midspan and quarterspan are shown in Fig. 6. IVD 
values above 28% of the IVD global maximum are shown 
in black, which highlight the vortex cores; 3D nFTLE ridges 
are shown in red, and 2D nFTLE ridges are shown in blue. 
At the midspan (Fig. 6a) the IVD core angles are 88◦ and 65◦ 
for vortices 1 and 2, respectively. Vortex 1 is aligned almost 
perfectly perpendicular to the data plane, and the 3D and 
2D nFTLE ridges are nearly identical. Vortex 2 is at a lower 
IVD core angle and there are some discrepancies between 
the 3D and 2D nFTLE ridges, but the overall shape of the 
nFTLE ridges surrounding the vortex are similar. At the 
quarterspan (Fig. 6b) the IVD core angles are 66◦ , 23◦ , 48◦ , 
and 32◦ for vortices 3 through 6, respectively. Significant 
differences are seen between the 3D and 2D nFTLE ridge 
locations at the quarterspan, especially for angles lower than 
60◦ . The 2D nFTLE ridges for vortices 4 and 5 cut directly 
through their respective vortices and do not surround them 
as the 3D nFTLE ridges do. There is only one 2D nFTLE 
ridge in the vicinity of vortex 6, and it crosses the 3D nFTLE 
ridges, wholly misrepresenting the vortex location.

The result of a systematic study of nFTLE ridge overlap 
percentage in the pitching panel wake is shown in Fig. 7. 
The overlap percentage values are colored by the distance 
from the trailing edge midspan, normalized by the midspan 
chord. The IVD core angle was averaged within the inside of 
each vortex boundary as defined by IVD. The results show 
a general trend towards higher FTLE ridge overlap percent-
ages with increasing IVD core angle, but the large spread 
in the data indicates that the relationship is complex. The 

increase in overlap percentage with increasing IVD core 
angle is roughly linear.

An investigation into the large variation in FTLE overlap 
percentage values among similar IVD core angles revealed 
that there is no single metric that captures the reason for the 
large variation. Some of the spread in the results is likely 
due to the uncertainty in the IVD core angle determination. 
Additional metrics investigated include out-of-plane velocity 
magnitude, out-of-plane shear components, and distance to 
the nearest vortex. The majority of the points with high over-
lap percentage values and high IVD core angles are located 
near the trailing edge midspan (blue points) in regions some-
what isolated from the surrounding vortices. These points 

Fig. 6   Pitching panel IVD 
(black), 3D nFTLE (red), 
and 2D nFTLE (blue) at two 
spanwise-constant locations. 
Vortices are labeled with 
numbers in black. The IVD core 
angles for the vortices are the 
following: 1 = 88◦ , 2 = 64◦ , 
3 = 66◦ , 4 = 23◦ , 5 = 48◦ , and 
6 = 32◦

Fig. 7   Overlap percentage compared to IVD core angle colored by 
distance from the trailing edge midspan normalized by the midspan 
chord for � ≥ 0.55�

max
 . Black squares and numbers correspond to 

vortices labeled in Fig. 6
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are primarily located in the two vortices closest to the panel 
trailing edge. Farther downstream, as well as near the tips of 
the panel, the IVD core angle decreases as the vortices begin 
bending towards the streamwise and transverse directions. 
As this happens, the vortices draw closer together and begin 
to induce large spanwise velocities and spanwise gradients, 
resulting in low overlap percentage values. The variation in 
overlap percentages is practically impossible to predict with 
only planar two-component velocity information. When fluid 
leaves the plane of interest, it can experience a range of flow 
physics depending on the specific flow field. Even if three-
component velocity data are available, there is no known 
information on velocity fields outside of the plane of inter-
est that could be used to update the out-of-plane trajectory 
information. In some cases with nearly 2D flow, the fluid 
leaving the plane would behave similar to the flow within 
the plane, resulting in similar FTLE ridge locations. In cases 
with highly 3D flow fields, complex vortex interactions, or 
turbulence, the fluid leaving the plane would experience 
drastically different flow physics, most likely resulting in 
low overlap percentages.

Figure 8 displays the same results as Fig. 7, but using an 
FTLE threshold of 0.67 instead of 0.55. Increasing the FTLE 
threshold value thins the FTLE ridges. The FTLE threshold 
value used for the overlap percentage affects the exact values 
for each vortex, but do not change the overall trend.

The angle of the dominant coherent structures can gen-
erally be obtained through the application of flow visuali-
zation experiments. It should be noted that the exact angle 
of a specific portion of the coherent structure is not impor-
tant, but whether the overall alignment of the structure is 
nearly perpendicular to the plane of interest is the crucial 
indicator. If the coherent structure is angled significantly 

into the plane of interest, or if other vortices are nearby, 
the FTLE results will likely have large errors as demon-
strated by the test cases presented above.

3 � Time resolution

In order to implement an effective Lagrangian analysis on 
discrete data sets, time-resolved velocity data are required 
in addition to the previously addressed dimensional sup-
port, such that interpolation can reasonably be used to 
recreate velocity fields between data sets. For the numeri-
cal integration necessary to compute the flow map, the 
integration time step is often smaller than the dimensional 
time between discrete data sets from experimental meas-
urement or numerical simulation.

3.1 � Numerical test case

In the following section, data from DNS of a fully tur-
bulent channel are used to demonstrate how nFTLE can 
be compromised in flows with low temporal resolution. 
The simulation was run at Re� = 180 , with Re� = u�h∕� , 
u� being the friction velocity, h being the channel half-
height, and � being the kinematic viscosity. In these quan-
tities, u� = (�w∕�)

1∕2 , where �w is the shear stress at the 
wall and � is the density. The computational domain was 
x∕h = [0, 2� ] in the streamwise direction, z∕h = [0, 2� ] in 
the spanwise direction, and y∕h = [− 1, 1] in the wall-nor-
mal direction. A grid of [128 × 129 × 128] points was used 
for the velocity, resulting in a resolution of 0.05 in x / h 
and z / h. The resolution in y / h was variable to resolve the 
near-wall regions. The domain was bounded by walls at 
y∕h = 1 and y∕h = − 1 and had periodic boundary condi-
tions in the streamwise and spanwise directions.

This is the same simulation that was used by Green 
et al. (2007) and was based on that of Kim et al. (1987). 
Time was non-dimensionalized as T+ = Tu2

�
∕� , and a 

non-dimensional trajectory integration time of T+ = 27 
was used for the flow map computation. The FTLE field 
was initialized on a grid with three times higher spatial 
resolution than the velocity grid in x / h and z / h, and the 
same resolution as the velocity grid in y / h. This integra-
tion time was chosen based on previous results and yields 
clear, well-defined nFTLE ridges. Little relevant structure 
is gained by longer integration times, but shorter integra-
tion times can result in less sharp nFTLE ridges. A plane 
located at y∕h = 0.73 ( y+ = 49 ) was used for the temporal 
resolution study and is shown in Fig. 9 in green.Fig. 8   Overlap percentage compared to IVD core angle colored by 

distance from the trailing edge midspan normalized by the midspan 
chord for � ≥ 0.67�

max
 . Black dots and numbers correspond to vorti-

ces labeled in Fig. 6
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3.2 � Numerical results

During the original simulation, data were saved at scaled 
time increments of �t+ = 0.09 . The FTLE calculation was 
done first using the full time resolution of the data, but addi-
tional calculations were done assuming, for example, that 
only every tenth velocity file was saved ( �t+ = 0.9 ), or that 
only fiftieth velocity file was saved ( �t+ = 4.5 ). The total 

integration time was the same for each case ( T+ = 27 ), as 
was the integration time step ( �t+

int
= 0.09 ). When the inte-

gration time step was smaller than the time between veloc-
ity fields, both linear and cubic interpolations in time were 
used to generate intermediate fields for the fixed time step 
Runge–Kutta 4 integration scheme that was used to calculate 
the particle trajectories. The results from both interpolation 
methods yielded similar results, and only those from linear 
interpolation are shown here for simplicity.

Velocity fields at one instant of time are shown in Fig. 10. 
Figure 10a shows the streamwise (u) velocity directly out-
put by the DNS. Figure 10b shows the velocity field recre-
ated by linear interpolation between output fields that are 
separated in time by �t+ = 0.9 , and Fig. 10c shows the field 
recreated by linear interpolations between output fields that 
are separated in time by �t+ = 4.5 . From these images, it 
can be observed that the recreated velocity field for a data 
spacing of �t+ = 0.9 is not drastically different from the 
exact field, but the recreated field for �t+ = 4.5 has changed 
significantly in the streamwise direction. One can see the 
same structures in two different positions next to each other 

Fig. 9   Direct numerical simulation of a fully turbulent channel. Gray 
isosurface of 8% maximum IVD. Green plane indicates plane of 
nFTLE calculation at y∕h = 0.73, y+ = 49

Fig. 10   Streamwise velocity (u) 
at one instant of time in the tur-
bulent channel, from the DNS 
output (a), and recreated using 
linear interpolation (b, c)
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in the streamwise direction, creating a blurred look. This 
comes from interpolating between two velocity fields that 
are spaced too far apart in time. From this, it would appear 
that �t+ = 0.9 may still be a suitable time between data sets, 
but that the FTLE calculation could start to break down for 
�t+ = 4.5.

The nFTLE fields calculated using velocity data sets at 
three different time resolutions are shown in Fig. 11. Both 
linear and cubic interpolation were used to create the inter-
mediate velocity fields, with no significant differences. As 
expected from the interpolated velocity fields, for �t+ = 0.9 , 
the general size and shape of nFTLE structures still matched 
the structures of the nFTLE field calculated using the high-
est possible time resolution. But when a �t+ of 4.5 was 

simulated, as in Fig. 11c, there was a drastic, qualitative 
change in the structure of the FTLE ridges that goes beyond 
simple spatial filtering. It is clear that the same coherent 
structure composition is not being captured, although there 
are regions of similar shape and organization.

Overall, the nFTLE ridges appear to be elongated in the 
streamwise direction with degrading temporal resolution in 
a similar manner to the velocity fields shown in Fig. 10, and 
this effect is gradual as �t+ increases. It may, however, be 
possible to predict this effect since the loss of accuracy in 
nFTLE is consistent with how the recreated velocity fields 
degraded for decreasing time resolution of the data. It should 
also be noted that the higher order interpolation method was 
not able to mitigate this degradation significantly.

Fig. 11   nFTLE at the same instant of time in the turbulent channel, calculated using full time resolution (a), linear interpolation (b, c) to recreate 
the intermediate fields, and using velocity field shifting to recreate the intermediate fields (d)
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In this way, poor temporal resolution can have significant 
effects on resulting FTLE fields. For an example like the 
turbulent channel flow, however, there are physical models 
available for recreating the intermediate velocity fields other 
than mathematical interpolation schemes. One example is 
Taylor’s frozen eddy hypothesis, which states that the advec-
tion contributed by turbulent structures is small compared 
with the advection of the mean flow (Taylor 1938). This 
means that the structure of a local region of the velocity 
field will deform relatively little over a short time span as it 
is advected with the mean flow.

Here, this concept was used to recreate intermediate 
velocity fields by shifting a velocity data set along the tur-
bulent channel mean profile (U(y)). The mean streamwise 
velocity profile was obtained by averaging all the available 
data at each wall-normal location. Consider an estimated 3D 
velocity field ( �′ ) at a time tA + �t , when tA is the last time at 
which velocity data was recorded. The velocity at each point 
in space is estimated as follows:

In order to maintain a smooth transition from one velocity 
field to the next, the intermediate velocity fields were deter-
mined by shifting the velocity in each plane according to 
the mean streamwise velocity at that wall-normal height (y). 
This was done both forward from the previous data velocity 
field and backward from the next data velocity field. The two 
shifted velocity fields were then weighted based on the rela-
tive distance in time to their respective data velocity fields 
and then averaged. This resulted in intermediate velocity 
fields that smoothly varied from one velocity field to the 
next, with the intermediate fields determined from a linear 
weighted average of shifted velocity fields. The turbulent 
channel nFTLE field that results when using this shifting 
method for the intermediate velocity is shown in Fig. 11. 
Here, the coarsest temporal resolution is being used ( �t+
=4.5), and, therefore, Fig. 11d should be compared with 
Fig. 11c. While there can still be localized errors between 
Fig. 11a and d, on the whole, the qualitative structure of the 
nFTLE field is restored using this well-established model for 
the velocity field evolution.

While the qualitative structure of nFTLE in the turbu-
lent channel is visibly improved using Taylor’s frozen eddy 
hypothesis instead of large interpolations in time, the quan-
titative improvement can only be seen with the application 
of a metric such as the FTLE ridge overlap percentage. The 
overlap percentage was applied with a threshold of 55% to 
the temporally resolved FTLE ridges, the FTLE ridges cal-
culated using degraded temporal resolution, and the FTLE 
ridges calculated from the shifted velocity fields. The result-
ing overlap percentage values are shown in Fig. 12. As the 
temporal resolution decreases ( �t+ increases), the overlap 
percentage decreases down to about 50% for �t+ = 4.5 . 

(10)�
�(x, y, z, tA + �t) = �(x − U(y)�t, y, z, tA). While the shifted velocity fields do not yield a perfect recon-

struction of the FTLE, they show a marked improvement of 
the FTLE ridges, shown by an increase in the FTLE ridge 
overlap percentage to 93% at the coarsest time resolution.

4 � Summary

In order to identify and investigate coherent structures in a 
range of vortex-dominated fluid flows, from both computa-
tional and experimental data, there are a host of tools and 
methods available. The main characterization is between 
Eulerian methods, which use the instantaneous velocity 
field and its gradient to calculate criteria fields which can be 
scalars or vectors, and Lagrangian methods, which use the 
quantities calculated along individual particle trajectories to 
calculate criteria values. The Eulerian criteria are less com-
putationally intensive and give a good indication of the gen-
eral vortex core location, but the interpretation of the exact 
location of vortex cores can be subjective, the techniques 
do not capture structure boundaries accurately, and they are 
susceptible to noise. The Lagrangian technique employed 
here, FTLE, which is similar to many other Lagrangian 
methods used in that it relies on accurate determination of 
the Cauchy–Green strain tensor from particle trajectory cal-
culations, can yield objective structure boundaries. Often, 
a comprehensive approach that utilizes both Eulerian and 
Lagrangian methods can yield the most information.

Despite the clear benefits of including a Lagrangian 
analysis, there are factors that must be considered before its 
application. Due to the requirements of accurate particle tra-
jectory integration, temporal resolution and dimensional sup-
port are critical. This can be particularly difficult to obtain in 
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tions using interpolated velocity fields (solid triangles) and shifted 
velocity fields (hollow circle)
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experiments that measure inherently 3D flows, as many veloc-
ity measurement techniques are planar. However, if the plane is 
selected so that the dominant vortices would be aligned normal 
to the plane, such that the vortex-induced velocities would be 
contained within the plane, the method may yield sufficient 
results. To demonstrate this, FTLE fields were calculated in 
three planes of an analytical test case, Hill’s spherical vortex, 
for two different cases: one in which the full volume of 3D 
data was used, and a simulated 2D experiment, in which out-
of-plane velocities were set to zero in multiple planes across 
the domain. There were significant differences between the 
two cases, with the 2D FTLE yielding a decrease in the FTLE 
ridge overlap percentage as the vortex core angle decreased. 
This result was followed by a similar comparison between 2D 
and 3D FTLE for an experimental test case utilizing velocity 
information in the wake of a trapezoidal pitching panel. The 
2D results showed a lack of detail and a change in structure 
composition when compared with the 3D FTLE.

Last, turbulent channel data were used to demonstrate the 
importance of data temporal resolution. Simulated experi-
ments of degrading temporal resolution were done by using 
every tenth velocity data set to calculate FTLE and then by 
using every fiftieth. The FTLE fields lost detail and structure 
as the time between data sets increased, even while the inte-
gration time step of the Lagrangian particle tracking calcula-
tion was held constant. Taylor’s hypothesis was used to shift 
the velocity field along the mean streamwise velocity profile 
for the times between each velocity data set. This proved to 
be effective at recovering the original FTLE field, even when 
using a data time resolution that was fifty times coarser than 
the original DNS data. While this particular example worked 
because Taylor’s Hypothesis was applicable, it did demonstrate 
that predictive models that are reliable for at least short times 
can be very effective at alleviating the negative effects of a 
poor time resolution.

Previous work has shown the great potential of Lagrangian 
techniques as a means to investigate applications from both 
numerical and experimental data. Caution must be taken when 
applying these techniques to data that may lack dimensional 
support or temporal resolution, but if those conditions are sat-
isfied, much can be learned analyzing a complete Eulerian and 
Lagrangian investigation of vortex-dominated flow.

Acknowledgements  The authors would like to thank Steven Brunton 
for his contributions and conversations that fed into the content of this 
paper. This work was supported by the Air Force Office of Scientific 
Research under AFOSR Award no. FA9550-14-1-0210.

References

Allshouse MR, Peacock T (2015) Refining finite-time Lyapunov expo-
nent ridges and the challenges of classifying them. Chaos Inter-
discip J Nonlinear Sci 25(8):087,410

Balasuriya S, Ouellette NT, Rypina II (2018) Generalized Lagran-
gian coherent structures. Phys D Nonlinear Phenom 372:31–51

Banisch R, Koltai P (2017) Understanding the geometry of transport: 
diffusion maps for Lagrangian trajectory data unravel coherent 
sets. Chaos Interdiscip J Nonlinear Sci 27(3):035,804

Beron-Vera F, Olascoaga M, Goni G (2008) Oceanic mesoscale 
eddies as revealed by Lagrangian coherent structures. Geophys 
Res Lett 35:L12603

Beron-Vera FJ (2010) Mixing by low- and high-resolution surface 
geostrophic currents. J Geophys Res Oceans 115(C10):C006006

Blazevski D, Haller G (2014) Hyperbolic and elliptic transport bar-
riers in three-dimensional unsteady flows. Phys D Nonlinear 
Phenom 273:46–62

Bose C, Sarkar S (2018) Investigating chaotic wake dynamics past 
a flapping airfoil and the role of vortex interactions behind the 
chaotic transition. Phys Fluids 30(4):047,101

Bourgeois J, Sattari P, Martinuzzi R (2012) Coherent vortical and 
straining structures in the finite wall-mounted square cylinder 
wake. Int J Heat Fluid Flow 35:130–140 [7th symposium on 
turbulence and shear flow phenomena (TSFP7)]

BozorgMagham AE, Ross SD (2015) Atmospheric Lagrangian 
coherent structures considering unresolved turbulence and 
forecast uncertainty. Commun Nonlinear Sci Numer Simul 
22(1):964–979

Chong MS, Perry AE, Cantwell BJ (1990) A general classification of 
three-dimensional flow fields. Phys Fluids A 2(5):765–777

du Toit P, Marsden J (2010) Horseshoes in hurricanes. J Fixed 
Point Theory Appl 7:351–384. https​://doi.org/10.1007/s1178​
4-010-0028-6

Froyland G, Padberg-Gehle K (2015) A rough-and-ready cluster-based 
approach for extracting finite-time coherent sets from sparse and 
incomplete trajectory data. Chaos 25(8):087406

Froyland G, Santitissadeekorn N, Monahan A (2010) Transport in time-
dependent dynamical systems: finite-time coherent sets. Chaos 
Interdiscip J Nonlinear Sci 20(4):043116

Green MA, Rowley CW, Haller G (2007) Detection of Lagrangian 
coherent structures in three-dimensional turbulence. J Fluid Mech 
572:111–120

Green MA, Rowley CW, Smits AJ (2011) The unsteady three-dimen-
sional wake produced by a trapezoidal pitching panel. J Fluid 
Mech 685:117–145

Haller G (2002) Lagrangian coherent structures from approximate 
velocity data. Phys Fluids 14(6):1851–1861

Haller G (2011) A variational theory of hyperbolic Lagrangian coher-
ent structures. Phys D Nonlinear Phenom 240(7):574–598

Haller G (2015) Lagrangian coherent structures. Annu Rev Fluid Mech 
47:137–162

Haller G, Hadjighasem A, Farazmand M, Huhn F (2016) Defining 
coherent vortices objectively from the vorticity. J Fluid Mech 
795:136–173

Hernández-Carrasco I, López C, Hernández-García E, Turiel A (2011) 
How reliable are finite-size Lyapunov exponents for the assess-
ment of ocean dynamics? Ocean Model 36(3–4):208–218

Hill MJM (1894) On a spherical vortex. Philos Trans R Soc Lond (A) 
185:213–245

Hunt JCR, Wray AA, Moin P (1988) Eddies, stream, and convergence 
zones in turbulent flows. Center for Turbulence Research Report 
CTR-S88

Jeong J, Hussein F (1995) On the identification of a vortex. J Fluid 
Mech 285:69–94

Karrasch D, Haller G (2013) Do finite-size Lyapunov exponents 
detect coherent structures? Chaos Interdiscip J Nonlinear Sci 
23(4):043,126

Keating SR, Smith KS, Kramer PR (2011) Diagnosing lateral mixing in 
the upper ocean with virtual tracers: Spatial and temporal resolu-
tion dependence. J Phys Oceanogr 41(8):1512–1534

https://doi.org/10.1007/s11784-010-0028-6
https://doi.org/10.1007/s11784-010-0028-6


	 Experiments in Fluids (2019) 60:74

1 3

74  Page 16 of 16

Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed 
channel flow at low Reynolds number. J Fluid Mech 177:133–166

King JT, Kumar R, Green MA (2018) Experimental observations of 
the three-dimensional wake structures and dynamics generated by 
a rigid, bioinspired pitching panel. Phys Rev Fluids 3(3):034,701

Kourentis L, Konstantinidis E (2011) Uncovering large-scale coherent 
structures in natural and forced turbulent wakes by combining 
PIV, POD, and FTLE. Exp Fluids 52(3):749–763

Kumar R, King JT, Green MA (2016) Momentum distribution in 
the wake of a trapezoidal pitching panel. Mar Technol Soc J 
50(5):9–23

Kumar R, King JT, Green MA (2018) Three-dimensional pitching 
panel wake: Lagrangian analysis and momentum distribution from 
experiments. AIAA J. https​://doi.org/10.2514/1.J0566​21

Leung S (2011) An Eulerian approach for computing the finite time 
Lyapunov exponent. J Comput Phys 230(9):3500–3524

Leung S (2013) The backward phase flow method for the Eulerian 
finite time Lyapunov exponent computations. Chaos Interdiscip J 
Nonlinear Sci 23(4):043,132

Miron P, Vétel J (2015) Towards the detection of moving separation in 
unsteady flows. J Fluid Mech 779:819–841

Mulleners K, Raffel M (2011) The onset of dynamic stall revisited. Exp 
Fluids 52(3):779–793

O’Farrell C, Dabiri JO (2014) Pinch-off of non-axisymmetric vortex 
rings. J Fluid Mech 740:61–96

Olcay AB, Pottebaum TS, Krueger PS (2010) Sensitivity of Lagran-
gian coherent structure identification to flow field resolution and 
random errors. Chaos Interdiscip J Nonlinear Sci 20(1):017506

Poje AC, Haza AC, Özgökmen TM, Magaldi MG, Garraffo ZD (2010) 
Resolution dependent relative dispersion statistics in a hierarchy 
of ocean models. Ocean Model 31(1–2):36–50

Rempel EL, Chian ACL, Brandenburg A, Muñoz PR, Shadden SC 
(2013) Coherent structures and the saturation of a nonlinear 
dynamo. J Fluid Mech 729:309–329

Rockwood MP, Taira K, Green MA (2016) Detecting vortex forma-
tion and shedding in cylinder wakes using Lagrangian coherent 
structures. AIAA J 55:15–23

Shadden S, Lekien F, Marsden J (2005) Definition and properties of 
Lagrangian coherent structures from finite-time Lyapunov expo-
nents in two-dimensinal aperiodic flows. Phys D 212:271–304

Sulman MHM, Huntley HS, Lipphardt BL Jr, Kirwan AD Jr (2013) 
Leaving flatland: diagnostics for Lagrangian coherent structures 
in three-dimensional flows. Phys D Nonlinear Phenom 258:77–92

Tang W, Walker P (2012) Finite-time statistics of scalar diffusion in 
Lagrangian coherent structures. Phys Rev E 86(4):045,201

Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond Ser A 
Math Phys Sci 164(919):476–490

You G, Leung S (2018) An improved Eulerian approach for the finite 
time Lyapunov exponent. J Sci Comput 76(3):1407–1435

Zhou J, Adrian RJ, Balachandar S, Kendall TM (1999) Mechanisms for 
generating coherent packets of hairpin vortices in channel flow. J 
Fluid Mech 387:353–396

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.2514/1.J056621

	Practical concerns of implementing a finite-time Lyapunov exponent analysis with under-resolved data
	Abstract
	Graphical abstract
	1 Introduction and motivation
	1.1 Implementing coherent structure analyses

	2 Data dimension
	2.1 Hill’s spherical vortex
	2.1.1 Analytical test case
	2.1.2 Inside vortex
	2.1.3 Outside vortex
	2.1.4 Analytical results

	2.2 Experimental wake behind a trapezoidal pitching panel
	2.2.1 Experimental test case
	2.2.2 Experimental results


	3 Time resolution
	3.1 Numerical test case
	3.2 Numerical results

	4 Summary
	Acknowledgements 
	References


