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vectors, see, e.g. Elsinga et al. (2006) and Schanz et al. 
(2016). The rapid growth of the associated data volume cre-
ates new challenges both on the hardware side (data transfer 
and storage requirements) and for the postprocessing (pat-
tern recognition, volumetric rendering, etc.).

Consequently, there is a parallel, growing interest to 
reduce the data volume without sacrificing the detail of the 
achievable results. On the processing side, algorithms such 
as proper orthogonal decomposition (POD) are employed 
to enable automatic data reduction towards significant 
“modes”. Similarly, tracking techniques such as PTV are 
experiencing renewed interest due to the inherent selectiv-
ity of the tracking process and the achievable spatial (single 
particle) resolution.

At the level of the image sensing and acquisition, such 
an evolution towards efficient data generation is still out-
standing. The availability of high quality CMOS sensors has 
enabled the cost-efficient use of high resolution, high speed 
cameras, but it also has driven up the bandwidth and storage 
requirements.

We demonstrate an alternative approach to flow sensing 
based on 4D particle tracking using a novel type of cam-
era, the dynamic vision sensor (DVS). The main difference 
to established techniques is the working principle of these 
cameras, which sense and transmit only changes in bright-
ness, thus leading to a significant data reduction already at 
the sensing level. The DVS was developed at the Institute of 
Neuroinformatics, University of Zurich in Switzerland. An 
in-depth description of the sensing technology is given in 
Lichtsteiner et al. (2008) and Posch et al. (2014).

Abstract A fast-flow visualization method is presented 
based on tracking neutrally buoyant soap bubbles with a set 
of neuromorphic cameras. The “dynamic vision sensors” 
register only the changes in brightness with very low latency, 
capturing fast processes at a low data rate. The data consist 
of a stream of asynchronous events, each encoding the cor-
responding pixel position, the time instant of the event and 
the sign of the change in logarithmic intensity. The work 
uses three such synchronized cameras to perform 3D particle 
tracking in a medium sized wind tunnel. The data analy-
sis relies on Kalman filters to associate the asynchronous 
events with individual tracers and to reconstruct the three-
dimensional path and velocity based on calibrated sensor 
information.

1 Introduction

Flow visualization remains a valuable tool in aerodynamic 
testing and optimization. Recent technological developments 
have facilitated the quantitative analysis of the acquired 
image data, using for example particle image velocimetry 
(PIV) or particle tracking velocimetry (PTV).

Both PIV and PTV have evolved from planar into volu-
metric and time-resolved methods, providing four-dimen-
sional data sets (3D space + time) of instantaneous velocity 
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2  Dynamic vision sensor

The DVS128 is a 128 × 128 array of independent, asyn-
chronous pixels (pixel size 40 μm × 40 μm, fill factor 
8.1%) and operates as a temporal contrast sensor. It reacts 
to the change of light intensity in the observed scene. Each 
pixel chooses its own exposure time and responds by itself, 
in contrast to the standard working principle of digital 
camera chips where exposure and readout are globally 
controlled. The pixels communicate using “address event 
representation” (AER) circuits, in which each pixel has 
two addresses, one for ON-spikes and one for OFF-spikes. 
An event indicates a positive (ON) or negative (OFF) 
change in the logarithmic intensity or temporal contrast,

where I(t) is the photo-current produced by the photodiode 
that is proportional to the pixel illumination. An event is 
generated if the integral of the temporal contrast exceeds a 
given threshold since the last event from that pixel.

Due to the logarithmic sensitivity, the sensor reacts 
similarly to local scene reflectance changes independent 
of the global illumination. This results in a sensor dynamic 
range of 120 dB. The pixels have a latency as low as 15 μs 
in good lighting conditions. Compared to standard cam-
eras the data volume produced is significantly reduced and 
can be processed by standard hardware in real-time despite 
the high event rate. The DVS output is transferred to a 
PC as an asynchronous stream of events, each consisting 
of the pixel address, the time at which the event was reg-
istered and the polarity (ON/OFF). The DVS has a time 
stamp clock rate of 1 MHz, resulting in a maximum tem-
poral resolution of 1 μs. In this study, three DVS cameras 
were used for volumetric imaging, synchronized such that 
the sensors’ time stamps refer to the same master clock.

An early example of particle tracking with a single DVS 
is given in Drazen et al. (2011) who focused on 2D track-
ing with ground truth provided by conventional PTV imag-
ing. The particles in that application were fully resolved 
with a diameter of about 10 pixels whereas in the current 
setup, the HFSB are under-resolved such that they appear 
as streaks with a width of 1 pixel. This necessitates the 
development of a new tracking algorithm which can handle 
particle identification, tracking and the 3D reconstruction 
in a “featureless” environment.

3  Experimental setup

All experiments were conducted in the wind tunnel of the 
Institute of Fluid Dynamics at ETH Zurich, a low speed 

Ctemporal =
1

I(t)

dI(t)

dt
=

d

dt
ln [I(t)],

facility with a test section area of 2.1 × 3 m2 and a length 
of 4 m, capable of a maximum speed of 60 m/s.

The comparatively large test volume necessitates flow 
tracers large enough to be discernible by the limited resolu-
tion imaging system. Here, millimeter-sized helium-filled 
soap bubbles (HFSB) are employed since they offer low 
inertia, neutral buoyancy and good visibility. The strong 
specular reflection on the HFSB surface ideally creates a 
pixel-sized, localized response in the DVS.

A special HFSB generator was built with the capability 
to produce individual bubbles on-demand at low rates of up 
to 10 bubbles/s. For routine applications, this rate can be 
increased, but the low and consistent bubble seeding density 
provided a reproducible and steady environment in the test 
phase. The soap and helium flows in the bubble generator 
are actively controlled, generating fixed sized bubbles with 
a lifetime of tens of seconds.

The illumination is provided by 6 white light LED lamp 
pairs (2 × 50 W each), labelled A–F in Fig. 1. The number 
and position of the light sources affects the visibility of the 
bubbles in front of the black wind tunnel walls. Volumetric 
illumination is achieved by distributing the light sources 
around the test section. Direct illumination of the back-
ground against which the particles are viewed should be 
avoided to suppress false events.

4  Calibration and measurement procedure

For a 3D recording and reconstruction of the bubble paths, a 
configuration with three synchronized DVS and wide-angle 
lenses (Schneider Kreuznach Cinegon f/1.4, 8 mm focal 
length) was used. The intrinsic parameters (focal length, 
principal points and lens distortion) and the extrinsic calibra-
tion values (position and orientation) for each DVS camera 
were determined following the approach introduced in Tsai 
(1986). A panel with 13 small, flashing LEDs arranged in a 

Fig. 1  Test environment (A–F LED lighting)
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predefined pattern was used as calibration target to provide 
dynamic visibility for the DVS. The calibration software 
extracts the LED positions for each camera and calculates 
the optimal parameter set by minimizing the reprojection 
errors. Table 1 shows the achievable calibration accuracy 
for a typical configuration.

The performance is sub-pixel accurate considering the 
reprojection error. The accuracy in the target space is limited 
due to the moderate pixel count of the sensors, but is suf-
ficient to localize the millimeter-sized HFSBs.

The actual measurements record the data streams from 
the three cameras, while the bubble-seeded flow is observed. 
The bubble generator is manually traversed upstream of the 
test article to cover the measurement volume. At present the 
recorded DVS event data are processed offline following the 
measurement runs, but the algorithmic complexity is low 
enough to enable real-time processing at a later develop-
ment stage.

5  Data processing

The data received from the cameras are available as a series 
of time-tagged spatial events. The processing of this sequen-
tial data stream must consider the fact that no synchronicity 
or direct correlation of the events between the cameras can 
be assumed.

5.1  Pre‑filter step

The raw data are relatively noisy due to shot noise and 
other types of noise generated in the sensors as described 
in Lichtsteiner et al. (2008). A first filtering step is imple-
mented for each DVS separately. Valid events must consist of 
an ON/OFF pair (“pair filter”) and should not occur isolated 
in space–time (“neighbor filter”). A regular HFSB signature 
exhibits multiple events per pixel, often extending over a 
few milliseconds after the bubble’s passage. This behaviour 
impairs a correct determination of the bubble’s position in time 
and space, and all event pairs of the same pixel following an 
initial event during a defined time interval are rejected (“burst 
filter”). Figure 2 shows the effect of the different filters for 
linear HFSB motion observed by a DVS, depicted for better 
visibility in one spatial and the temporal direction only.

Table 1  Calibration performance for DVS cameras

Camera 1 Camera 2 Camera 3

# Of target views 124 171 250
Mean reconstruction error (mm) 1.28 1.02 0.94
Mean reprojection error (pixel) 0.21 0.17 0.17

Fig. 2  Pre-filter performance (red: ON events, blue: OFF events); top row, left: raw data, right: all filters applied; bottom row, left-to-right: indi-
vidual filters applied
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5.2  Kalman track filters

The bubble events that pass the pre-filter stage (providing 
HFSB positions in space and time) are fed into a series of 
Kalman filters (see, e.g. Reid 1979) to further improve the 
data consistency and to construct continuous bubble tracks.

A 3D extended Kalman filter computes the evolution of 
the bubble tracks in the 3D measurement space. For this, 
each track is described by a 6 component “state vector” 
x = [X, Y, Z, U, V, W]T which contains the current 3D bubble 
position [X, Y, Z]T—the “head” of the track—and its velocity 
[U, V, W]T at that instant. The evolution of the state vector is 
described by a linear model, the “process” equations,

where a term v(tk) is included to account for “process noise” 
with an assumed known covariance matrix R. While the 
state vector includes the track velocities, only the posi-
tions are measured and provide external updates. The 
3D bubble coordinates are linked to the 3 camera images 
(m = 1, 2, 3) with their corresponding 2D spatial event 
(pixel) positions [xp(m), yp(m)]T through the observation equa-
tions z(m) = [xp(m), yp(m)]T = h(m) (x). The relations h(m) (x) are 
nonlinear due to the projective transform and the camera 
distortion models involved. This leads to the “measurement” 
equations for each camera,

where again a “measurement noise” contribution w(tk) with 
assumed known covariance Q is included. The process and 
measurement noise terms must be modelled. Validation tests 
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determined that the measurement noise can be expressed 
as a stationary, zero-mean, normal distributed process with 
a variance of 1  pixel2. The process noise estimate cannot 
be predicted in a universal fashion and must be adjusted 
dependent on the experiment situation. The Kalman filter 
solution of the process and measurement equations for an 
optimal estimate of the state vector leads to a set of linear 
equations which are solved for each new event/data sample 
(Eq. (3)). It estimates not only the state vector (here: the 
3D positions and velocities along a track) but also the noise 
covariance of that estimate. The time step in the update can 
remain variable, allowing for a strictly incremental process-
ing of the time-stamped data stream.

The tracking scheme using the 3D Kalman filter is 
depicted in Fig. 3. The pre-filtered DVS events from all 
cameras are sorted into a single, time-monotonic sequence. 
Instead of looking for direct coincidence between different 
events from different cameras, each event is processed sepa-
rately. A first test checks whether a new event can be associ-
ated with one or more of the 3D tracks projected back onto 
the corresponding sensor planes (blue). “Association” means 
here that a new event location lies within a finite-sized ellip-
soid around the 2D track head (Bar-Shalom and Fortmann 
1988; Reid 1979). Each successful association leads to an 
update component for the measurement vector and an update 
of the 3D track (red).
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Fig. 3  Event tracking in 3D 
using an extended Kalman filter 
and 3 camera inputs
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This approach has the advantage that partial information 
(i.e. events that cannot be associated with all projected tracks 
simultaneously) can contribute to the 3D filter individually 
by updating the respective projected displacement compo-
nent only.

If no association can be found in any of the projected 2D 
tracks, a new 3D track segment may be initiated. No direct 
estimation of the new track’s 3D root point can be derived 
from a single event, and reference is made to a separate col-
lection of 2D tracks that are being built up for each camera. 
These tracks are concurrently computed using 2D Kalman 
filters and can directly associate an event to its measured 
position. The filters are implemented in a fashion similar 
to the 3D filter, but are based on 2D state and measurement 
vectors. If an event is found to match at least two tracks in 
different cameras based on the epipolar constraint (Hartley 
and Zisserman 2003), the 3D position in target space can be 
triangulated to initiate a new, validated 3D track. To assure 
temporal coincidence of the candidate 2D tracks under con-
sideration, the positions are interpolated to the same time 
instant using the continuous trajectory descriptions available 
from the 2D Kalman filters.

6  Results

The first example presents the flow around the rear face of an 
Ahmed body (length 1044 mm, height 288 mm), a generic 
shape often studied as a reference configuration in automo-
tive aerodynamics tests.

Figure 4 presents the raw data in the form of selected 
individual tracks of HFSBs. In total, 1080 tracks were 
evaluated. The local velocity magnitude is color coded to 
enhance the visibility of the wake flow. The bubble tracks 
extend over a length of up to 1 m, confirming the large-scale 

tracking capability of the DVS system. Using a suitable post-
processing step (here: “natural neighbor” interpolation in 
 MATLAB®) the Lagrangian track data can be converted into 
gridded information, as exemplified in Fig. 5.

The second example is chosen to further demonstrate the 
potential of Lagrangian sampling of large flow volumes. 
Here, the complex 3D flow field developing behind an air jet 
(diameter 120 mm) emerging from an orifice into an external 
cross-flow is studied. A subset of the recorded 3D bubble 
tracks is shown in Fig. 6, selected to visualize the interaction 
region between the cross-flow and the jet.

The full set of 8648 HFSB tracks (after filtering) can 
be used in the interpolation onto a 3D grid. This allows 
the reconstruction of streamlines and the velocity field in 
arbitrary planes, as shown in Fig. 7.

Fig. 4  Flow pattern in the wake of an Ahmed body; selection of 
HFSB tracks, color coded with local velocity magnitude

Fig. 5  Flow field in a cut-plane 10  mm behind the rear face of an 
Ahmed body (color encodes velocity magnitude)

Fig. 6  Selected bubble tracks around a jet in crossflow
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In both examples, a stationary flow field has to be 
assumed in the processing because the complete set of 
bubble tracks is recorded sequentially by manually guid-
ing the HFSB generator through the upstream flow. This 
drawback is partially offset by the possibility of injecting 
bubbles only into “interesting” parts of the flow, reducing 
the measurement time, data volume and required overall 
HFSB seeding density.

7  Discussion

The experiments demonstrate the capabilities of DVS cam-
eras for particle tracking in a comparatively large 3D meas-
urement volume. Limitations at present are the low resolu-
tion of the DVS and a reduced responsivity at higher speeds. 
This can be explained by considering the refractory period 

that is built into the DVS pixels to limit their firing rate 
and the low pass behavior with a bandwidth on the order 
of 1 kHz (see Lichtsteiner et al. 2008). Once the passage 
time of a HFSB across a pixel falls below a time constant 
τ0 ≈ 1 ms the sensor will compute a reduced contrast and 
start missing events. Note that this time constant limit refers 
only to the responsivity of an individual pixel. The rapid 
passage of a bubble across multiple pixels can be tracked 
easily because neighboring pixels can produce distinguish-
able events at the sensor’s clock resolution of 1 microsecond. 
The pixel-level detectability problems may be alleviated 
using the latest DVS camera (DAVIS346). Preliminary tests 
which an intermediate DVS type (DAVIS240C, 240 × 180 
pixel, fill factor 22%) have confirmed an improved bubble 
detectability.

The sequential filtering approach provides a robust basis 
to process the data. As shown in the headers of Fig. 2 the 
event-related filters lead to a reduction by a factor of ~ 40 
in the number of events to be processed. The resulting num-
ber of new tracks being established with the Kalman filters 
can be compared against the known rate of bubble genera-
tion (10 Hz). Ideally, each released bubble should gener-
ate a new track. In practice, “false” tracks will increase the 
number, “missed” tracks decrease it. Furthermore, “broken” 
tracks may lead to an artificial increase in the number of new 
tracks. Figure 8 shows this performance measure for the case 
of the flow across the Ahmed body. In the same figure the 
number of events per track is shown, a value that should be 
comparable with the number pixels in a linear track on the 
sensor surface (~ 128). While the measured track generation 
rate proves nearly independent of flow velocity, the event-
per-track count shows a decrease with velocity due to an 
increasing number of missed events (see above).

In achieving these performance figures a proper choice 
of the parameters for the filter statistics, especially the noise 
models, remains important.Fig. 7  Reconstructed streamlines and velocity magnitude in the 

center plane of a jet in crossflow

Fig. 8  Tracking statistics: new tracks/second (left), events/track (right)
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The tracking system is not designed to provide dense 
velocity fields from a limited number of observed image 
frames as would be the case for PIV and PTV recordings. 
Rather, the aim is to create a cumulative, real-time visuali-
zation and analysis of bubble tracks in a steady flow, estab-
lishing a streamline field with overlaid velocity informa-
tion. An upper limit for the number of simultaneous tracks 
being detected and processed will depend on several factors 
such as flow velocity, image magnification, or the scene 
dependent event noise floor. While these factors are diffi-
cult to quantify in a universal fashion, a rough estimate for 
the tolerable/achievable seeding density can be based on the 
pixel dead-time described above. Assuming a flow veloc-
ity of 10 m/s and a camera magnification of, say, 0.01, the 
passage time of a bubble is (pixel size/magnification/veloc-
ity) = 40 μm/0.01/10 m/s = 400 μs. The pixel dead-time of 
1 ms discussed above then corresponds to a travel distance 
of 2.5 pixels and thus implies a minimum bubble spacing of 
the same order.

8  Conclusion

The measurement system represents an inexpensive and 
fast  flow visualization method suitable for large test-
ing environments. In comparison with other whole field 
imaging techniques (e.g. tomographic PIV and PTV) the 
DVS approach significantly reduces the data volume to be 

processed and appears amenable to real time processing. 
This may prove relevant in commercial aerodynamics test-
ing where the speed and selectivity of the data acquisition 
process often represents a decisive performance factor.
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