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unidentifiable without the use of ensemble averaging. The 
proposed method shows promise for improving PTV meas-
urements that require robust spatial gradients while retaining 
the unstructured Lagrangian perspective.

1  Introduction

The development of aerodynamic or hydrodynamic systems 
requires a detailed understanding of the relationship between 
structural features on immersed bodies, such as profile shape 
or flexibility, and the resulting vortical flow field. Often 
these design features are used to manipulate highly-sepa-
rated three-dimensional vortical flows, such as the unsteady 
vortex rings investigated by Shadden et al. (2006), similar 
to those found in jellyfish propulsion. In particular, it was 
found that Lagrangian analysis was much more effective at 
capturing the flow topology, especially at greater degrees 
of unsteadiness. Fully characterizing such flows not only 
requires determining velocity gradients familiar to Eulerian 
analysis, but also the transport of vorticity-containing mass 
over time, as shown in Fig. 1. Particle-tracking velocimetry 
(PTV) techniques, especially modern high-density methods 
such as Shake-the-Box (STB, a.k.a. 4D-PTV) described by 
Schanz et al. (2016), are ideally suited to capturing both the 
required velocity field, as well as the desired Lagrangian 
flow history. Several techniques exist to determine the veloc-
ity gradient, vorticity or pressure at a very high resolution 
from dense velocimetry data. These methods include Flow-
Fit (see Gesemann et al. 2016) or VIC+ (see Schneiders 
and Scarano 2016). In both VIC+ and FlowFit, physical 
constraints on the system are used to improve the accuracy 
of velocity interpolation, such as through penalizing non-
zero divergence in FlowFit. VIC+ in particular makes use 
of the vorticity transport equation as a physical constraint, 
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and utilizes the high-quality substantial derivative available 
from PTV. This follows previous developments for particle 
image velocimetry (PIV) where physical constraints were 
able to leverage high spatial resolution to improve temporal 
resolution. This work is exemplified by Scarano and Moore 
(2012), where the spatial resolution of tomographic-PIV was 
used to estimate advection between velocity snapshots to 
super-sample data beyond the traditional Nyquist criterion. 
Alternatively, Jeon et al. (2014) demonstrated the use of high 
temporal resolution in time-resolved PIV to improve spatial 
resolution.

The aerodynamic and hydrodynamic forces of highly-
separated vortical flows are often analyzed with respect to 
the topology of the flow, for instance with Lagrangian coher-
ent structures as demonstrated in Rockwood et al. (2016). 
PTV inherently provides this Lagrangian perspective on the 
development of the flow, as was illustrated above in Fig. 1. 
For instance, fluid that passes over a vorticity source like 
the leading-edge shear layer in Fig. 1 can be tracked forward 
along a pathline to study the evolution of that mass, in this 
case into a vortex. Meanwhile, the mass in this vortex can be 
tracked backwards in time to identify the source of this vor-
ticity. Additionally, the high-quality substantial derivative 
determined from PTV dramatically improves the quality of 
pressure fields derived from the velocity field, as described 
by Neeteson and Rival (2015) and Neeteson et al. (2016). 
Wolf et al. (2013) also noted that conducting a Lagrangian-
frame analysis alongside familiar Eulerian techniques 
yielded unique insight into vortex entrainment. However, 
most available high-resolution techniques for determining 
spatial gradients do so on the familiar Eulerian grid, while 
averaging techniques for Lagrangian data smooth away 
small-scale flow structures. Therefore, with the motivation 
of maintaining the intrinsic transport information of a path-
line, the current study proposes a high-resolution method 

for determining derived properties natively on unstructured 
Lagrangian data, without resorting to averaging multiple 
runs.

In order to evaluate the robustness of the proposed meth-
odology, it is applied to two test cases: First, a synthetic data 
set, for which true values of the velocity gradient tensor are 
known a priori, is used to verify that the method reduces 
gradient estimation error in the process of reducing noise. 
Second, an experimental 4D-PTV data set is used to evalu-
ate the increase in fidelity and reduction in noise when the 
method is applied to real experimental data. The details of 
the vorticity-correction technique are presented next.

2 � Background

By directly tracking individual particles, PTV does not 
experience the loss of fidelity that occurs when taking the 
average displacement across an interrogation window, as 
described by Kaehler et al. (2012). Furthermore, by collect-
ing data along a pathline, high-quality temporal informa-
tion is obtained, especially in the form of substantial deriva-
tives. However, if one wishes to maintain the unstructured 
Lagrangian description of the flow, there are limited meth-
ods for computing spatial gradients. Among them there are 
regression-based methods that, for example, minimize the 
residual of an overdetermined set of directional derivatives, 
as discussed by Meyer et al. (2001). Alternatively, there are 
weighted-averaging techniques that calculate the gradient as 
a weighted-sum of local derivatives, as discussed by Correa 
et al. (2011).

In either of the above methods, individual outliers or poor 
spatial resolution can have a substantial effect on the value 
of gradients computed at any given point. The effect of indi-
vidual outliers is mitigated from the Lagrangian nature of 
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Fig. 1   a A vortex-pair forming on a flat plate is illustrated in the 
familiar Eulerian frame. b The same vortex-pair can be studied in a 
Lagrangian frame: at t = t1 two control masses gain vorticity through 
the leading and trailing-edge shear layers, respectively, and are 
tracked forward in time into the vortex core at t = t2. In this way the 

Lagrangian data can be used to determine the origin of vorticity-con-
taining mass (by tracking structures backwards in time), or to study 
the evolution of mass gaining vorticity through time (by tracking 
mass through a shear layer)
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PTV measurements. Mitigating these effects of poor gradient 
estimations more generally can be accomplished by limiting 
how quickly such gradients can change (Lipschitz continu-
ity), or by forcing the gradient to exist only within a certain 
bound (see Bunin et al. 2013). However, applying these con-
straints aggressively can reduce the fidelity of the computed 
gradient, especially if there is little a priori information about 
appropriate gradient magnitudes. Therefore, inspired by the 
use of physical constraints in the higher-order interpolation of 
Eulerian velocimetry data, we propose a method for filtering 
an initial gradient estimate on unstructured data by enforcing 
physical equations of motion. We propose the use of the vor-
ticity-transport equation as a physical constraint, as it utilizes 
the high-quality temporal information along a pathline (the 
substantial derivative of vorticity). The transport equation is 
also a function of every component of the velocity gradient 
tensor, allowing the optimization of every component of the 
tensor simultaneously. The vorticity-transport equation takes 
the following form:

where the terms from left to right are the substantial deriva-
tive of vorticity �, vortex stretching/tilting, and the viscous 
diffusion of vorticity, respectively. In this study we will be 
neglecting viscous diffusion, under the assumption that the 
timescales of viscous diffusion are much greater than that 
of the measurement given a moderate Reynolds number. In 
order to cast Eq. (1) onto a set of unstructured Lagrangian 
data, we will introduce nomenclature described in Fig. 2. 
Here, N pathlines are enumerated by the counter p, while 
each pathline is tabulated in the vector �, such that the num-
ber of frames in which a particle is observed is denoted �(p). 
At each timestep along a pathline, the position �, velocity � 

(1)
D�

Dt
= (� ⋅ ∇)� + �∇2

� ,

and acceleration � of each particle are known for i timesteps. 
We will denote the components of these vectors with j.

The vorticity-transport equation must have no residual at 
any point or time, and therefore we can estimate the quality 
of our gradient estimations by looking at the residual of the 
equation at any point:

Rather than attempting to minimize this residual at each 
point individually, the maximum amount of temporal infor-
mation can be transferred to the spatial gradient by minimiz-
ing this residual across an entire pathline simultaneously:

As an added practical benefit, this formulation operates 
pathline by pathline, resulting in a straightforward imple-
mentation. Recently, Schneiders et al. (2016) demonstrated 
a novel velocity interpolation technique that utilized full-
particle trajectories in order to improve the fidelity of veloc-
ity field reconstructions at a single snapshot. In particular, 
increased information gleaned from long paths showed a 
clear improvement in velocity reconstruction fidelity. The 
current study also benefits from the use of long track infor-
mation, as the optimization at any given point relies in part 
on the optimization both upstream and downstream of that 
point along a given pathline. In this way, a point with a poor 
initial velocity gradient estimate can benefit from better ini-
tial estimates at neighbouring points along the pathline. At 
this point we wish to find the velocity gradient ∇�(p, i) along 
the entire pathline the minimizes O, given our initial guess. 
There are many ways to perform this optimization, but as 
a proof of concept we will use a simple gradient descent 
method. ∇O is determined with respect to all elements of 
�(p, i). O is then minimized by iteratively adjusting each 
individual element of ∇�(p) along the direction ∇O by a 
step �:

The individual components of velocity determined from par-
ticle tracking are unchanged. The above optimization scheme 
requires an initial estimate of the velocity gradient tensor to 
operate on. There are many methods to produce such an 
initial estimate. Here, we follow the method of Meyer et al. 
(2001), by minimizing the residual of an overdetermined set 
of directional derivatives.

The procedural order to implement this gradient opti-
mization method varies slightly from the conceptual order 
described above. Given particle tracking data, implementing 
the above-described method would take the following order:

(2)R(p, i) =

3∑

j=1

(
D�j(p, i)

Dt
− (�(p, i) ⋅ ∇)uj(p, i)

)2

.

(3)

O =

�(p)∑

i=1

R(p, i) =

�(p)∑

i=1

[
3∑

j=1

(
D�j(p, i)

Dt
− (�(p, i) ⋅ ∇)uj(p, i)

)2
]
.

(4)∇�(p)k+1 = ∇�(p)k − �∇O .

Fig. 2   A schematic of one of N pathlines acquired within a PTV 
data set. The number of timesteps within each pathline are contained 
within the 1 × N vector array �, while the pathlines themselves are 
enumerated by counter p. As such, the number of timesteps in which 
the current pathline is observed is given by �(p). The timesteps along 
pathline p are enumerated by the counter i, and at each timestep the 
three-dimensional position �(p, i), velocity �(p, i) and acceleration 
�(p, i) have been measured. With this data set, the velocity-gradient 
tensor ∇�(p, i) is to be calculated
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1.	 An initial estimate of the velocity gradient tensor is pro-
duced, across the entire set of particles at each timestep, 
using an established method, such as from an overde-
termined set of directional derivatives (see: Meyer et al. 
2001), weighted-averaging technique (see: Correa et al. 
2011), or interpolation.

2.	 The data set is separated into pathlines, such that each 
pathline has 9 × �(p) velocity gradient components to 
be adjusted.

3.	 These 9 × �(p) velocity gradient components are evalu-
ated based on the objective function in Eq. (3).

4.	 The gradient of this objective function is determined 
by making small adjustments to the 9 × �(p) velocity 
gradient components.

5.	 New values of the velocity gradient components are 
determined using a steepest descent optimization fol-
lowing Eq. (4) until a local optimum of the objective 
function is found.

It is worth noting that, given an initial estimate is available, 
this optimization can be performed on any track individually 
without any reference to other particle tracks.

In the following section, the above methodology will be 
evaluated on a synthetic set of pathlines in order to have 
access to “true” reference values, and evaluate error reduc-
tion. Following this evaluation, the methodology will be 
implemented on experimental data to both evaluate noise 
reduction on real data, and to demonstrate Lagrangian 
analysis.

3 � Numerical test case: dissipating Taylor–Green 
vortex

Since a physical measurement would not provide any insight 
into error reduction for the proposed methodology, the ini-
tial evaluation presented here utilizes a synthetic data set. A 
dissipating Taylor–Green vortex field in three dimensions 
is used for our test case (see Taylor and Green 1937). The 
data set for the Eulerian field was generated using a pseudo-
spectral code whose formulation and validation is briefly 
described below. Simulated particles that perfectly follow 
the flow were advected through this domain, and Gauss-
ian synthetic noise was added to the particle positions to 
simulate measurement error. Using the mean frame-to-frame 
displacement as a reference value, random displacements 
of between 0 and 3% were applied to each particle. This 
is comparable to the reconstruction quality of experimen-
tal techniques such as SMART (0.2 px error over 6 px 
frame-to-frame displacement; see Schanz et  al. (2016). 
Particle positions were subsequently regularized using a 
five-snapshot, second-order polynomial fit. The error was 
subsequently evaluated both before and after applying the 

proposed methodology. The results for this synthetic test 
case described below, following a brief description of the 
computational method.

3.1 � Computational methodology

For the dissipating Taylor–Green vortex, the following 
incompressible form of continuity and momentum equa-
tions are solved:

where u1, u2, u3 are the velocity components in the x1, x2, x3 
directions, respectively. Note that the equations have become 
non-dimensionalized by a characteristic length-scale Lc and 
velocity-scale Uc. Thus, the Reynolds number that appears 
in the viscous term is defined as Rec = UcLc∕�, where � is 
the kinematic viscosity of the fluid.

Equations (5) and (6) are solved in spectral (Fourier) 
space using a pseudo-spectral method (see Orszag 1969, 
1972). To remove the aliasing error, the 3/2 rule proposed 
by Orszag (1971) was adopted. Periodic boundary condi-
tions are applied in all three directions with a domain size 
of 2� × 2� × 2�. The governing equations are integrated 
in time using fractional step method (see Kim and Moin 
1985) with a second-order, three-step Runge-Kutta time-
advancement scheme.

The three-dimensional dissipating Taylor–Green vortex 
is initialized following Canuto et al. (2007). The simulation 
was carried out at Rec = 100 for which reference data was 
available from Brachet et al. (1983) and Canuto et al. (2007). 
The equations were integrated from t = 0 to t = 16 with grid 
resolution of 32 × 32 × 32. This resolution was found to be 
appropriate for such a low Reynolds number flow based on 
a grid-convergence study and the above works in literature. 
Our data set is compared qualitatively and quantitatively 
against literature in Figs. 3 and 4. Iso-surfaces of u-compo-
nent of velocity are shown in Fig. 3 for the current simula-
tion and those of Brachet et al. (1983). Figure 3 (left) is the 
initial condition. Figure 3 (middle) is the current simulation 
at t = 5.0, which is the same as the results of Brachet et al. 
(1983), presented in Fig. 3 (right). In addition to this qualita-
tive comparison, the dissipation rate, � = �⟨ �ui

�xj

�ui

�xj
⟩ (where 

⟨...⟩ indicates volume averaging), is also compared with lit-
erature and is shown in Fig. 4. The result of the current 
simulation is in very good agreement with that of Brachet 
et al. (1983).

(5)
�ui

�xi
= 0,

(6)
�ui

�t
+

�(uiuj)

�xj
= −

�p

�xi
+

1

Rec

�
2ui

�xj�xj
,
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3.2 � Results: proposed method operating 
on the dissipating Taylor–Green vortex

Figure 5 shows snapshots of particles coloured by the root-
mean-square (RMS) error of velocity-gradient compo-
nents both before and after the vorticity-correction method 
was applied for high and low seeding densities. Here, the 
RMS error is computed across the individual elements 
of the velocity gradient tensor, instead of an ensemble of 
measurements:

The before image is of the initial velocity gradient estimate 
produced utilizing the method of Meyer et al. (2001). The 
snapshots are taken at t = 5, or approximately 1.5 convec-
tive times through the simulation. The RMS error of the 
velocity gradients range up to approximately 3% before 
correction, as expected given the magnitude of noise 
applied to the advected particles. Error is reduced by the 

(7)Error =

√√√√1

9

3∑

i=1

3∑

j=1

�iu
2

j
.

vorticity-correction method throughout the domain for both 
seeding densities shown. These observations can be seen 
more clearly in the supplementary videos “taylor-green_low-
density.mp4” and “taylor-green_high-density.mp4” This 
reduction in error was achieved at relatively low compu-
tational cost, with MATLAB-based implementation on a 
desktop-class computer optimizing approximately 25–100 
pathlines per second, depending on seeding density.

In addition to the error shown in Fig. 5, the vorticity field 
can also illustrate how the vorticity correction method is 
applied. Figure 6 shows the vorticity-magnitude sampled on 
a plane one half-wavelength from the centre of the compu-
tational domain (z = �∕2). The time-step of this sample was 
chosen to be early in the simulation such that there were still 
large structures to identify, and the highest seeding density 
was used here. This vorticity field is shown interpolated onto 
an Eulerian grid as a contour plot. While the vorticity cor-
rection method does not recover the true gradients exactly, 
the alternating pattern of vorticity magnitude into nearly-
circular structures is much more evident after correction 
than before.

Four seeding densities were evaluated following the 
same methodology. The average error was determined at 
each seeding density through the arithmetic average of 
RMS errors across the entire spatial and temporal domain, 
shown in Fig. 7. The initial cases, indicated with crosses, 
are the initial gradient estimates used as an input for the 
gradient optimization. While higher seeding densities 
presented lower error both before and after correction, 
the vorticity-correction methodology reduced mean error 
across all cases, with a maximum reduction in error of 
approximately 40%. It is speculated that the variation in 
converged error values with respect to seeding density 
is due to the simple gradient descent method uses here, 
which is only capable of determining local optima. As 

Fig. 3   Iso-surfaces of u-component of velocity with levels 0.25 (yellow) and −0.25 (blue) at Rec = 100. Left: initial flow field at t = 0. Middle: 
current simulation at t = 5.0. Right: Brachet et al. (1983) at t = 5.0

Fig. 4   Dissipation rate for Taylor–Green vortex at Rec = 100. Cur-
rent study (solid); Brachet et al. (1983) (dashed)
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such, in its current implementation this gradient optimiza-
tion technique is dependent on initial conditions. However, 
the larger error reduction (as a fraction of the initial error) 
observed at a particle count of 6000 is not expected to be 
an artefact of the random initialization as the particle posi-
tions were all confirmed to be uniform at their initializa-
tion. Moreover, this case still represents approximately 107 

individual gradient estimations, reducing the likelihood 
of random error. Figure 7 also shows the reduction in the 
objective function O as expressed in Eq. (3), as a function 
of iteration. The function quickly converges upon its final 
value within five to ten iterations, with an overall reduc-
tion of approximately 60% versus the initial value of the 
function.

Fig. 5   Particles were convected through the dissipating Taylor–
Green vortex field with some artificial noise, and the resulting tracks 
were processed as if they were PTV data. The resulting RMS error 
in velocity-gradient components is shown for t = 5. The upper row 
shows a high particle-density case (N = 25, 000) before (left) and 
after (right) the vorticity correction scheme was applied. The scatter 

plots on the second row shows a intermediate particle-density case 
(N = 6500). In both cases, the vorticity correction scheme shows a 
reduction in RMS error. For each seeding density, the side-by-side 
comparison before and after correction can be viewed as a time 
sequence in the supplementary videos “taylor-green_low-density.
mp4” and “taylor-green_high-density.mp4”
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4 � Experimental test case: starting vortex 
on an accelerating circular plate

Given the reduction of error produced by the vorticity-cor-
rection method on synthetic data, as demonstrated in Fig. 5, 
we will now apply the method to experimental data derived 
from a single image sequence. The test case consists of the 
vortex wake behind a circular flat plate towed at a constant 
acceleration. The experimental setup is explained below.

4.1 � Experimental apparatus and image‑processing 
methodology

To test the gradient-evaluation method presented in Sect. 2, 
4D-PTV (also known as Shake-the-Box) data was collected 
along the leeward side of a linearly accelerating circular 
plate. A schematic of the experimental apparatus is shown 

in Fig. 8. The experiments was performed in the 15 m-long, 
1 m × 1 m cross-section optical towing tank at Queen’s Uni-
versity. Three-sided optical access is provided from the two 
side-walls and the bottom of the towing tank. An impulsively 
started circular plate of diameter D = 30 cm was acceler-
ated normal to its path at a dimensionless acceleration of 
a∗ = aD3∕�2 = 1.07 × 1010, where a and � represent dimen-
sional acceleration and kinematic viscosity, respectively. The 
motion was achieved by a rack-and-pinion traverse above 
the towing tank. The sting holding the circular plate was 2D 
long, with a circular profile and a diameter of 0.1D, attach-
ing to the plate on its suction side. The blockage ratio of the 
experiment is 7%. The sting assembly and optical setup are 
shown in Fig. 8b. Further documentation on this experiment 
can be found in Fernando and Rival (2016).

55 μm polymer spheres were seeded in the flow to serve 
as tracer particles. The Stokes number of the particles 

x

After correction

−2 0 2

−2

0

2

|ω|
0

0.5

1

1.5

x

Before correction

−2 0 2

−2

0

2

x

y
True value

−2 0 2

−2

0

2

Fig. 6   Vorticity magnitude is shown here for the plane z = �∕2 for the high particle-density case. While the recovery if the vorticity pattern is 
not perfect, the alternating circular pattern is much more evident after the correction scheme is applied

0 2 4 6 8 10
0

20

40

60

80

100

Iteration

O
b
je

ct
iv

e
Fu

nc
ti
on

(p
er

ce
nt

)

Fig. 7   The per-particle RMS error averaged across the whole com-
putational domain for four different seeding densities. The vorticity-
correction method reduced error across all seeding densities. The 

reduction in the objective function is also shown here, as a function 
of iteration, for the highest seeding density (N = 25,000) (right)



	 Exp Fluids (2017) 58:140

1 3

140  Page 8 of 10

was approximately 3 × 10−3, which ensured tracer-accu-
racy errors of < 1% (see Raffel et  al. 2007). The trac-
ers were illuminated by a 527 nm, 40mJ-per-pulse laser 
expanded into a 10 × 10 × 0.3cm3 volume. Four Photron 
SA4 high-speed cameras captured images of the tracers 
within this volume at a frame rate of 900 Hz. To mini-
mize image distortions, water-filled prisms were fixed 
onto the glass pane of the tank such that all cameras were 
orthogonal to a prism face. The acquired images were then 
processed in DaVis 8.3.0 and using a 4D-PTV tracking 
algorithm; see Schanz et al. (2016) for details. Measure-
ments were performed over a diameters-traveled domain of 

0.1 ≤ s∕D ≤ 0.28, which corresponds to circulation-based 
Reynolds numbers between 9 × 103 ≤ ReΓ ≤ 43 × 103. 
Finally, the 4D-PTV pathlines were then extended for-
wards and backwards beyond their original lifespan via a 
pathline-extension method inspired by flow-map compila-
tion techniques described in Brunton and Rowley (2010) 
and Raben et al. (2014).

4.2 � High‑fidelity measurements of the starting vortex 
growth

As direct estimates for gradient errors are no longer acces-
sible, an instantaneous snapshot of the vorticity field is 

Fig. 8   Schematic of the experimental apparatus: a A D = 30  cm 
circular plate was accelerated at at a non-dimensional rate of 
a∗ = aD3∕�2 = 1.1 × 1010 through a 15  m-long, 1  m ×1  m square 

cross-section optical towing tank; b particles were illuminated with a 
40 mJ per-pulse laser and captured using four Photron SA-4 cameras

Fig. 9   An instantaneous snapshot of the vorticity field captured from 
a single image sequence is shown here a before and b after vorticity-
correction on flow-compiled PTV data. The correction scheme allows 
for the identification of individual instabilities in the shear layer, and 

the clear identification of the vortex core. This side-by-side compari-
son is available as a time sequence in the supplementary video “circu-
lar_flat_plate.mp4”
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instead presented in Fig. 9 to demonstrate the increase 
in fidelity offered by the proposed vorticity-correction 
method. As in the numerical test case, the before image 
is of the initial velocity gradient estimate produced utiliz-
ing the method of Meyer et al. (2001). The noise of the 
starting vortex is reduced, allowing for the identification 
of structures not previously obvious, such as individual 
Kelvin-Helmholtz instabilities in the shear layer. These 
structures would also be obscured by ensemble-averaging, 
such that the ability to correct individual runs is critical. 
This noise reduction is more clearly shown in the supple-
mentary video “circular_flat_plate.mp4”. The concentric 
circular vorticity levels also clearly identify the vortex 
core in the corrected vorticity field. Although the vorti-
city scale is saturated in Fig. 8a, it is worth noting that 
the small-scale structures remain obscured at all scaling 
levels. Furthermore, it should be noted that the vorticity 

correction method will often increase velocity gradient 
magnitudes, and does not simply smooth the gradient val-
ues. The computational cost of the proposed methodology 
did not significantly increase for the experimental data 
relative to the synthetic data, correcting pathlines on the 
order of 10 per second on a desktop-class computer.

In order to give a rough estimate of both the computa-
tional cost and the reduction in the objective function, the 
objective function O as expressed in Eq. (3) is shown in 
Fig. 10. Despite the simple optimization method used in 
this study, the residual of most pathlines converged on its 
final value after five to ten iterations. However, it is worth 
noting that in the absence of an objective true value with 
which to compare to, no quantitative treatment of error 
reduction can be given here. The convergence on a local 
minimum, as opposed to zero, was seen as acceptable in 
order to avoid gradient estimations tending towards zero.

We can demonstrate the utility of this high-fidelity 
result in Fig. 11. Here, we are now able to accurately 
identify key features in the flow due to the smooth, well-
resolved vorticity field. Having identified a flow feature, 
the mass in that structure can then be tracked backwards 
in time along pathlines back to its source, as shown on the 
right in Fig. 11. Pathlines are coloured by time overlayed 
on a snapshot of vorticity from the later-most timestep 
of the dataset. In this way, we are able to identify where 
vorticity-containing mass originated. Alternatively, the 
left of Fig. 11 shows pathlines tracked forwards in time 
from a vorticity source. This forward and backward track-
ing together define the relationship between the resulting 
flow topology and vorticity source.
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Fig. 10   The magnitude of the residual along an individual pathline 
is shown here as a function of iteration to visualize both the noise 
reduction observed and the computational speed. The 40% reduction 
in the objective is similar to the 40% reduction in error observed in 
synthetic data

Fig. 11   Utilizing the pathline information can elucidate mate-
rial transport within a flow. For instance, on the left a particles are 
tracked forward in time from the shear layer to a later time-step, 
shown here overlayed on the vorticity field at that later time-step. 

This shows the advection of material from a vorticity source. Alter-
natively, particles can be tracked from the vortex core backwards in 
time, shown in the right (b), to identify the origin of that vorticity-
containing mass



	 Exp Fluids (2017) 58:140

1 3

140  Page 10 of 10

5 � Conclusions

The purpose of this study was to improve the estimation of 
spatial gradients on unstructured Lagrangian data without 
discarding any pathline information. Such robust gradi-
ent estimation can improve the understanding of vorticity 
transport through a flow for the purposes of aerodynamic or 
hydrodynamic optimization or flow control. Therefore, we 
proposed a gradient correction scheme based on the knowl-
edge that the substantial derivative of vorticity through a 
flow must equal the vortex stretching/tilting through that 
flow. This constraint was realized by minimizing the residual 
of the vorticity-transport equation across all points of a path-
line simultaneously.

The proposed method has been implemented on both 
synthetic and experimental data consisting of a decaying 
Taylor–Green vortex field and an accelerating circular plate, 
respectively. In the synthetic case, mean errors were shown 
to be consistently reduced by the proposed vorticity-cor-
rection method across all seeding densities, by up to 40%. 
However, as the method shown here is locally optimizing, 
the error reduction achieved is dependent on the spatial 
resolution of the initial gradient estimate. Meanwhile, the 
application of the proposed method to experimental data 
reduced the vorticity-transport residual by approximately 
40%. The proposed method also provided access to small-
scale flow structures such as the Kelvin-Helmholtz instabili-
ties that were otherwise obscured. This retention of Lagran-
gian data was demonstrated with the direct investigation of 
material transport within a starting vortex. Small-scale flow 
structures could be identified in the post-processed data that 
were otherwise unavailable to the raw gradient outputs. By 
identifying those flow structures one could then track the 
vorticity-containing mass back to its origin. This experi-
mental case demonstrates the value of retaining Lagrangian 
data for aerodynamic or hydrodynamic optimization, which 
could eventually lead to new insights when studying com-
plex, vortical flows.
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