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estimation techniques from experimental PIV measure-
ments in vortex dominated laminar and turbulent wake 
flows.

1 Introduction

The utility of spatio-temporally resolved fluid pressure 
estimations from time-resolved particle image velocime-
try (TR-PIV) measurements (van Oudheusden 2013) has 
been demonstrated in turbulent boundary layers (Ghaemi 
et al. 2012; Pröbsting et al. 2013; Laskari et al. 2016; Sch-
neiders et  al. 2016), jets (de  Kat et  al. 2013), bluff-body 
wakes (de  Kat and van Oudheusden 2012; Dabiri et  al. 
2014; Fujisawa et  al. 2005; van Oudheusden et  al. 2007; 
McClure and Yarusevych 2016), subsonic (Auteri et  al. 
2015; van Oudheusden et  al. 2006, 2007; Violato et  al. 
2011) and supersonic aerofoils (van Oudheusden et  al. 
2007), aircraft propellers (Ragni et al. 2012), pulsatile dif-
fusers (Charonko et al. 2010), the region surrounding a ris-
ing bubble (Hosokawa et  al. 2003), cavity flows (Liu and 
Katz 2006), and other flow configurations (Murai et  al. 
2007). Estimated pressure fields can be used in conjunction 
with measured velocity fields to extract time-resolved load-
ings on immersed structures (van Oudheusden et al. 2007; 
Tronchin et  al. 2015), establishing a minimally intrusive 
methodology for the measurement of both fluid pressure 
and structural loading. A number of methodologies have 
emerged from the results of individual studies, however, a 
clear consensus on an optimum has not yet been reached, 
and may be flow or setup dependent (Charonko et al. 2010; 
van Oudheusden 2013).

To estimate fluid pressure (p(x, y,  t)), the instantaneous 
velocity fields (ui(x, y, t)) obtained from two-component 

Abstract The performance of four pressure estimation 
techniques using Eulerian material acceleration estimates 
from planar, two-component Particle Image Velocimetry 
(PIV) data were evaluated in a bluff body wake. To allow 
for the ground truth comparison of the pressure estimates, 
direct numerical simulations of flow over a circular cyl-
inder were used to obtain synthetic velocity fields. Direct 
numerical simulations were performed for Re

D
= 100, 300, 

and 1575, spanning laminar, transitional, and turbulent 
wake regimes, respectively. A parametric study encom-
passing a range of temporal and spatial resolutions was 
performed for each Re

D
. The effect of random noise typical 

of experimental velocity measurements was also evaluated. 
The results identified optimal temporal and spatial resolu-
tions that minimize the propagation of random and trunca-
tion errors to the pressure field estimates. A model derived 
from linear error propagation through the material acceler-
ation central difference estimators was developed to predict 
these optima, and showed good agreement with the results 
from common pressure estimation techniques. The results 
of the model are also shown to provide acceptable first-
order approximations for sampling parameters that reduce 
error propagation when Lagrangian estimations of material 
acceleration are employed. For pressure integration based 
on planar PIV, the effect of flow three-dimensionality was 
also quantified, and shown to be most pronounced at higher 
Reynolds numbers downstream of the vortex formation 
region, where dominant vortices undergo substantial three-
dimensional deformations. The results of the present study 
provide a priori recommendations for the use of pressure 

 * Jeffrey McClure 
 jejmcclu@uwaterloo.ca

1 University of Waterloo, Waterloo, ON N2L3G1, Canada

http://orcid.org/0000-0002-6621-4701
http://crossmark.crossref.org/dialog/?doi=10.1007/s00348-017-2337-7&domain=pdf


 Exp Fluids (2017) 58:62

1 3

62 Page 2 of 18

TR-PIV measurements are used to calculate the planar 
pressure gradients from the Navier–Stokes equations:

Since only two velocity components are measured in 
planar PIV (u, v), terms containing the out-of-plane veloc-
ity (w) or out-of-plane derivatives (�∕�z) are not evaluated 
(Baur and Köngeter 1999; Charonko et al. 2010; de Kat and 
van Oudheusden 2012; Ghaemi et al. 2012). In more gen-
eral terms, the pressure gradient is related to forces arising 
from viscous stresses and material acceleration (Eq. 3).

The pressure gradient field may then be integrated, using 
for example one of the following methods proposed in pre-
vious studies: (1) Baur and Köngeter (1999) utilized a spa-
tial marching scheme, (2) Liu and Katz (2006) developed 
an omni-directional line integration technique, (3) Dabiri 
et  al. (2014) proposed an eight-path line integration tech-
nique, (4) multiple authors solved the pressure Poisson 
equation using a standard 5-point discretization (Gurka 
et al. 1999; Fujisawa et al. 2005; de Kat and van Oudheus-
den 2012; Blinde et  al. 2016) or with an FFT integration 
(Huhn et al. 2016):

simultaneously over the domain, (5) Tronchin et al. (2015) 
solved local equations for the least squares approximation 
of the pressure field using an iterative method and (6) mul-
tiple authors (Regert et  al. 2001; Hosokawa et  al. 2003; 
Jaw et  al. 2009) have explored coupling the PIV velocity 
fields with common CFD algorithms to solve the pressure 
Poisson equation. Recent developments in tomographic 
PIV (Elsinga et  al. 2006) and three-dimensional particle 
tracking velocimetry (PTV) (Schanz et  al. 2016) allow 
three-dimensional velocity field characterization inside a 
volume, further extending the capacity of pressure estima-
tion (Violato et al. 2011; Ghaemi et al. 2012; Neeteson and 
Rival 2015; Laskari et  al. 2016; Schneiders et  al. 2016). 
For volumetric data, Poisson equation based methods are 
widely used and are relatively computationally inexpensive 
(Blinde et al. 2016; Huhn et al. 2016). However, the major-
ity of prior work on pressure estimation has been focused 
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on planar velocity measurements, and such measurements 
are still prevalent.

Accurate estimation of the material acceleration 
(Dui∕Dt) is vital to any method of pressure estimation, 
since the viscous terms in Eq.  3 can often be neglected 
or are relatively small for turbulent flows where the iner-
tial terms dominate (Ghaemi et  al. 2012). The material 
acceleration is typically estimated in either an Eulerian or 
Lagrangian frame of reference. In the Eulerian frame, the 
material acceleration is estimated at each grid point using, 
for example, second order central differences (Gurka et al. 
1999) (Eq. 5).

In the Lagrangian frame, pseudo-tracking methods are 
used to track a fluid element coincident with each grid 
point at time t. For example, the material acceleration of 
the tracked element may be estimated by iteratively deter-
mining the trajectory of the element backward and forward 
in time using Eqs. 6 and 7 (Liu and Katz 2006; de Kat and 
van Oudheusden 2012; Lynch and Scarano 2014):

Methods of material acceleration determination have 
been found to be subject to differing temporal resolu-
tion constraints depending on the advective and rota-
tional nature of the flow (Violato et  al. 2011; de  Kat 
and van Oudheusden 2012; Jakobsen et  al. 1997; van 
Oudheusden 2013). Studies of wave phenomena indi-
cated that the Lagrangian approach performs poorly 
compared to the Eulerian (Jakobsen et al. 1997). Violato 
et  al. (2011) compared errors associated with Eulerian 
and Lagrangian techniques for flow over a rod–airfoil 
and found that the upper bound on Δt required to prop-
erly sample the convective structures was lower for the 
Eulerian method compared to the Lagrangian method 
(ΔtLag,max∕ΔtEul,max ≈ 3). When adhering to this guide-
line, resulting pressure evaluations showed minor differ-
ences between the Eulerian and Lagrangian estimations 
(Violato et al. 2011). de Kat and van Oudheusden (2012) 
studied the peak response characteristics of an advect-
ing vortex flow and suggested that the upper bound for 
Δt scales according to the advective time-scale of the 
vortices for the Eulerian method, and according to the 
vortex turn-over time for the Lagrangian method. Hence, 
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in contrast to the results of Violato et al. (2011), de Kat 
and van Oudheusden (2012) found that, in the wake of a 
square cylinder, the pressure estimated using the Lagran-
gian approach leads to a rapid decrease in correlation 
with surface microphone measurements at significantly 
smaller Δt (ΔtLag,max∕ΔtEul,max ≈ 0.1). They recommended 
bounds on the interrogation window size of 𝜆x∕WS > 5 
and on the acquisition frequency of facq∕fflow > 10, where 
�x and fflow are the smallest wavelength and the highest 
frequency of structures to be resolved in the estimated 
pressure field.

Important for the experimental application of the tech-
niques are methods to reduce the effect of random error 
propagation to the material acceleration. Noise reduc-
tion in material acceleration estimates can be achieved by 
reconstructing the fluid parcel trajectories over multiple 
time realizations (Violato et al. 2011; Novara and Scarano 
2013; Pröbsting et  al. 2013; Lynch and Scarano 2014), 
filtering the velocity fields (Charonko et  al. 2010; Dabiri 
et  al. 2014), or applying Taylor’s frozen field hypothesis 
for highly convective flows (de  Kat et  al. 2013; Laskari 
et al. 2016). With the accuracy of the pressure estimation 
being dependent on the random errors present in the veloc-
ity measurements, the sensitivity of pressure estimation to 
typical measurement errors becomes an important criterion 
for the identification of an optimal technique. The omni-
directional, spatial marching, and Poisson solver techniques 
were compared by Charonko et al. (2010) using analytical 
solutions for a pulsatile flow and a decaying vortex sub-
ject to artificially applied velocity noise. It was concluded 
that the Poisson equation method performs better for the 
advective oscillating slot flow, while omni-directional line-
integration and spatial marching methods perform better 
for the rotational vortex flow. Murai et  al. (2007) super-
imposed artificial error onto their experimental results and 
found the Poisson equation method to be relatively insensi-
tive to velocity field noise compared to the line-integration 
methods for flow around a Savonious turbine. Using an 
analytical solution for an advecting vortex, de Kat and van 
Oudheusden (2012) found negligible differences between 
the omni-directional technique and the pressure Poisson 
equation, but inhomogeneous propagation of velocity error 
led to higher overall error values for the spatial marching 
method. Recently, Blinde et  al. (2016) compared a num-
ber of pressure estimation techniques using synthetic data 
obtained from a zonal detached eddy simulation (ZDES) of 
an axisymmetric base flow, and showed the superiority of 
PTV-based material acceleration estimates for computing 
pressure fields, as well as the benefit of several techniques 
which implicitly correct the velocity field in the solution for 
pressure. Some recent studies have attempted to quantify 
the uncertainty in pressure estimations (�p) given uncer-
tainties in the velocity field (�u) (Violato et al. 2011; de Kat 

and van Oudheusden 2012; de Kat et al. 2013; Laskari et al. 
2016; Azijli et al. 2016), focusing on the Poisson equation 
problem.

Although the analytical framework has yet to be devel-
oped fully, multiple studies (Laskari et al. 2016; Charonko 
et al. 2010; Violato et al. 2011) suggest that optimal tempo-
ral and spatial resolutions exist which minimize the result-
ing pressure error by balancing the truncation error (�trunc) 
of the derivative estimates and the random error propaga-
tion (�rand) into the pressure integration. In addition, with 
optimum methodologies apparently dependent on the flow 
case (Charonko et al. 2010), it is of interest to comprehen-
sively evaluate the performance of common pressure esti-
mation techniques in flows that are representative of prac-
tical applications, building on the work performed to date 
on analytical models of relatively simple flows (Charonko 
et al. 2010; de Kat and van Oudheusden 2012). The present 
study considers a circular cylinder in cross-flow, which rep-
resents a prototypical flow case in bluff-body aerodynamics 
encountered in a variety of practical applications. The main 
objective is to determine an optimal pressure estimation 
method, as well as associated optimum sampling rates ( facq) 
and spatial resolutions (WS) of acquired velocity data for 
pressure estimation in vortex dominated wakes. In addition, 
the errors associated with utilizing planar velocimetry data 
in a three-dimensional flow will be quantified. Previous 
studies have compared errors associated with utilizing pla-
nar velocimetry data by comparing planar and volumetric 
evaluations on experimental data (de Kat and van Oudheus-
den 2012; Ghaemi et  al. 2012) or by sampling analytical 
solutions on offset planes (Charonko et  al. 2010; de  Kat 
and van Oudheusden 2012); however, the error has yet to 
be globally quantified for a realistic flow case. To provide 
a reference pressure data for comparison, direct numeri-
cal simulations (DNS) are used to simulate experimen-
tally acquired velocity fields. The flows spanning laminar, 
transitional, and turbulent shedding regimes are subjected 
to uncorrelated velocity noise to simulate an experimen-
tal environment. The results inform on the errors involved 
in pressure integration from planar PIV data, obtained by 
common methodologies, and provide recommendations for 
optimal experimental parameters for minimizing the errors 
in estimated pressure fields.

2  Methodology

2.1  Direct numerical simulations

Pressure estimation techniques were tested with synthetic 
PIV data sampled from direct numerical simulations of a 
circular cylinder in cross flow for ReD = 100, 300, and 
1575. The incompressible Navier–Stokes equations were 
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solved using a finite volume solver (ANSYS CFX 14.0). 
The solver uses a second-order, blended finite difference 
spatial discretization scheme and a second-order back-
wards Euler implicit time marching scheme. The equations 
were discretized and solved on a two-dimensional mesh for 
ReD = 100, since previous experiments and simulations 
have established that no three dimensional effects are pre-
sent in the near wake at this Reynolds number (e.g., Persil-
lon and Braza 1998; Williamson 1996). Three-dimensional 
meshes were used for ReD = 300 and 1575 (Fig. 1).

The mesh is a structured O-type around the cylinder 
and a structured H-type mesh in the remaining regions 
(Fig. 1). Such a hybrid mesh configuration is commonly 
used in numerical studies on cylindrical geometries (e.g., 
Inoue and Sakuragi 2008; Morton and Yarusevych 2010; 
McClure et  al. 2015). A uniform streamwise velocity 
(u = (U∞, 0, 0)) is prescribed at the inlet boundary and 
an average static pressure of zero is set across the outlet 
boundary (p = 0). The no-slip condition (u = (0, 0, 0)) is 
prescribed at the cylinder surface, and the free-slip con-
dition (un = 0, �ut∕�n = 0) is imposed on the remaining 
domain boundaries. Mesh sizing near the surface of the 
cylinder (Table  1) was ensured to be well below sizing 
recommendations relative to the Kolomogorov scale (�) 
recommended by Moin and Mahesh (1998) for DNS of 
common turbulent flows. The mesh sizing can further be 
compared to the DNS study of Wissink and Rodi (2008), 
who employed a second order discretization in space for 

a uniform cylinder at ReD = 3300 and tested five meshes 
with various levels of refinement. They achieved good 
convergence, based on wake statistics, with a mesh con-
taining 1.4 × 108 nodes, and utilized similar relative 
refinement in the circumferential, radial, and spanwise 
directions (Table  1) as those employed in the current 
study. Assuming the node count scales approximately 
with Re9∕4

D
 (Moin and Mahesh 1998), 2.9 × 107 nodes for 

ReD = 1575 (Table 1) was deemed sufficient. The simula-
tions for ReD = 300 and 1575 were initialized by course 
mesh simulations which spanned the initial transient of 
the vortex shedding excitation, and results from the fine 
mesh simulation were sampled once the fluctuating lift 
and drag forces reached a quasi-steady state. The instan-
taneous force data on the cylinder and streamwise veloc-
ity data at x∕D = 5, y∕D = 0.75 were then collected for a 
minimum duration of 8 cylinder vortex shedding cycles. 
The shedding frequency ( fs) was estimated based on a 
sinusoidal regression of the streamwise velocity data. 
The results pertaining to the fluctuating lift force (CL

), shedding frequency (StD = fsD∕U∞), and mean drag 
(CD) are summarized in Table  1 and compared to avail-
able experimental data. A comparison with experimental 
values shows a maximum deviation of 5.6%. The minor 
deviations between numerical and experimental data in 
Table 1 are similar to those found in other DNS studies at 
similar Reynolds numbers (Marzouk et al. 2007; Wissink 
and Rodi 2008; Zhao and Cheng 2014).

Fig. 1  Hybrid O-type and 
H-type structured computational 
mesh, showing the mesh density 
utilized for ReD = 1575

Table 1  Mesh parameters alongside experimental (bold) and numerical results for flow around a circular cylinder

ReD Nodes Δ�∕� × Δr∕� × Δz∕� L
z
∕D StD C

L′
CD

100 1.2 × 105 0.53 × 0.08 × 0 0 0.167 0.232 1.35
0.16 (Norberg 2003) 0.23 (Norberg 2003) 1.43 (Wieselsberger 1921)

300 1.1 × 106 1.21 × 0.66 × 4.88 6 0.199 0.438 1.278
0.20 (Norberg 2003) 0.46 (Norberg 2003) 1.24 (Wieselsberger 1921)

1575 2.9 × 107 1.59 × 0.71 × 2.85 � 0.217 0.043 0.964
0.21 (Norberg 2003) 0.045 (Norberg 2003) 0.95 (Wieselsberger 1921)
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The results are illustrated using iso-surfaces of the �2
-criterion coloured by static pressure in Fig.  2. Note, the 
results for ReD = 100 are extruded in the spanwise direction 
for illustration purposes. It can be seen that, as expected, 
the near wake development is defined by the formation and 
evolution of the von Kármán rollers for all Reynolds num-
bers investigated. The dominant spanwise vortices undergo 
notable deformations associated with the formation of 
three-dimensional secondary structures for ReD ≥ 300. 
For ReD = 300, a hyperbolic flow instability in the shear 
regions between primary vortex cores, termed “mode B” 
instability (Williamson 1996), leads to the development of 
secondary streamwise vortices which persist with a span-
wise wavelength of �z∕D ≈ 1.0 (Williamson 1996; Scarano 
and Poelma 2009). For ReD = 1575, turbulent transition 
occurs in the separated shear layers and precedes primary 
vortex formation. The wake consists of a plethora of sec-
ondary structures interacting with the primary spanwise 
rollers in a random fashion. As progressively finer scale 
structures develop with increasing ReD, characteristic spa-
tial and temporal scales in the wake pressure fields also 
decrease, as expected, which is the primary reason for 
selecting these three test cases for the present study.

2.2  Synthetic PIV and pressure estimation optimization

Synthetic PIV data were obtained by sampling planar 
x − y velocity fields from the DNS solutions at z = 0 
(midspan) on an equispaced Cartesian grid on the domain 
−2D < x < 2D and −2D < y < 2D for a range of facq and 
WS. Similar to the approach employed in previous stud-
ies (e.g., Charonko et al. 2010; Azijli and Dwight 2015), 
Gaussian random noise was added to the synthetic veloc-
ity fields proportional to the magnitude of each veloc-
ity component (ũ = u(1 + 𝜀u)) to simulate measurement 

noise. The noise level (�u) was varied between 0 and 2.5% 
in 0.25% increments to capture the initial error response 
characteristics, which for a given methodology have been 
shown to extrapolate to higher noise levels (de  Kat and 
van Oudheusden 2012; Charonko et  al. 2010). To esti-
mate pressure from the synthetic data, Eulerian spatial 
and temporal derivatives of the velocity field were cal-
culated with second-order central difference estima-
tors (Eq.  5) and used to estimate the material accelera-
tion and viscous terms in Eq. 3. The viscous terms in the 
Navier–Stokes equations were found to be non-negligible 
for ReD = 100, and hence were included for all ReD. A 
parametric study was performed to investigate the effects 
of Reynolds number (ReD), spatial resolution (WS), tem-
poral resolution ( facq), velocity field noise level (�u), and 
pressure estimation method on the accuracy of instan-
taneous pressure field estimations (p). The investigated 
parameters are summarized in Table 2.

Four common pressure integration techniques were 
compared: (1) omni-directional line integration (Liu and 
Katz 2006), (2) eight-path integration (Dabiri et  al. 
2014), (3) Poisson equation (Gurka et al. 1999), and (4) 
local least squares iteration (Tronchin et  al. 2015). For 
each temporal resolution ( facq), spatial resolution (WS), 

(a) (b) (c)

Fig. 2  Vortex visualizations using the �2-criterion (�2 = −0.01) (Jeong and Hussain 1995) for a laminar vortex shedding at ReD = 100 (two-
dimensional data extruded for comparison), b transitional vortex shedding at ReD = 300, and c turbulent vortex shedding at ReD = 1575

Table 2  List of pressure estimation methodologies employed in the 
current study and ranges of parameters investigated in the parametric 
study

Estimation  
methodology

ReD �u D/WS facq∕fS

Omni-directional
Eight-path 100, 300, 1575 0–2.5% 5–100 7.8–1000
Poisson equation
Local least squares
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and noise level (�u) investigated in the parametric study, 
instantaneous velocity fields were sampled at six different 
phases over half a vortex shedding cycle 
(� = 0, �∕6, �∕3, �∕2, 2�∕3, 5�∕6) and five refreshed 
noise profiles were generated at each phase, resulting in a 
total of 30 unique velocity fields for each combination of 
parameters investigated, from which pressure is estimated 
using each integration technique. The error in each esti-
mated pressure field (�p) was quantified using the spatial 
standard deviation of the difference between the esti-
mated (p) and DNS (pex) pressure field (Eq.  8). For a 
given combination of parameters, the error response was 
then characterized by the mean (�p) and standard devia-
tion (��p) of this error computed over the 30 pressure 

estimates.

The implementation of boundary conditions can have 
considerable effects on the accuracy of pressure estimates 
(Pan et al. 2016). For the iterative methods (omni-direc-
tional, eight-path, and local least squares), the boundary 
conditions were implemented following the approach 
employed in the studies that proposed these techniques 
(Liu and Katz 2006; Dabiri et  al. 2014; Tronchin et  al. 
2015), namely, where the domain was initialized to zero 
pressure before integrating the pressure gradient over the 
inner domain and boundaries. Additionally, for the omni-
directional and eight-path methods, the boundary pres-
sures were initialized by a line integral of the pressure 
gradient field around the boundary, starting at p1,1 = 0 at 
the bottom left corner point. Based on initial convergence 
tests, a fixed number of pressure gradient integration iter-
ations were performed. Specifically, the omni-directional 
and eight-path methods used 5 iterations, and the local 
least squares method used 3000 iterations. For the Pois-
son equation method, the Laplacian of the pressure field 
(Eq. 4) was discretized using a 5-point second-order cen-
tral difference scheme and Neumann boundary conditions 
were imposed through the use of ghost grid points at the 
outlet and cylinder boundaries to complete the five point 
scheme where adjacent nodes lie outside the domain. The 
pressure values at the ghost points were evaluated using 
the pressure gradient from the Navier–Stokes equation 
and the nodal pressure on the opposing side of the five 
point scheme (e.g., pi+1,j = pi−1,j + 2Δx

�p

�x i,j
). Neumann 

boundary conditions were implemented for the Poisson 
equation method on all boundaries and an additional con-
straint equation was added to the system to specify 
p1,1 = 0. The resulting system of equations is 

(8)�p =

√∑
(p − pex)

2∕N

1

2
�U2

∞

over-constrained and the solution is the least-squares 
solution (Trefethen 2000). For each method, the relative 
pressure field was solved for initially, and a constant 
value was then added to each field such that the Bernoulli 
equation extended to irrotational, inviscid, unsteady 
advective flow with small mean velocity gradients (Eq. 9) 
(de  Kat and van Oudheusden 2012) was satisfied, on 
average, at the top and bottom boundaries.

The parametric study and analytic models developed 
in the current study use Eulerian estimates for the mate-
rial acceleration (Eq. 5), since a comparison with a second 
order Lagrangian scheme for material acceleration estima-
tion (Eqs. 6, 7) resulted in minor differences in error lev-
els of the pressure evaluations for 25 ≤ facq∕fS ≤ 1000 
when three velocity fields at t0 − dt, t0, and t0 + dt were 
utilized for both methods. However, the extension of the 
analysis to Lagrangian material acceleration reconstruc-
tions over N fields is discussed using second order trajec-
tory estimates (Eqs. 6, 7) between fields separated by ±Mdt

, ±(M − 1)dt,… , where N = 2M + 1, with the material 
acceleration estimated via a second order polynomial fit to 
the resulting trajectory (Lynch and Scarano 2014).

3  Results

The results of the parametric study yield a data set of about 
110,000 pressure field cases. Using this data set, the pres-
sure estimation techniques are compared across a range of 
spatial resolutions (WS), temporal resolutions ( facq), and 
velocity noise levels (�u) in laminar, transitional, and tur-
bulent flows.

3.1  Comparison of pressure estimation methodologies

It has been demonstrated in one-dimensional parametric 
studies (Charonko et al. 2010; Violato et al. 2011; de Kat 
and van Oudheusden 2012; Tronchin et al. 2015) that opti-
mal temporal ( facq,opt) and spatial (WSopt) resolutions can 
be determined for a given flow such that the combined 
truncation (�trunc) and random (�rand) uncertainty propaga-
tion to the pressure field estimate is minimized. Since the 
optima may vary based on the pressure integration tech-
nique employed, it is necessary to estimate these param-
eters before a comparison between methods can be carried 
out. Figure 3 shows the variation of the mean pressure error 
response (�p) with facq and WS, for each tested technique 
and Reynolds number, when the synthetic velocity fields 
are contaminated with 2.0% Gaussian white noise. The 
magnitude of the mean pressure error is also illustrated by 
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Fig. 3  Optimization surfaces showing the mean pressure field 
error (�p) for �u = 2% for the ranges of spatial and temporal resolu-
tions investigated for each Reynolds number and pressure estimation 

method investigated. Pressure estimations which are not converged 
are coloured in yellow
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the white to red colormap on the surface, with the optimal 
sampling parameters identified either by the minima or the 
whitest region of each surface. The surface sections col-
oured yellow indicate where pressure estimation is uncov-
erged for the local least squares approach due to insufficient 
iteration of the solver to mitigate the directional propaga-
tion of error for the high spatial resolution calculations 
(D∕WS ≥ 50). Note that optimal values cannot be strictly 
defined in every case due to the minima lying on the bound-
aries of the parametric study. For example, the optima for 
the eight-path method, for each Reynolds number investi-
gated, likely lies beyond the minimum facq∕fS investigated, 
and the optima for the omni-directional method and Pois-
son equation for ReD = 1575 is likely located beyond the 
maximum D/WS investigated. However, the curvature of 
the optimization surfaces at the boundaries suggest that the 
optimal values are located not far beyond the boundaries of 
the parametric study, and that the difference between the 
pressure error at the optimal point and the boundary point 
is comparable to the differences due to the resolution of the 
parametric study. The optimization surfaces exhibit simi-
lar topology for ReD = 100, 300, and 1575 (left to right, 
respectively in Fig. 3), resembling sections of ellipsoid sur-
faces, and in most cases, local minima are present within 
the investigated range of parameters. For higher values of 
D/WS and facq∕fS, increasing these parameters causes the 
error to increase, approximately following a power law. 
On the other hand, decreasing D/WS and facq∕fS below the 
optimal values causes a more gradual increase in the pres-
sure error. Notably, for increasing Reynolds number, the 
minimum error increases significantly, which is attributed 
to the increasing three-dimensional error (�3D) caused by 
neglecting the out of plane velocities and gradients. This 
causes changes in the random and truncation uncertainty 
propagation, resulting in changes in the temporal and spa-
tial resolution leading to a less significant effect on the total 
pressure error. The values of optimal sampling parameters 
for �u = 2%, identified in Fig. 3, are shown in Table 3. As 
expected, the optimal spatial resolutions (WSopt) for each 

method decrease with increasing Reynolds number as the 
spatial scales (�x) of the flow decrease. On the other hand, 
the optimal acquisition frequencies ( facq,opt∕fS), when nor-
malized by the shedding frequency, do not show a pro-
nounced dependency on the Reynolds number within the 
uncertainty bounds. This is attributed primarily to two fac-
tors. First, the dominant vortical structures shed at fS domi-
nate the pressure fluctuations. Moreover, the main second-
ary structures that appear at higher Reynolds numbers are 
associated with time scales within an order of magnitude 
of 1∕fS, and are adequately captured in estimated pres-
sure fields acquired with facq∕fS > 10. Second, the error 
response surfaces in Fig. 3 flatten out near optimal acqui-
sition frequencies making a precise determination of the 
optimal frequency challenging, which is the main reason 
for the relatively large uncertainty bounds for this quantity 
in Table 3. The development of practical guidelines for the 
selection of optimal sampling parameters will be discussed 
further in the next section.

To compare the accuracy of the methods at different 
velocity noise intensities, the mean (�p) and standard devia-
tion (��p) of the pressure error response, extracted at WSopt 

and facq,opt for each �u, are plotted in Fig. 4. It can be seen 
that the eight-path integration method exhibits consistently 
higher error sensitivity than the other methods, showing a 
comparable response for low �u but a significantly increased 
response in �p for more intense noise environments. 
Inspecting the corresponding pressure integration results 
(Fig. 5) indicates that the method suffers from high degrees 
of isotropic noise as the contour topology and pressure 
magnitudes are, on the average, close to the DNS reference 
(Fig. 5) but have a high degree of superimposed noise. The 
high noise sensitivity of the eight-path method is attributed 
to the lower number of line-integrals used, compared to the 
omni-directional method, which is a similar method that 
uses the average of significantly more line-integrals to cal-
culate the fluid pressure at each point. The high noise sensi-
tivity also causes the identified optimal sampling 

Table 3  Optimal sampling parameters for �u = 2%

Uncertainty bounds given by the local resolution of the parametric study at each optimum

Pressure technique ReD = 100 
D∕WSopt

ReD = 100 
facq,opt∕fS

ReD = 300 
D∕WSopt

ReD = 300 
facq,opt∕fS

ReD = 1575 
D∕WSopt

ReD = 1575 
facq,opt∕fS

Omni-directional
20

+5.0

−5.7
25.3

+6.3

−4.2
33.3

+16.7

−8.3
20.4

+2.6

−2.0
100

+50.0

−50.0
15.6

+20.8

−7.81

Eight-path
6.7

+1.6

−4.4
12

+3.8

−3.8
14.3

+5.7

−3.2
20.4

+2.6

−2.0
20

+5.0

−5.7
21.7

+14.6

−6.24

Poisson equation
25

+8.3

−5.0
31.6

+4.5

−6.3
50

+50.0

−16.7
23.0

+3.3

−2.6
100

+50.0

−50.0
10.9

+32.8

−3.1

Local least squares
25

+8.3

−5.0
21.1

+4.2

−5.3
33.3

+16.7

−8.3
20.4

+2.6

−2.0
33.3

+16.7

−8.3
10.9

+32.8

−3.1
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(a) (b) (c)

Fig. 4  Mean pressure field error (�p) versus velocity field error (�u) 
from each pressure integration method investigated for a ReD = 100, 
b ReD = 300, and c ReD = 1575. Filled regions indicate one standard 

deviation of the pressure field error. For each �u, optimal WSopt and 
facq,opt were used for the pressure estimation

Fig. 5  Reference pressure from DNS data, along with pressure estimations at respective optimal D∕WSopt and facq,opt∕fs for  each method at 
�u = 2% and Re

D
= 1575
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parameters for the eight-path method to be shifted relative 
to the other three tested methods (Table 3). In contrast, the 
omni-directional, Poisson equation, and local least squares 
methods exhibit relatively low sensitivity to the velocity 
noise environment (�u), with maximum resulting error lev-
els of 2–5% at �u = 2.5% depending on ReD (Fig. 4a–c). In 
particular, for ReD = 1575 (Fig.  4c), the pressure error 
response shows a change of less than 1% across the entire 
range of velocity noise intensities studied. This insensitiv-
ity is due to the relatively high base three-dimensional error 
present for ReD = 1575 (�3D ≈ 4%), compared to the lower 
Reynolds numbers, caused by the two-dimensional assump-
tions imposed on the three-dimensional flow. This implies 
that, when significant inaccuracies in pressure estimation 
exist due to three-dimensional effects, contamination of the 
pressure gradient field by relatively small random errors in 
velocity measurements has a smaller additive effect on the 
pressure error response. The Poisson equation and local 
least squares method are the least sensitive to velocity fields 
noise, exhibiting the smallest change in �p over 
�u = 0 − 2.5%. It should be noted that, since the errors in 
Fig. 4 are quantified by the standard deviation of the differ-
ence between the estimated pressure field and DNS solu-
tion (Eq.  8), they pertain to the relative pressure field 
(p − p∞). The error associated with establishing the abso-
lute pressure through the application of the modified Ber-
noulli equation at the side boundaries was approximately 
1% for all the pressure estimation methods investigated.

The accuracy of the surface pressure distribution (Cp(�)) 
estimation is of particular interest since it may be used to 
extract instantaneous structural loading (van Oudheus-
den et  al. 2007). Figure  6 presents a comparison of the 
surface pressure estimations with the DNS reference for 

ReD = 100, 300 and 1575. For each methodology, the pres-
sure integrations were performed with a velocity noise level 
of �u = 2% and sampled at each method’s WSopt and facq,opt. 
The results indicate that the Poisson equation method esti-
mates the surface pressures best across all the Reynolds 
numbers investigated, though the omni-directional and 
local least squares methods perform favourably as well. In 
comparison, surface pressure distributions resulting from 
the eight-path method have significant data scatter; how-
ever the scatter is approximately centred around the DNS 
pressure solution, so that its detrimental effect on structural 
loads is expected to be lower than the associated surface 
pressure errors. The utilization of the planar results for the 
extraction of surface pressure loading is deemed acceptable 
for all Reynolds numbers investigated, as the omni-direc-
tional, Poisson equation, and local least squares methods 
show remarkable agreement with the DNS solver pressures, 
even for relatively high �u = 2%, as well as in turbulent 
shedding regimes (Fig. 6c). Despite average pressure field 
errors reaching approximately �p = 3−5% for �u = 2% and 
ReD = 1575 (Fig. 4c), the surface pressures rarely deviated 
from the DNS reference by more than 1%. The most sig-
nificant pressure field errors are concentrated in the wake 
regions where flow three-dimensionalities and complex 
vortex development occur.

3.2  Pressure PIV uncertainty minimization

The results of the parametric study indicate the existence 
of optimal facq and WSopt for various �u, ReD, and pres-
sure integration methodology which minimize the RMS 
pressure field error (Fig.  3; Table  3). It is of interest to 
develop a model that can be employed to estimate optimal 

(a) (b) (c)

Fig. 6  Instantaneous surface pressure distributions from each method 
investigated, contaminated with �u = 2% velocity field error, for a 
ReD = 100, b ReD = 300, and c ReD = 1575. Cp(�) is nearest neigh-

bour interpolated from the pressure evaluations sampled at identified 
optimal WSopt and facq,opt



Exp Fluids (2017) 58:62 

1 3

Page 11 of 18 62

data acquisition parameters in experimental studies where 
pressure estimation is of interest. Such a model is devel-
oped here based on the following uncertainty propagation 
analysis.

Neglecting viscous terms, the uncertainty in the deter-
mination of the pressure gradient (�∇p, Eq.  10) can be 
expressed by the contributions of the propagation of the 
velocity error (�u, Eq.  11) (de  Kat and van Oudheusden 
2012) through the derivative estimators, and the truncation 
error terms arising from finite resolution of the derivative 
estimators (Etebari and Vlachos 2005) (�trunc, Eq. 12).

Equations 10–12 suggest minimizing the pressure gradi-
ent uncertainty requires balancing between the propagation 
of random error, which decreases for increasing WS and 
decreasing facq, and the truncation error, which decreases 
for decreasing WS and increasing facq. To model how the 
pressure gradient uncertainty propagates to pressure field 
uncertainty, a line-integration serves as a suitable approxi-
mation for the techniques employed in this study. In par-
ticular, at a single time-step, the omni-directional, eight-
path, and local least squares methods rely on a sequential 
integration of ∇p over a finite number of WS to estimate 
p on the domain. Similarly, although the Poisson equation 
solves local equations simultaneously across the domain, 
the solution can nevertheless be cast as an integral of the 
pressure gradient field using Green’s functions. Hence, 
assuming uncorrelated pressure gradient error, the resulting 
pressure field uncertainty (�p) relates to the pressure gradi-
ent uncertainty (�∇p) according to:

where � is the characteristic length scale of a single line-
integration (e.g., domain length). An optimization problem 
min{𝜀2

p
:facq > 0,WS > 0} can now be solved for Eq.  13 

with respect to facq and WS through a critical point analy-
sis. The solution is given by Eqs. 14 and 15.
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The result decouples the solution for the optimal tempo-
ral resolution ( facq) from the dependence on the spatial res-
olution (Eq. 14). However, the solution for the optimal spa-
tial resolution retains temporal terms (Eq. 15). This is due 
to the coupling caused by the propagation of �∇p through 
the line-integrations which is ∝ �∇pWS, resulting in a 6th 
order polynomial for WSopt. For planning experiments, the 
solution remain intractable a priori due to its dependence 
on unknown velocity gradients. However, temporal and 
spatial derivatives of the flow may be approximated assum-
ing the characteristic velocity (U∞) varies periodically (i.e., 
sinusoidally) with the time scales (1∕fflow) and selecting 
appropriate spatial scales (�x) for a given vortex dominated 
flow. Substituting these approximations into Eqs. 14 and 15 
simplifies them to:

Inspection of Eq.  17 reveals that, for �u = 0−3% typi-
cally found in PIV experimentation, the leading, 6th order 
term dominates and the 2nd order term in the polynomial is 
negligible. Hence the model for the optimal spatial resolu-
tion can be simplified further to:

where WSopt is independent of facq for small �u. This can 
also be inferred from the optimization surfaces presented in 
Fig. 3, which conform to, on the average, ellipsoid sections 
with major and minor axes aligned with the temporal and 
spatial axes. This result implies that the optimal temporal 
and spatial resolutions obtained from one-dimensional par-
ametric studies in Charonko et al. (2010) and Violato et al. 
(2011) are valid as absolute optimums for the respective 
intensity of the noise environment, and may be compared to 
the data in the present study. It is important to note that the 
derivation of Eqs. 16 and 18 is insensitive to reformulating 
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Eq. 13 as an average of multiple line integrations or incor-
porating terms representing the boundary error at the start 
of each line integration. The presented formulation also 
assumes uncorrelated velocity field error, which will not 
be the case if interrogation windows are overlapped during 
PIV processing (Sciacchitano and Wieneke 2016), and does 
not account for the spatial filtering implicit in the use of 
finite interrogation windows in PIV processing. However, 
it was verified that adding correlated velocity field errors 
after smoothing the velocity field with a 3 × 3 kernel had 
minimal effect on the results pertaining to the locations of 
the optimal sampling parameters and comparison of meth-
ods presented in Figs. 4, 5 and 6.

To validate the derived model (Eqs. 16, 18), it is applied 
to the flow cases considered in the current study. For cir-
cular cylinders in cross-flow, the characteristic frequency 
scale ( fflow) is approximated as the frequency of vortex 
shedding fS = StDD∕U∞ and the characteristic spatial 
wavelength (�x) is approximated as twice the shear layer 
thickness, approximated according to �sl = 7.5D∕Re

1∕2

D
 

(Williamson 1996; Roshko 1993). The optimal tempo-
ral and spatial resolutions for pressure evaluation in flow 
over a circular cylinder may now be calculated using 
Eqs. 16 and 18, respectively. It can be seen from Eqs. 16 
and 18 that a universal scaling for the facq,opt, and WSopt is 
achieved in the form fS∕faqc,opt and �x∕WSopt. The results 
from the present study cast in this form are presented in 

Fig.  7a, b, along with relevant data found in the litera-
ture for a decaying vortex (Charonko et  al. 2010), pulsit-
ile flow (Charonko et al. 2010), and a rod airfoil (Violato 
et al. 2011). The present data show good collapse, and the 
model shows close agreement with the parametric data as 
well as optima reported in other investigations on different 
flow topologies. Based on the results, a general recommen-
dation can be made for a range of optimal data acquisitions 
parameters as facq∕fflow = 18–30 and �x∕WS = 14.3–25 for 
the range of velocity error levels expected in a typical PIV 
experiment when Eulerian material acceleration estima-
tion methods are applied. These results are in agreement 
with the resolution limitations suggested by de Kat and van 
Oudheusden (2012) of 𝜆x∕WS > 5 and facq∕fflow > 10, who 
were primarily concerned with the effects on pressure peak 
response in the resulting fields. The current results suggest 
that utilizing resolutions up to twice the minimum limits on 
the acquisition frequency and four times the minimum lim-
its on the spatial resolution recommended by de  Kat and 
van Oudheusden (2012) will result in optimal performance, 
minimizing the spatial filtering effects caused by inade-
quate spatial or temporal resolutions without oversampling 
to an extent that random error effects become significant.

Figure  8a–d elucidate the relation between the data 
acquisition parameters and the pressure uncertainty pre-
dicted by Eq. 13. The identified minima, which stem from 
Eqs. 16 and 18, for �x∕WS and facq∕fS, respectively, can be 
seen to be independent of the the Reynolds number. The 
pressure uncertainty remains within 1% of the minimum 
uncertainty for a relatively wide range of acquisition fre-
quencies from 3 ≤ facq∕fs ≤ 200 (Fig.  8a). In contrast, the 
requirements on the spatial resolution to remain within the 
same range of the minimum uncertainty are more strin-
gent, namely �x∕WS = 14.3–33.3 (Fig.  8c). Figure  8b, d 
decompose the total pressure uncertainty from Eq.  13 for 
ReD = 1575 into contributions from truncation (�trunc) and 
random (�rand) error components. The results illustrate 
the regions where spatial or temporal resolutions become 
too fine, and propagation of random error dominates, and 
where they become too coarse and the truncation error 
term dominates. Comparing the current formulation to 
the bounds on the spatial and temporal resolution recom-
mended by de Kat and van Oudheusden (2012), indicated 
by a dash-dotted line in Fig. 8b, d, it can be seen that the 
recommended spatial resolution bound corresponds to a 
region where the truncation error dominates, while the 
temporal resolution bound corresponds to a region with 
still acceptable uncertainty levels, beyond which truncation 
error begins to dominate.

It is important to note that when data is over-sampled 
temporally (i.e., facq > facq,opt), Lagrangian trajectory 
reconstructions over multiple velocity fields (e.g., Lynch 
and Scarano 2014) can be employed for more accurate 

(a) (b)

Fig. 7  a Optimal temporal resolutions facq,opt normalized by the 
shedding frequency fs amalgamated from all Reynolds numbers and 
methodologies tested and compared to available optimal data from 
other studies and b optimal spatial resolution WSopt normalized by 
the spatial wavelength �

x
 of the flow
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estimation of pressure, as low order trajectory reconstruc-
tions over longer kernels mitigates random error propaga-
tion.Figure  9 illustrates how average error levels change 
with respect to temporal and spatial resolution for the 
Eulerian methods used for the parametric study compared 
to Lagrangian material acceleration estimates over multi-
ple velocity fields. For the Lagrangian estimates, the fluid 
trajectories are computed iteratively using a second order 
trajectory reconstruction (Eqs.  6, 7) at times t0 −Mdt, 
t0 − (M − 1)dt,… , t0,… ,t0 + (M − 1)dt, t0 +Mdt, employ-
ing a second order polynomial fit function following the 
method by Lynch and Scarano (2014). The results show that 
the use of Lagrangian techniques for material acceleration 
estimation changes substantially the shapes of the optimi-
zation curves with respect to temporal resolution (Fig. 9a), 
while the changes for the spatial resolution (Fig.  9b) are 
less significant. For the temporal resolution, using the 
vortex turn over time ( fturnover = U∞∕�D) (de  Kat and 
van Oudheusden 2012) gives a reasonable estimate of the 
optimal acquisition frequency for the Lagrangian method 
with M = 1. However, as the kernel for material accel-
eration estimation is increased to M = 2 and M = 3, the 
optimum acquisition frequency increases proportionally, 
with facq,opt∕fS ≈ 50 for M = 1, facq,opt∕fS ≈ 100 for M = 2

, and facq,opt∕fS ≈ 150 for M = 3. This implies that when 
Lagrangian material acceleration estimates are employed 
for pressure estimation, velocity acquisition at Mfacq,opt is 
recommended, where facq,opt is predicted from Eq.  16. If 
the data is under-sampled relative to the predicted optimum 

( facq < facq,opt), a significant increase in error levels can be 
observed for the Lagrangian estimates. If such a sub-opti-
mal condition is dictated by limitations of the experiment, 
one may employ pressure estimation techniques which 
attempt to operate on temporally sparse data, such as VIC 
codes (Schneiders et al. 2016) or Taylor Hypothesis substi-
tutions (de Kat et al. 2013; Laskari et al. 2016). In contrast 
to the temporal resolution results (Fig. 9a), the shape of the 
optimization curves for the spatial resolution (Fig. 9b) does 
not change significantly when different Lagrangian evalu-
ations are employed, with the optimum shifting to coarser 
spatial resolutions as the kernel size for material accelera-
tion estimation is increased.

3.3  Effect of three‑dimensional flow structures

Besides the truncation and random error propagation vary-
ing with ReD due to associated changes in the spatial and 
temporal scales of the flow, the onset of three-dimensional 
flow structures in transitional and turbulent wake regimes 
(Williamson 1989; Bloor 1964) will lead to addition errors 
(�3D) due to two-dimensional flow assumptions used for 
pressure estimation. For two-component, planar PIV, esti-
mation of the pressure gradient from the two-dimensiona 
Navier–Stokes equations neglects out-of-plane velocities 
and gradients. However, the onset of secondary instabilities 
in transitional flow regimes (Williamson 1989) (Fig.  2b) 
and turbulent regimes (Bloor 1964) (Fig. 2c) is associated 

(a) (b)

(c) (d)

Fig. 8  Pressure field uncertainty predicted from Eq. 13 with �u = 2% 
exhibiting Reynolds number similarity across (a) temporal resolution 
at fixed D∕WS = 100 and b spatial resolution at fixed facq∕fs = 50 
compared to bounds proposed by (de Kat and van Oudheusden 2012). 

The uncertainty is decomposed into random and truncation compo-
nents according to Eq. 13 using fS and �

x
 estimates, and the variation 

with c spatial and d temporal resolutions for ReD = 1575 is shown
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with three-dimensional vortex development, bound to 
result in errors in planar pressure estimations.

To evaluate the error in the pressure field caused by the 
presence of three-dimensional structures and decouple it 
from �trunc, a comparison is carried out between pressure 

estimations obtained from 2D planar and 3D volumetric 
velocity data using the Poisson equation method for pres-
sure estimation. The 3D volumetric velocity data are sam-
pled from DNS at three equispaced x − y planes with the 
spatial resolution in the spanwise direction (z) matching 
that in the x − y plane. The difference between the integra-
tion from the planar data and the integration from the volu-
metric data serves as a measure of the three-dimensional 
error (�3D = |p3D − p2D|). For studies employing planar 
measurements, it is also of interest to estimate the uncer-
tainty in the pressure estimates caused by neglecting terms 
containing out of plane velocity and gradients. The x and y 
momentum equations from which the pressure gradient 
field is estimated are shown in Eqs. 1 and 2, including the 
three-dimensional terms. The additional terms are w �u

�z
 and 

w
�v

�z
 for the x and y pressure gradients, respectively. When 

two-component, planar velocity measurements are per-
formed, both the out of plane velocity and gradients in 
these terms are unknowns. However, in a developed turbu-
lent wake, the spanwise gradients of each velocity compo-
nent are similar in magnitude (�w

�z
≈

�v

�z
≈

�u

�z
), since span-

wise gradients in the flow are induced by randomly oriented 
vortex structures. This implies that the three-dimensional 
terms can be approximately related to the magnitude of �w

�z
, 

which can be estimated by applying the continuity equation 
to the planar measurements in incompressible flow as 
�w

�z
=

�u

�x
+

�v

�y
. Since the out of plane velocity w is expected 

to act as a pseudo-random variable in a spanwise homoge-
neous flow, a correlation between the magnitude of w �u

�z
 or 

w
�v

�z
 (i.e., the neglected three-dimensional terms in Eqs.  1 

and 2) and the planar divergence should be possible.
Figure  10a–c plot the instantaneous three-dimensional 

pressure field error (�3D = |p3D − p2D|) based on a compari-
son between planar and volumetric pressure estimations for 
ReD = 100, 300, and 1575, respectively, and Fig. 10d–f plot 
the corresponding planar divergence of the velocity field. 
The figures show that the three-dimensional pressure esti-
mation errors develop locally with some minor propagation 
to neighbouring regions, and the regions of elevated pres-
sure errors correlate with regions of higher planar diver-
gence. Figure 11 presents the two-dimensional correlation 
maps of the standard deviation of the planar divergence 
field and the standard deviation of the three-dimensional 
error field for ReD = 300, and ReD = 1575. In both cases, 
the maximal peak is at zero spatial shift, indicating that the 
regions of three-dimensional error and planar divergence 
are well correlated. The correlation maps experience rapid 
drop off from zero spatial shift, indicating that quantities 
are strongly correlated in space. The exception is negative 
streamwise shifts, that exhibit slow drop off due to the error 

(a)

(b)

Fig. 9  Comparison of pressure estimation error using Eulerian and 
Lagrangian material acceleration estimates reconstructed over 3 
(M = 1), 5 (M = 2), and 7 (M = 3) velocity fields using the Poisson 
equation for Re = 100 and �u = 2% for a varying acquisition fre-
quency with a constant spatial resolution D∕WS = 50, and b varying 
spatial resolution with a constant acquisition frequency facq∕fS = 123. 
The common points where the one-dimensional parametric studies 
intersect are highlighted in blue
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and divergence concentrating in the wake region which 
extends in the streamwise direction.

Figure  12 presents the variation in the standard devia-
tion of the planar divergence in the wake with the three-
dimensional error caused by the planar assumptions. A fit 
is provided, and can be used to estimate local uncertainty 
of the pressure estimations caused by utilizing planar data 

in a three-dimensional flow, by calculating the local planar 
divergence of the velocity data. The form of the fit is based 
on a three-dimensional  trigonometric relation between 
the out of plane gradient (∇xy ⋅ �) and characteristic val-
ues for the in plane gradients (U∞∕�x). Figure  12a shows 
a significant increase in characteristic planar divergence 
magnitudes from ReD = 300 to ReD = 1575, which directly 
results in a significant increase in the three-dimensional 
error in the wake. The increased three-dimensionality for 
ReD = 1575 (Figs.  2c, 10c, f) is associated with stronger 
secondary vortex formation at finer scales compared to 
ReD = 300. Localized pressure errors can exceed 20% of 
the dynamic pressure when using planar evaluation tech-
niques (Fig. 10c). In contrast, local errors in pressure esti-
mates from volumetric velocity data are within 1.2% of the 
DNS solution (not shown for brevity). For ReD = 300, in 
a transitional regime, the induced three-dimensional flow 
of the mode B instability vortices is substantially weaker 
than that found for fully turbulent Reynolds numbers, and 
the three-dimensional errors are less pronounced (<15%). 
These results can be compared to those of Charonko et al. 
(2010), who found that three-dimensional errors using 

(a) (b) (c)

(d) (e) (f)

Fig. 10  Instantaneous planar divergence for a ReD = 100, b 
ReD = 300, and c ReD = 1575. Instantaneous pressure field error for 
d ReD = 100, e ReD = 300, and f ReD = 1575. Velocity data sampled 

at D∕WS = 100 and facq∕fs = 63 − 73 and pressure field estimated 
using the Poisson equation method

(a) (b)

Fig. 11  Correlation maps of the standard deviation of the pla-
nar divergences with the three-dimensional pressure error for a 
ReD = 300, and b ReD = 1575
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planar techniques did not grow to significant levels until 
the measurement plane was misaligned over 30◦ from the 
planar velocity field (i.e., when the out-of-plane velocity 
gradients reaches 50% of the x − y local values (Charonko 
et al. 2010). Similarly in the present results, pressure errors 
become significant (>5%) when the normalized divergence 
is greater than 0.5 (i.e., 50% of typical planar gradient val-
ues associated with the global vortex shedding).  

To compare the relative magnitude of the three-dimen-
sional errors to other errors affecting pressure estimation, 
Fig.  13 plots the base truncation error, three-dimensional 
error, and random error variation with Reynolds numbers 
spanning laminar (ReD = 100), transitional (ReD = 300) 
and turbulent (ReD = 1575) regimes. The errors were 
decomposed based on evaluations of the pressure field 
using the omni-directional method at a fixed spatial and 
temporal resolution. Successive pressure fields were esti-
mated for each ReD using two-dimensional and three-
dimensional calculations of the pressure gradient with 
and without velocity noise applied (�u = 0% or 2%). For 
ReD = 100, the near wake development is essentially 
two-dimensional and the pressure error is due primar-
ily to �u and �trunc, i.e., due to random error propagation 
and truncation error from the finite sampling resolution. 
For ReD = 300, �3D becomes comparable to the other 
two errors due to the onset of mode B instabilities. For 
ReD = 1575, �3D is dominant over the �truc and �rand. The 
truncation error shows little change for ReD = 300 − 1575, 

while the random error decreases for increasing ReD. The 
substantial decrease in the random error contribution to 
the total pressure error for increasing ReD is attributed to 
the growth of �3D with ReD, which acts in a quasi-random 
manner in the wake, since the out-of-plane velocities and 
gradients are produced by passing turbulent structures of 
varying orientations. The addition of �u = 2% artificial 
random error onto the three-dimensional errors, which can 
reach over 20% locally (Fig. 10c), has a marginal additive 
effect on the total integrated pressure errors in the wake. 
This decreased sensitivity to random error is also seen in 
the optimization surfaces for ReD = 1575 in Fig.  3 with 
respect to WS and facq. Hence, for turbulent regimes, the 
use of planar data for pressure reconstruction is shown to 
lead to significant errors where three-dimensional vortices 
develop. To resolve the pressure in a developed turbulent 
wake region with error levels below 5%, volumetric veloc-
ity data is required. However, planar techniques retain rea-
sonable accuracy for estimating the surface pressures, since 
the magnitude of �3D near the cylinder surface is relatively 
low when transition occurs in the near wake (Figs. 6, 10). 
This conclusion is further supported by the experimental 
results of de  Kat and van Oudheusden (2012), who find 
good agreement in their surface pressure transducer meas-
urements with pressure measurements obtained from pla-
nar pressure PIV on the side of a square cylinder, where 
flow is predominantly two-dimensional. On the other hand, 
as pointed out by Ghaemi et  al. (2012), volumetric data 
is required for accurate pressure reconstruction in a fully 
developed turbulent boundary layer.

4  Conclusion

Direct numerical simulations of flow over a circular cylin-
der in laminar, transitional and turbulent vortex shedding 
regimes are utilized to evaluate various pressure estimation 

Fig. 12  RMS of the three-dimensional error related to the standard 
deviation of the planar divergence of the velocity field

Fig. 13  Decomposition of the pressure field error into random, trun-
cation, and three-dimensional components. Based on pressure evalua-
tion using the omni-directional integration technique at D∕WS = 20 
and facq∕fs = 63–73. �trunc is the error using 3D NS equations for 
�u = 0%, �3D is the difference between the errors using the 2D NS and 
3D NS equations for �u = 0%, and �rand is the additional error when 
using the 2D NS equations for �u = 2%
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techniques typically applied to PIV measurements. The 
simulation data are uniformly sampled in time and space 
to mimic experimental PIV data, and a number of common 
methods are evaluated based on their ability to accurately 
estimate the wake and surface pressures when the mim-
icked PIV data is subjected to artificial, uncorrelated noise 
levels typical of experimentation (�u). The results indicate 
that the Poisson equation, omni-directional, and local least 
squares methods exhibit characteristically lower error sen-
sitivity compared to the eight-path method. Hence, the 
Poisson equation, omni-directional, and local least squares 
methods are recommended for use in instantaneous pres-
sure and force evaluation for immersed cylindrical bodies 
or similar vortex dominated shear flows.

An analytical model for the uncertainty associated with 
Eulerian pressure estimation from PIV data is developed 
and is shown to adequately predict the optimal spatial and 
temporal resolutions to minimize the pressure field uncer-
tainty for a given flow with a given characteristic spatial 
wavelength (�x) and temporal scale ( fflow), as well as trends 
in these optimums with ReD and �u. The model indicates 
ranges of temporal and spatial resolutions where the ran-
dom error propagation or the truncation error is amplified 
significantly. The current study suggests �x∕WS =14.3–25 
and facq∕fflow =18–30 for optimal pressure integration, 
incorporating both the effect of random and truncation 
error on the resulting fields. For pressure estimations based 
on material acceleration estimates from Lagrangian trajec-
tory reconstructions over multiple velocity fields, the opti-
mal acquisition frequency increases proportional to the size 
of the velocity field kernel. The model is validated with a 
parametric study which computes pressure integrations 
over a range of spatial and temporal resolutions, velocity 
error levels, and Reynolds numbers. The resulting minima 
within the optimization set are extracted and show good 
agreement with the derived model. The equations for the 
optimal sampling parameters can be used, in conjunction 
with estimates of the dominant temporal and spatial scales 
of the flow, for the selection of experimental sampling 
parameters to minimize pressure estimation error.

Errors due to three-dimensional vortex structures are 
evaluated systematically via a comparison of pressure 
estimations obtained from two-dimensional, planar and 
three-dimensional, volumetric data. The results show that 
the increase in flow three-dimensionality moving from 
transitional (ReD = 300) to turbulent (ReD = 1575) shed-
ding regimes leads to substantial local errors (>20%) in the 
pressure fields estimated from planar measurements. These 
errors are reduced substantially (to ≈1%) when volumetric 
data is used, and hence volumetric measurements are essen-
tial for accurate evaluation of pressures in highly turbulent 
regions, i.e., in the turbulent wake away from the cylinder 
surface. On the other hand, when transition occurs in the 

near wake, surface pressure estimations from planar veloc-
ity fields can yield reliable results. Based on the analysis 
of the planar velocity divergence and three-dimensional 
error statistics, planar pressure techniques can be expected 
to produce reliable estimates in regions where the out-of-
plane gradients are approximately less than half of in-plane 
velocity gradients.
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