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1  Introduction

Thanks to the enormous improvements regarding the qual-
ity of the equipment and the evaluation techniques during 
the last decades, nowadays PIV provides reliable veloc-
ity field distributions in transparent fluids even when the 
in-plane and out-of-plane loss-of-pairs is significant and 
strong gradients are present (Stanislas et  al. 2003, 2005, 
2008; Kähler et  al. 2016). The valid detection probabil-
ity of a shift vector depends on the height of the correla-
tion peak with respect to the correlation noise. Keane and 
Adrian (1992) showed that the formation of a well-detect-
able correlation peak is sufficiently likely if the number of 
particle images within the interrogation window is NI > 7 . 
For larger numbers of particle images, the contrast of the 
correlation function further increases. However, using a 
larger number of particle images is not efficient in terms 
of spatial resolution. The interrogation window size and 
thus NI must be selected carefully to compromise between 
valid detection probability and spatial resolution. It is well 
known that loss-of-correlation due to in-plane motion FI , 
out-of-plane motion FO or displacement gradients F� 
leads to a decreased probability for the detection of valid 
displacement vectors (Raffel et al. 2007; Adrian and West-
erweel 2010). To keep these effects into account, the opti-
cal magnification, the seeding concentration, the light-
sheet thickness and the size of the interrogation windows 
should be selected such that the effective number of parti-
cle images is N = NIFIFOF� > 7. Usually, the one-quarter 
rule proposed by Keane and Adrian (1990) ensures a suf-
ficiently high value of FI for the first evaluation pass. For 
following evaluation passes, the in-plane loss-of-pairs is 
compensated by multi-pass interrogation techniques using 
window shifting (Willert 1996), such that FI = 1 (at least 
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for the final pass) for state-of-the-art multi-pass PIV evalu-
ation methods. In-plane gradients can be compensated by 
combining multi-pass interrogation techniques with win-
dow deformation approaches (Scarano 2001). In the case of 
dominant out-of-plane motion, the time separation between 
the double images �t must be selected carefully to find a 
compromise between a large dynamic velocity range and a 
small amount of loss-of-pairs (Adrian 1997; Scharnowski 
and Kähler 2016).

After optimizing the probability in detecting a valid vec-
tor the problem of quantifying the uncertainty of the results 
emerged. Promising approaches for the uncertainty quanti-
fication are published by Timmins et al. (2012), Charonko 
and Vlachos (2013), Sciacchitano et al. (2013, 2015), Wil-
son and Smith (2013), Christensen and Scarano (2015), 
Neal et  al. (2015), Wieneke (2015), Xue et  al. (2015), 
Scharnowski and Kähler (2016), Kähler et  al. (2012a, b). 
It was shown that the uncertainty of PIV measurements 
depends on many parameters in a complex manner, includ-
ing particle image size, particle image density, turbulent 
fluctuations, noise level, velocity gradients and many more. 
Knowledge about the individual parameters is not neces-
sarily required in order to estimate the shift vectors uncer-
tainty if one analyzes the shape of the correlation func-
tion (Wieneke 2015). However, knowledge about the effect 
of the different parameters on the uncertainty certainly is 
desirable to identify the most important error sources and 
to optimize PIV experiments efficiently. To do so, it is nec-
essary to determine not only the uncertainty with respect 
to the parameters, which can be done with the help of syn-
thetic PIV images, but also to determine the value of these 
parameters from the PIV images.

One important parameter, which is difficult to determine 
from experimental PIV images, is the image noise level or 
the signal-to-noise ratio. Image noise is mainly generated 
by statistical processes during the collection of photons, 
the generation of photoelectrons and during the readout 
and amplification of the electrons in the camera sensor. The 
photon noise is characterized by a Poisson distribution, and 
the readout and amplification noise can be approximated by 
Gaussian noise (Jähne 2013; Hain et  al. 2007). The noise 
level depends on the signal level itself. Thus, PIV images 
with bright background are also characterized by a higher 
noise level. Furthermore, the noise level is different for dif-
ferent camera sensors and also changes with its tempera-
ture due to thermal excitation of electrons.

Image noise reduces the correlation function’s contrast 
of cross-correlated PIV images and therefore raises the 
uncertainty for the shift vector estimation. Figure  1 illus-
trates, based on synthetic images, that the noise level σn , 
which is the standard deviation of random noise, affects 
the shift vector uncertainty �Xrms quite strongly. While 
the particle image diameter D was kept constant, different 

numbers of particle images per pixel Nppp were tested. The 
lower the particle image density is the higher the shift vec-
tor uncertainty becomes. Interestingly, the effect of Nppp 
on �Xrms becomes larger with increasing noise levels. This 
illustrates that knowledge about all individual parameters is 
required to optimize PIV measurements.

Unfortunately, no method exists to determine the image 
noise level reliably from PIV images. To overcome this 
problem, a new method to estimate the loss-of-correlation 
due to image noise Fσ from the height of the autocorrela-
tion function is proposed in this work. It will be shown that 
a new definition of the signal-to-noise ratio SNR allows 
for an analytical solution for the loss-of-correlation due to 
image noise with respect to SNR.

Synthetic images are used to analyze the effect of dif-
ferent parameters on the correlation function and the shift 
vector uncertainty. The generation of the synthetic images 
is briefly discussed in the following section. Section  3 
describes how the loss-of-correlation is determined from 
PIV images, and Sect.  4 discusses the new SNR defini-
tion. Section 5 shows how the shift vector uncertainty can 
be estimated from height of the autocorrelation function for 
a specific PIV evaluation algorithm. Finally, the developed 
methods for the estimation of Fσ and SNR are applied to an 
experimental example to prove the theoretical and numeri-
cal predictions.

2 � Synthetic PIV images

The generation and analysis of synthetic PIV images 
is a well-established method to investigate the effect of 
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Fig. 1   Shift vector uncertainty �Xrms computed from synthetic PIV 
images as a function of the image noise level σn/I0 for different par-
ticle image densities Nppp. Particle image diameter and interrogation 
window size were set to D = 3.0 px and 32× 32 px, respectively
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different parameters on the shift vector uncertainty, as 
discussed in Kähler et  al. (2012a), Stanislas et  al. (2003, 
2005, 2008) and other works. The main advantages of syn-
thetic PIV image analysis is that all parameters can be pre-
cisely controlled and varied independently over a range not 
achievable in experiments. On the other hand, all important 
parameters must be considered in order to generate realistic 
data.

All synthetic images were generated using MATLAB 
functions, as discussed in detail in Scharnowski and Kähler 
(2016). The controlled image parameters include: the maxi-
mum particle image intensity I0, the particle image diam-
eter D (width at which the intensity drops to I0/e2), number 
of particle images per pixel Nppp, noise level and others. 
The image noise was simulated as homogeneous back-
ground noise with constant standard deviation σn, referred 
to as noise level in the following, and a mean intensity 
of 5σn. This approach accounts for PIV images with high 
background intensity that can reach the particle image 
intensity. Photon shot noise, which becomes very impor-
tant for high particle image intensities combined with low 
background intensities, was not included in the synthetic 
images. In order to account for a three-dimensional particle 
distribution, the intensity of the particle images was com-
puted based on their z-position. For most of the images a 
top-hat laser profile was simulated as this resembles quite 
nicely the intensity distribution of typically used Nd:YAG 
lasers. However, in Sect.  4.2 the effect of different light-
sheet profile is discussed in detail. The discrete pixels’ 
gray values were computed from the integral over the pix-
els’ areas, corresponding to a sensor fill-factor of 1. Image 
noise with different distributions was added to the images. 
Gaussian noise was simulated for most of the images, but 
other distributions are tested in Sect. 4.1. Between the first 
synthetic PIV image A and the second one B a small par-
ticle image displacement of ±1 px, with a constant gradi-
ent in y-direction, was simulated to capture all possible 
subpixel displacements in the analysis. This is important 
to achieve representative results. To account for the dis-
crete nature of digital images, the intensity distribution was 
converted to 16-bit unsigned integer numbers. The image 
parameters were varied to study the effect of the noise level 
on the loss-of-correlation and the shift vector uncertainty. 
Figure 2 shows small sections (100× 100 px) of example 
images with different noise levels and different particle 
image densities. The full size of the synthetic images was 
1024× 1024 px.

3 � Loss‑off‑correlation

The function of the cross-correlation coefficient C(ξ ,ψ) of 
a PIV image pair is computed from the averaged product 

of the intensity variations normalized by the product of the 
standard deviations of the intensity variations within the 
interrogation windows of the two images A and B:

where (x, y) are coordinates of the image plane within the 
interrogation window, (ξ ,ψ) are the displacements and σA 
and σB are the standard deviations of the intensity vari-
ations within the interrogation windows of the images 
A and B, respectively. The intensity variations are com-
puted from the image intensity I and the mean intensity 
〈I〉:

for both images A and B.
If random noise is added to the image intensity the shape 

of the correlation function, computed from Eq. (1), remains 
unchanged on average. However, the denominator in Eq. (1) 
increases. The standard deviation of a noisy image σA,n is:

where σn is the standard deviation of the noise level. Thus, 
image noise results in a decreased correlation signal. The 
loss-of-correlation due to image noise can be defined as the 
ratio of the averaged correlation function with and without 
image noise:

(1)C(ξ ,ψ) =
∑X

x=1

∑Y
y=1 I

′
A(x, y) · I

′
B(x − ξ , y − ψ)

X · Y · σA · σB

(2)I ′(x, y) = I(x, y)− �I�
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Fig. 2   Examples of synthetic PIV images with constant particle 
image diameter D = 3 px, varying particle image density (from top to 
bottom) but increasing noise level (from left to right)
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It is important to note that the loss-of-correlation due to 
image noise Fσ not only depends on the noise level but also 
on the standard deviation of the PIV images, where σA is 
a function of the maximum particle image intensity I0, the 
particle image diameter D and the particle image density. 
Based on the analysis of synthetic images, it can be shown 
that for 2 ≤ D ≤ 10 and 0.01 ≤ Nppp ≤ 0.1 the standard 
deviation of a noise-free PIV image is in good approxima-
tion given by

with an error of <2%. D2 · π/4 is the area at which the 
intensity is larger than I0/e2.

While the loss-of-correlation due to image noise Fσ is 
superimposed by the loss-of-correlation due to out-of-plane 
motion FO, in-plane motion FI and velocity gradients F� in 
the case of the cross-correlation [see Adrian (1988), Soria 
and Willert (2012) or Scharnowski et al. (2012)], the height 
of the autocorrelation function only depends on the noise 
alone. Figure  3 illustrates the normalized autocorrelation 
function R for three different noise levels. The center value 
of the normalized autocorrelation function always equals 
one due to the self-correlation of the noise. By using the 
intensity of the surrounding pixels without the center pixel 
to approximate the discrete autocorrelation function by a 
Gaussian fit function, the estimation of the loss-of-correla-
tion from the peak height of the fit function Fσ becomes 
possible. It is evident from the figure that Fσ decreases with 
increasing noise level. The MATLAB code for the applica-
tion of the fit function is provided in the “Appendix.”

According to Eqs. (4) and (5) the loss-of-correlation due 
to image noise varies with D and Nppp for a constant noise 
level. This is shown in Fig. 4, where the maximum inten-
sity of the particle images I0 and the image noise standard 
deviation σn were kept constant, while D and Nppp were 
changed over a broad range. It becomes clear from the fig-
ure and from Eq. 5 that the ratio I0/σn, which is often used 
as signal-to-noise ratio for PIV images, is not suited for the 
estimation of the loss-of-correlation due to image noise. 
This is obvious for the following two reasons: First, not 
only the center of the particle images contributes to the cor-
relation function but also the lower intensity values located 
around the maximum. Thus, larger particle images lead to 
higher signal and to less loss-of-correlation if the particle 
image intensity is kept constant. Second, more particle 
images increase the standard deviation of the image inten-
sity, according to Eq. (5), which results in a reduced effect 
of the noise level on the loss-of-correlation, according to 

(4)
Fσ =

�Cn�
�C�

=
σA · σB

√

σ 2
A + σ 2

n ·
√

σ 2
B + σ 2

n

.

(5)σA =
I0

2

√

Nppp ·
(π

4
D2 − 1

)

Eq. (4). Thus, higher particle image densities also repre-
sents higher signals and lead to less loss-of-correlation.

It is important to note that in the case of large particle 
images combined with high particle image densities mas-
sive overlapping can occur. On average, the image area is 
fully covered for Nppp ≥ 4/(π · D2). Furthermore, for the 
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computed from synthetic PIV images with D = 3 px and Nppp = 0.1 
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estimation of Fσ from the height of the autocorrelation 
function without center peak, the peak width and thus the 
particle image diameter must be significantly larger than 1 
px.

4 � Signal‑to‑noise ratio

The maximum of the Gaussian fit function Fσ of the auto-
correlation function is equal to the loss-of-correlation of 
the correlation function. Thus, Fσ in Eq. (4) can be com-
puted from image A, assuming that A and B have the same 
maximum intensity and noise level:

Based on this equation, it is proposed to use the ratio of the 
standard deviations of the image intensity and the noise as 
signal-to-noise ratio:

which results in

Following the definition of Eq. (7), the SNR becomes 1 
if σA and σn are equal. In this case the loss-of-correlation 
due to image noise is 50  %. For smaller noise levels Fσ 
becomes larger and reaches 80% for SNR = 2 or 96% for 
SNR ≈ 5, respectively.

The proposed definition of SNR, shown in Eq. (7), is 
universal, because it results in a unique relation between Fσ 
and SNR, which includes the effects of the particle image 
size and the particle image density, according to Eq. (5). 
Figure  5 illustrates the estimated Fσ from synthetic PIV 
images with varying image intensity and varying noise 
level. For each symbol type in the figure, the particle image 
diameter was varied between 2 ≤ D ≤ 10 px and the par-
ticle image density varied between 0.01 ≤ Nppp ≤ 0.1, 
like in Fig.  4. The results clearly show that all estimated 
values collapse nicely with the theoretical curve given by 
Eq. (8). It is evident from Fig. 5 that the often used defi-
nition, I0/σn = SNR, does not result in a constant loss-of-
correlation. The ratio I0/σn only represents the same SNR 
as σA/σn if Nppp = 4/

(

D2 · π/4− 1
)

, according to Eq. (5). 
For D = 3 px, for instance, the number of particle images 
per pixel must be Nppp ≈ 0.65 to fulfill the condition 
I0 = σA, which is a rather high particle image density.

On the one hand, the effect of particle image den-
sity on the loss-of-correlation is very small for low noise 
levels SNR > 10 (red symbols in Fig.  5). In this region, 

(6)Fσ =
σ 2
A

σ 2
A + σ 2

n

.

(7)SNR = σA/σn,

(8)Fσ =
(

1+
1

SNR2

)−1

.

improving SNR has only little effect on Fσ. On the other 
hand, at higher noise levels, particle image density and 
particle image diameter strongly affect Fσ, in agreement 
with the results of Fig. 4. The steepest slope of the func-
tion Fσ (SNR) is at SNR = 1, where σA = σn and Fσ = 0.5 . 
In this region, improving SNR by increasing the particle 
image intensity or increasing the particle image density is 
most efficient and results in the best gain for Fσ.

4.1 � Effect of noise distribution

So far, only Gaussian noise with a standard deviation of σn 
and a mean value of µ = 5 · σn was considered. To investi-
gate the effect of different noise distributions on the rela-
tion between SNR and Fσ, two more distributions were 
tested. For noisy PIV images it is sometimes favorable to 
suppress noise by subtracting a constant value from the 
image intensity in a preprocessing step. To simulate such 
filtered PIV images, a noise distribution, which covers only 
the positive half of a Gaussian (with zero mean) was ana-
lyzed. Additionally, a slightly skewed Poisson-like distribu-
tion was simulated and tested. Figure 6 illustrates the three 
considered noise distributions normalized by their standard 
deviation. The vertical lines in the figure indicate the mean 
noise intensity.

For the three noise distributions, synthetic PIV images 
with D = 3 px, I0 = 1024 counts and Nppp = 0.1 were 
generated. Thus, the image standard deviation is σA ≈ 400

counts, according to Eq. (5). To achieve SNR values 
between 0.1 and 100, the noise level was varied between 
σn = 4000 and σn = 4. Figure 7 shows that the estimated 
loss-of-correlation nicely collapses on the theoretical 
function for Fσ (SNR) from Eq. (8) for all tested noise 
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Fig. 5   Loss-of-correlation due to image noise as a function of the 
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variation of D and Nppp
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distributions. It can be concluded that the standard devia-
tion σn is the only relevant parameter of the noise distribu-
tion. Consequently, Fσ and SNR can be reliably estimated 
from the height of the autocorrelation function. Figure  7 
also includes a variation of the laser light-sheet profile, 
which is discussed in the following paragraph.

4.2 � Effect of light‑sheet profile

In order to account for a three-dimensional particle imaged 
distribution, the intensity of the particle images was 
adapted to their z-position according to the laser light-sheet 
intensity profile:

I0 is the maximum intensity in the light-sheet center 
and �z0 is the width at which the intensity drops to 
I0 · exp

(

−1/
√
2π

)

≈ 0.67 · I0. The factor 1/
√
2π  ensures 

that the squared intensity is independent of the shape factor 
s for a fixed light-sheet thickness. As a result of this, differ-
ent intensity profiles lead to the same image standard devia-
tion σA, if the spatial density of particle images is kept con-
stant. Consequently, a Gaussian light-sheet profile results 
in more particle images than a top-hat profile. However, 
for a top-hat profile, all particle images have a comparable 
intensity value in contrast to the Gaussian profile case. For 
s = 2 the intensity profile is Gaussian, and for larger val-
ues it becomes closer to a top-hat profile, as illustrated in 
Fig. 8. In the previous analysis, only top-hat profiles with 
s = 104 were simulated.

To investigate the effect of the light-sheet shape on 
the relation between SNR and Fσ, the three shape factors 
s = [2, 10, 104], shown in Fig. 8, were analyzed. As before, 
synthetic PIV images with D = 3 px, I0 = 1024 counts and 
Nppp = 0.1 were generated. It is important to note that Nppp 
refers to the top-hat case. For the generation of the syn-
thetic images, the number of particle images was increased 
by a factor of four and the simulated z-location spans 
±2�z0 to ensure a homogeneous distribution in z-direction.

Figure  7 shows that the theoretical function Fσ (SNR) 
from Eq. (8) is also valid for all laser light-sheet shapes 
examined. Two important conclusions follow from this 
result. First, the effective light-sheet thickness is the 
width at which the intensity drops to 0.67 · I0. Second, the 

(9)I(z) = I0 · exp
[

−
1

√
2π

∣
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effective number of particle images in a non-top-hat light-
sheet is the number of particle images with a maximum 
intensity higher than 0.67 · I0.

4.3 � Estimation of σn and σA

The signal-to-noise ratio is estimated from the height of the 
autocorrelation function. The inverse function of Eq. (8) is:

If Fσ is measured, the ratio σA/σn can be computed. The 
absolute values of σA can be directly computed from Eq. 
(6):

because the standard deviation of the noisy image σA,n and 
Fσ are measurable quantities. The noise level σn follows 
from Eqs. (6) and (11):

Thus, the signal σA and the noise level σn can be extracted 
from PIV images, theoretically.

Therefore, Fσ must be estimated with high confidence. 
Figure 9 illustrates how the window size affects the esti-
mation of Fσ. As before, synthetic PIV images with 
D = 3 px, I0 = 1024 counts and Nppp = 0.1 were gener-
ated. Gaussian noise was added to the images to obtain 
different values for the loss-of-correlation. The window 
size from which the autocorrelation function was com-
puted varied between 32× 32 px and 256× 256 px. The 

(10)SNR =
σA

σn
=

(

1

Fσ

− 1

)−0.5

.

(11)σA = σA,n
√

Fσ ,

(12)σn = σA,n
√

1− Fσ .

markers in the figure represent the mean value of the 
estimated Fσ averaged over 100 windows, and the error 
bars correspond to the standard deviation. The figure 
shows that the smallest window size considered (32× 32 
px) results in a rather large scatter of the estimated Fσ. 
For a window size of 64× 64 px and 128× 128 px, the 
estimated Fσ scatters much less. However, it seems to be 
slightly underestimated in the range between Fσ ≈ 0.2 
and 0.8, for these window sizes. The largest windows 
investigated (256× 256 px) allow for a reliable estima-
tion of Fσ. Thus, it can be concluded that several thousand 
particle images are required for the estimation of the loss-
of-correlation due to image noise from the autocorrelation 
function. For a particle image density of Nppp = 0.1, for 
instance, a window size of 128× 128 px or larger is rec-
ommended. In this work, the autocorrelation function was 
computed from 1024× 1024 px, if not stated differently. 
In principle, the autocorrelation function can also be com-
puted from averaged window correlation (Meinhart et al. 
2000) or single-pixel ensemble-correlation (Westerweel 
et al. 2004; Kähler et al. 2006).

The estimation of σn for different interrogation win-
dow sizes is illustrated in Fig.  10. The smallest window 
size considered (32× 32 px) results in a rather large scat-
ter. Additionally, for σn/I0 ≤ 0.2, the image noise is 
slightly overestimated for a window size of 128× 128 px 
or smaller. The largest window investigated (256× 256 px) 
allows for a reliable estimation of σn down to σn/I0 ≈ 0.03 . 
It can be concluded that for 0.03 ≤ σn/I0 < 1.0, corre-
sponding to 0.4 < SNR ≤ 30, the image noise level can be 
estimated accurately from Fσ.

simulated Fσ

0 0.2 0.4 0.6 0.8 1

es
ti
m
at
ed

F
σ

0

0.2

0.4

0.6

0.8

1

32× 32px
64× 64px
128× 128px
256× 256px
simulated
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5 � PIV uncertainty due to image noise

The analysis of the autocorrelation function reveals the 
loss-of-correlation due to image noise. With the new defini-
tion of SNR, the ratio σA/σn can now directly be measured. 
In order to estimate the shift vector uncertainty based on 
image noise for experimental PIV images, it is necessary to 
generate a look-up table from synthetic images by using the 
same evaluation software and the same settings. Figure 11 
shows the relation between the shift vector uncertainty 
and Fσ computed from synthetic images with D = 3 px, 
I0 = 1024 counts and Nppp = 0.1 and different noise levels. 
The displacement fields were computed by using the soft-
ware DaVis 8.2.3 (LaVision GmbH), including multi-pass 
processing with iterative image deformation and Gauss-
ian window weighting. It is important to keep in mind that 
the shift vector uncertainty depends not only on the image 
noise level, but also on many other parameters, as discussed 
in Scharnowski and Kähler (2016) in more detail. Thus, the 
results from Fig. 11 do not enable for the uncertainty esti-
mation on its own. In general, a multi-dimensional look-up 
table, covering all relevant parameters, is required (Tim-
mins et  al. 2012; Wilson and Smith 2013). Nevertheless, 
the image parameters used for Fig.  11 are representative 
and the trends are rather universal.

It becomes clear from Fig. 11 that the shift vector uncer-
tainty strongly depends on the image noise, in agreement 
with the results of case B of the third PIV challenge (Stan-
islas et  al. 2008). Particularly, for 0.8 ≤ Fσ ≤ 1.0, which 
is the relevant region for high quality experiments, the 
slope is rather steep. Thus, in order to be able to estimate 
the uncertainty from the effect of individual parameters, as 

discussed by Wilson and Smith (2013) or Timmins et  al. 
(2012), it is important to precisely know the value of the 
image noise parameter.

6 � Experimental example

In order to prove the proposed methods for the estimation 
of Fσ and SNR on real PIV images, a wind tunnel experi-
ment was performed. The experimental setup to measure 
the open jet flow is sketched in Fig.  12. The flow veloc-
ity was set to u∞ = 19.0 m/s and the air was seeded with 
DEHS (Di-Ethyl-Hexyl-Sebacat) droplets with an average 
size of 1 μm (Kähler et al. 2002). Downstream of the noz-
zle (360 mm in diameter) the seeding droplets in the center 
of the jet were illuminated by a double-pulse Nd:YAG PIV 
laser with a pulse energy of up to Emax ≈ 18 mJ. A Zeiss 
macroplanar objective lens with 100 mm focal length and 
an f-number of 2 was selected to image the scattered light 
to the sensor of a PCO sCMOS camera. To avoid perspec-
tive errors, a working distance of 400 mm and a field of 
view of 12 mm were used. Only the center part of the cam-
era sensor (512× 512 px) was evaluated. To ensure uni-
form flow conditions, the measurement location was in the 
core of the free jet flow 100 mm downstream of the noz-
zle’s exit.

By varying the laser pulse energy, PIV images with dif-
ferent SNR values were generated. For 18 pulse energy 
levels, ranging from 4 to 100%, 100 image pairs were 
recorded for each case. Figure  13 shows a 200× 200 px 
section of the images for four laser pulse energies E. The 
particle image intensity increases with increasing laser 
energy and more and more particle images become visible, 
as expected. The time between the laser pulses was set to 
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of the effect image noise on the shift vector uncertainty
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20µs corresponding to a maximum shift vector length of 
�X ≈ 15 px to obtain a good relative measurement uncer-
tainty. Due to the uniform flow, uncertainties based on out-
of-plane motion (Scharnowski and Kähler 2016) and bias 
errors due to strongly curved streamlines (Scharnowski and 
Kähler 2013) are negligible.

For all 18 laser pulse energy levels, Fσ was estimated 
from the height of the normalized autocorrelation, whereas 
the autocorrelation function of both images A and B was 
averaged to account for differences between the two 
images. For each pulse energy Fσ was determined by aver-
aging the value over all 100 image pairs. The top part of 
Fig. 14 shows that Fσ increases strongly for laser energies 
below 25% from 0.4 to 0.8 and decreases slowly for higher 
energies. The reason why Fσ does not reach values close to 
1 is the relatively high optical magnification, which causes 
low particle image intensity and low particle image density. 
Both quantities directly affect the image standard deviation, 
according to Eq. (5), and thus the SNR and Fσ. The bottom 
part of Fig. 14 shows the estimated SNR, computed from 
Eq. (10), as a function of the laser pulse energy. The SNR 
increases strongly for laser energies below 25% from 0.8 to 
2.0 and decreases slowly for higher energies. At maximum 
laser power, the SNR is reduced to 1.7 compared to 25% 
power. In order to achieve a higher SNR, one could try to 
increase the seeding density.

The noise level of the experimental PIV images was 
estimated from Fσ and σA,n by using Eqs. (11) and (12). 
Figure  14 shows the estimated σA and σn, respectively. 
On the one hand, the signal increases with increased laser 
energy. On the other hand, the noise level increases at a 
comparable rate. As a result, increasing the laser energy to 
values of more than 25% does not result in increased SNR 
for this experiment.

To investigate the effect of the laser pulse energy on the 
shift vector uncertainty, 100 instantaneous velocity fields 
were computed for each selected laser energy by using the 
software DaVis 8.2.3 (LaVision GmbH). Therefore, multi-
pass PIV evaluation including iterative image deformation 
and Gaussian window weighting was applied. Three dif-
ferent final interrogation window sizes were investigated: 
16× 16 px, 32× 32 px and 64× 64 px with an overlap of 
50%, respectively. It was shown in Scharnowski and Kähler 
(2016) that the turbulence level of the flow facility is well 
below 1% of the free stream velocity. Thus, shift vector 
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Fig. 13   Examples of experimental PIV images with varying laser 
pulse energy intensity

rel. laser pulse energy

F
σ

0

0.2

0.4

0.6

0.8

1

Fσ

rel. laser pulse energy

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

σ
n
,σ

A
in

co
un

ts

0

50

100

150

200

250

300

σn
σA
SNR

0

S
N
R

0

0.5

1

1.5

2

2.5

3

Fig. 14   Loss-of-correlation due to PIV image noise (top) as well as 
signal-to-noise ratio, image noise level and image signal level (bot-
tom) for experimental PIV images with varying laser pulse energy



	 Exp Fluids (2016) 57:119

1 3

119  Page 10 of 12

fluctuations larger than 0.05 px are assumed to be directly 
related to the measurement uncertainty. Figure  15 illus-
trates the standard deviation of the estimated shift vector’s 
horizontal component, where �Xrms is at first computed 
locally from the 100 velocity fields for each interrogation 
window and thereafter averaged over the field of view.

Figure  15 shows that the shift vector uncertainty 
decreases rapidly with increasing laser pulse energy. Fur-
thermore, �Xrms decreases with increasing interrogation 
window size, as expected. Depending on the interrogation 
window size, �Xrms remains constant from a certain laser 
pulse energy. For the 32× 32 px and the 64× 64 px inter-
rogation windows, the constant uncertainty value starts 
approximately at the maximum of SNR (25% of laser 
energy). In the case of the smallest interrogation windows 
(16× 16 px), �Xrms remains constant from significantly 
higher laser pulse energy (≈50%). The increasing number 
of particle images with the laser pulse energy is probably 
more important than the SNR value for this window size. 
The lowest uncertainty is achieved for 64× 64 px at laser 
pulse energies between 0.4 and 0.65. Here, �Xrms reaches 
values of ≈0.05 px, which corresponds to a relative uncer-
tainty of 0.05 px/15 px ≈ 0.003.

The discussed experiment shows that the proposed 
methods for the estimation of the loss-of-correlation due 
to image noise, for the signal-to-noise ratio, for the image 
noise level and for the signal level are well suited for real 
PIV images. The estimation of Fσ, SNR, σn and σA allow 
for a quantitative comparison of different PIV images and 
makes their quality quantitatively accessible.

7 � Summary and discussion

The loss-of-correlation due to image noise Fσ depends on 
the particle image intensity, the particle image density, 
the particle image size and the image noise in a complex 
manner. The presented approach shows that the loss-of-
correlation can be determined from the distribution of the 
autocorrelation function with high confidence if the central 
peak is rejected. Furthermore, it is shown that the ratio of 
the standard deviations of the (noise-free) PIV image and 
the image noise is a useful and quite universal definition for 
SNR. The definition includes the effect the particle image 
intensity, the particle image density, the particle image size 
and the image noise. Due to the unique relation between 
SNR and Fσ, the newly defined SNR can directly be deter-
mined from the autocorrelation function, for the first time. 
The relation between SNR and Fσ is very general. The 
findings are also valid for different noise distributions and 
different light-sheet profiles. It was shown that not only 
the SNR but also the noise level σn and the signal level σA 
can be estimated from of PIV images. The variation of the 
light-sheet shape factor showed that the effective thickness 
of a Gaussian light-sheet is 1.8 times the standard deviation 
(there the intensity drops to 0.67 times the maximum inten-
sity). A top-hat intensity profile of the same width results 
in the same image standard deviation and thus in the same 
loss-of-correlation and the same shift vector uncertainty. 
The measurable quantity Fσ allows for the estimation of the 
effect of the image noise on the shift vector uncertainty.

The findings of this work are an important step toward a 
full characterization of PIV images. Knowledge about SNR 
enables PIV users to compare their measurements quantita-
tively and to optimize the measurement setup. Furthermore, 
due to the effect of the image noise on the autocorrelation 
function, special care needs to be taken when estimating 
further properties from the autocorrelation function, like 
the particle image diameter or the particle image density 
(Warner and Smith 2014).

Finally, this analysis implies that the classical rule pro-
posed by Keane and Adrian (1992), N = NIFIFO > 7, 
which was extended by the loss-of-correlation due to gra-
dients F� by Westerweel (2008), must also be extended 
by the loss-of-correlation due to image noise. Hence, the 
effective number of particle images is N = NIFIFOF�Fσ. 
The recommendation N > 7 in the interrogation window is 
still valid, in order to keep the number of spurious vectors 
sufficiently low, such that they can be reliably detected.
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Appendix

The MATLAB code for the estimation of Fσ, SNR, σA and 
σn is shown in the following:
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