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comparison to a reference value from literature confirms 
that the drag coefficient estimates are reasonable, demon-
strating the validity of the technique.

1  Introduction

This study is a follow-up to a previous work performed 
by Neeteson and Rival (2015), in which a novel technique 
was developed to extract time-resolved, three-dimensional 
pressure fields from Lagrangian flow data. The purpose of 
this follow-up study is to evaluate the performance of the 
existing technique, as well as to experimentally validate 
the results using representative high-density Lagrangian 
data. To this end, the technique is applied to two separate 
cases: first, an analytical case is utilized to evaluate the 
performance of the technique compared to that of a stand-
ard Eulerian pressure-extraction procedure. Second, the 
technique is validated by comparing the extracted pressure 
fields using the Lagrangian and Eulerian techniques for a 
sphere free-falling at a Reynolds number of 2100.

1.1 � Background on Lagrangian flow measurement 
and pressure extraction

Lagrangian flow measurement techniques have become an 
increasingly active area of study in the literature. Several 
recent investigations into more sophisticated particle track-
ing velocimetry (PTV) algorithms have yielded very prom-
ising results. A few selected novel processing techniques 
which have been recently developed or proposed include: 
the ‘iterative particle reconstruction’ (IPR) technique devel-
oped by Wieneke (2013), the ‘Shake-The-Box’ (STB) tech-
nique developed by Schanz et  al. (2013b, 2014), which 
is based on IPR, and a hybrid algorithm that combines 

Abstract  As a follow-up to a previous proof-of-principle 
study, a novel Lagrangian pressure-extraction technique is 
analytically evaluated, and experimentally validated using 
dense 4D-PTV data. The technique is analytically evaluated 
using the semi-three-dimensional Taylor–Green vortex, and 
it is found that the Lagrangian technique out-performs the 
standard Eulerian technique when Dirichlet boundary con-
ditions are enforced. However, the Lagrangian technique 
produces worse estimates of the pressure field when Neu-
mann boundary conditions are enforced on boundaries 
with strong pressure gradients. The technique is experi-
mentally validated using flow data obtained for the case 
of a free-falling, index-matched sphere at Re = 2100. The 
experimental data were collected using a four-camera par-
ticle tracking velocimetry measurement system, and pro-
cessed using 4D-PTV. The pressure field is then extracted 
using both the Eulerian and Lagrangian techniques, and 
the resulting pressure fields are compared. Qualitatively, 
the pressure fields agree; however, quantitative differences 
are found with respect to the magnitude of the pressure 
minima on the side of the sphere. Finally, the pressure-
drag coefficient is estimated using each technique, and the 
two techniques are found to be in very close agreement. A 
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tomographic reconstruction with particle tracking devel-
oped by Cornic et  al. (2015). Historically, Lagrangian 
flow-measurement techniques have been limited compared 
to their Eulerian counterparts, with respect to the maxi-
mum optical particle density on the raw images. STB, or 
4D-PTV, allows Lagrangian flow data to be collected using 
images with optical particle densities of up to 0.125 par-
ticles per pixel (ppp), which is more than a factor of two 
greater than the current maximum theoretical optical par-
ticle densities for PTV and IPR [up to 10−2 ppp for PTV, 
as shown by Lüthi et  al. (2005), up to 5 × 10−2 for IPR, 
as shown by Wieneke (2013)], and on par with the maxi-
mum theoretical optical particle density for tomographic 
PIV [up to 0.2, as shown by Lynch and Scarano (2015)]. As 
these flow measurement techniques become increasingly 
robust, it is imperative that novel techniques are developed 
to properly capitalize on the unique advantages inherent to 
Lagrangian flow data.

One area which warrants further investigation is pressure 
extraction using Lagrangian flow data. To date, there has 
been considerable investigation into the extraction of pres-
sure fields from velocimetry data, and these investigations 
are documented in the literature review performed by van 
Oudheusden (2013). While many studies have used Lagran-
gian techniques in various stages of the pressure-extraction 
procedure, such as the studies performed by Violato et al. 
(2011), Novara and Scarano (2013) and Jeon et al. (2014), 
scattered Lagrangian flow data have universally been inter-
polated to a structured grid to perform spatial derivatives 
and the iterative integration necessary for pressure extrac-
tion. In the extraction of pressure fields from velocimetry 
data, the material derivative of velocity is of great impor-
tance. With Eulerian flow data, this quantity must be calcu-
lated using the following equation:

where u is the velocity, Du/Dt is the material derivative, 
and ∇ is the vector differential operator. In the Lagrangian 
frame, the material derivative is equivalent to the accelera-
tion of a particle and can be evaluated using the following 
equation:

where the subscript i indicates that the velocity, ui, and 
position, xi, are Lagrangian and therefore refer to a spe-
cific particle rather than a static position in the field. It has 
been shown that evaluation of the material derivative using 
Lagrangian data produces more precise results than when 
using Eulerian data with the same time separation between 
frames (Violato et al. 2011; Novara and Scarano 2013; Jeon 
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et al. 2014). Since the advantages of using Lagrangian data 
for pressure extraction have been well established in the 
literature, the goal of the present study is to go a step fur-
ther and determine whether it is advantageous to extract the 
pressure field in the Lagrangian frame, compared to sim-
ply interpolating the flow data and employing the standard 
Eulerian pressure-extraction techniques.

1.2 � Lagrangian pressure extraction

Before proceeding with this section, it should be noted 
that this section, including Fig. 1, consists in large part of 
summarized material from the introduction to the previous 
investigation into this novel Lagrangian pressure-extraction 
technique (Neeteson and Rival 2015). This summarized 
material has been included in this work because it is critical 
to understanding the construction of the Lagrangian net-
work, and the manner in which the pressure is extracted on 
this network.

In the proposed Lagrangian technique evaluated in this 
work, Poisson’s equation for pressure is solved to extract 
the pressure field. The procedure of using Poisson’s equa-
tion for pressure to extract the pressure field from experi-
mental flow data was first employed over fifteen years 
ago by Gurka et  al. (1999), using PIV data collected in a 
constricted pipe and an impinging air jet. In the first imple-
mentation of Poisson’s equation for pressure on velocime-
try data, finite-differences were used to evaluate the mate-
rial derivative in an Eulerian frame, and a simple iterative 
solver was used to extract the pressure. Fujisawa et  al. 
(2005) built on Gurka’s technique by employing the suc-
cessive over-relaxation (SOR) technique to solve Poisson’s 
equation for pressure. In the interim, several subsequent 
studies have developed and employed more mathemati-
cally sophisticated methods of extracting the pressure field, 

Fig. 1   Example of a Voronoi tesselation in a two-dimensional space. 
The black dots represent data node locations. Black lines indicate 
connections between neighbours, red lines indicate Voronoi cell 
boundaries. Point i and neighbour j have a corresponding distance 
and Voronoi cell face size, labelled hij and sij, respectively
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including studies which have: employed Taylor’s hypoth-
esis and Reynold’s decomposition to separate the flow 
field and recast the governing equations (Laskari et  al. 
2014), allowed pressure fields to be extracted from single 
snapshots using the vorticity transport equations (Sch-
neiders et  al. 2014), and employed the Glowinski–Pirro-
neau decomposition to separate the governing equations 
into a larger differential system in order to produce much 
more accurate estimates of the pressure field (Auteri et al. 
2015). In the present study, however, the SOR method is 
used to iteratively solve Poisson’s equation for pressure, 
in a Lagrangian frame. This simpler method is chosen to 
first demonstrate the potential of the Lagrangian network, 
before moving on to investigations of more mathematically 
sophisticated pressure-extraction algorithms adapted to the 
Lagrangian network.

In a discrete Lagrangian frame, Poisson’s equation for 
pressure is a discrete boundary value problem described by 
the following equations:

where i is an index referring to a specific particle, p is 
the pressure, pD,i is the prescribed pressure at a Dirichlet 
boundary, u is the velocity, Du/Dt is the material derivative 
(or acceleration of a particle), ni is the boundary normal 
vector at point i (if applicable), ρ is the density, and µ is the 
dynamic viscosity. In order to solve this discrete boundary 
value problem without interpolation, several concepts are 
required.

In order to perform operations in the Lagrangian frame, 
a network must first be constructed on the field of particles, 
using the Delaunay triangulation and the Voronoi tessel-
lation (Aurenhammer 1991). In short, these mathematical 
constructions allow a space to be filled with cells. Each cell 
corresponds to a particle, and particles that are linked in the 
network share a cell face. The distance between the neigh-
bours, h, the area of the shared cell face, s, and the normal 
vector pointing from one particle to a neighbour, n̂, are the 
network parameters that are used to perform vector calcu-
lus operations in the Lagrangian frame.

Next, it is necessary to be able to evaluate the diver-
gence, gradient, and Laplacian operators on the network. 
The divergence and gradient are evaluated using the fol-
lowing expressions, which were originally derived by Neet-
eson and Rival (2015):
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where i ∈ Neumann B.C.,

(5)pi = pD,i, where i ∈ Dirichlet B.C.,

where ∇ is the vector differential operator, f is a scalar field, 
F is a vector field, D is the dimension of the space, n̂ij is 
the normalized vector pointing from i to j, sij is the size of 
the cell face shared by i and j, and hij is the distance from 
i to j. For evaluation of the Laplacian operator, the follow-
ing equation, derived by Sukumar and Bolander (2003), is 
used:

Equation 6 combined with Eq. 4 allows for the Neumann 
boundary condition to be enforced. By rearranging Eq. 6, 
an expression can be obtained to obtain the pressure at a 
boundary point as a function of the pressure gradient, the 
network parameters, and the pressure at the point’s neigh-
bours. Equation 7 is used to calculate the divergence of the 
material derivative, which is required in the calculation of 
the pressure source field. Finally, Eq. 8 can be rearranged 
to obtain an expression for calculating the pressure at a 
point as a function of the pressure source field, the network 
parameters, and the pressure at the point’s neighbours. This 
equation is used to iteratively update the value of the pres-
sure field for interior points until convergence is achieved.

Finally, it is necessary to define a procedure for solv-
ing the discrete boundary value problem. In this technique, 
the SOR solver is used. Originally proposed by Young 
(1950), this technique includes a relaxation parameter that 
can be manipulated to either increase the convergence rate 
of a slowly converging integration, or to stabilize a diver-
gent case. In this study, the relaxation parameter was left 
at unity. For additional background on the networking 
technique and integration procedure, the reader is referred 
to the study performed by Neeteson and Rival (2015), in 
which the technique was originally developed.

2 � Analytical case: Eulerian versus Lagrangian 
pressure extraction

An analytical solution to the exact Navier–Stokes equa-
tions was used to evaluate the performance of the Lagran-
gian pressure-extraction technique. This evaluation was 

(6)
∇fi =

∑

j

[(

fi + fj
)

sijn̂ij
]

1

D

∑

j

(

sijhij
)

,

(7)∇ · Fi =

∑

j

[

sijn̂ij ·
(

Fi + Fj

)]

1

D

∑

j

(

sijhij
)

,

(8)∇2fi =

∑

j

(

sij

hij
fj

)

− fi
∑

j

(

sij

hij

)

1

2D

∑

j

(

sijhij
)

.



	 Exp Fluids (2016) 57:102

1 3

102  Page 4 of 18

performed by comparing the results of the Lagrangian 
pressure-extraction method to those of a typical Eulerian 
method. The purpose of this analysis was to evaluate the 
performance of the Lagrangian technique when begin-
ning with Lagrangian flow data, compared to the stand-
ard pressure-extraction technique that has been observed 
in the literature. Therefore, the common starting point for 
each method was a scattered field of particles with known 
velocities and accelerations, equivalent in format to a post-
processed PTV dataset. From this point, the pressure field 
was extracted from the flow data separately using the two 
methods.

In the Eulerian method, the pressure field was extracted 
using the following procedure: first, the flow data were 
interpolated from the scattered particles to a structured 
Eulerian grid using natural-neighbour interpolation (Sib-
son 1981). The source field and pressure-gradient field 
were then calculated using second-order finite-difference 
equations on interior nodes and first-order finite-difference 
equations on boundary nodes. Finally, a standard Poisson 
integration was performed to extract the pressure field. 
Choosing an appropriate pixel or voxel size for the struc-
tured grid is an important step when interpolating scattered 
data. In order to avoid both undersampling and oversam-
pling, the voxel side length was chosen such that the over-
all number of voxels in the domain would be approximately 
equivalent to the number of particles in the original data-
set. Therefore p, the side length of a voxel, was calculated 
using the following equation:

where V is the volume of the domain, and NL is the num-
ber of particles in the Lagrangian dataset. This voxel size 
estimate falls within guidelines published by Hengl (2006) 
when basing the pixel or voxel size on the density of the 
scattered data. Finally, since the volume was cubic, and 
since the number of voxels used must be an integer, the 
number of gridpoints in the Eulerian mesh was calculated 
by dividing the cube root of the total volume by the voxel 
side length, rounding it to the nearest integer, and cubing 
the result:

where NE is the number of gridpoints in the Eulerian frame, 
and ⌊·⌉ is the nearest integer function. The Poisson integration 
was performed using the typical implementation found in the 
literature review performed by van Oudheusden (2013).

In the Lagrangian method, the pressure field was 
extracted using the following procedure: first, points were 

(9)p =
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V
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)1/3

,

(10)NE =
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p

⌉)3

,

added to the boundaries of the domain in order to explic-
itly enforce boundary conditions. Boundary points were 
added by sampling from the boundaries of the Eulerian 
structured grid, excluding the outer edges of each side of 
the cubic measurement volume. Therefore, 

(

(NE)
1/3 − 2

)2
 

were added to each side of the domain to serve as bound-
ary points. Next, the complete field of particles (data points 
and boundary points) was networked together using the 
Delaunay triangulation and Voronoi tessellation. Follow-
ing this, the source field and pressure-gradient field were 
calculated on the Lagrangian network from the flow data. 
Finally, a Poisson integration was performed on the net-
work to extract the pressure field. The optimal method for 
placing boundary points remains an area of active investi-
gation. In the present work, points are placed on the bound-
ary by sampling half of the points from the boundaries of 
the structured grid used in the Eulerian method.

2.1 � The Taylor–Green vortex field

The analytical flow case used to compare the two meth-
ods was the semi-three-dimensional Taylor–Green vor-
tex field. Derived by Taylor and Green (1937), the Tay-
lor–Green vortex field is a closed-form, spatially periodic 
solution to the incompressible Navier–Stokes equations. 
This analytical flow case was chosen for testing for two 
reasons: first, and most importantly, the Taylor–Green vor-
tex field has a known, analytical pressure field which var-
ies in three dimensions. An exact reference pressure field 
allows extraction errors to be accurately estimated, and is 
critical in the evaluation of a pressure-extraction technique. 
The second reason the Taylor–Green vortex field was cho-
sen for evaluation was the spatially periodic nature of the 
flow field. The topology of the flow allows a measurement 
domain containing multiple regions of high and low pres-
sure, testing the technique’s ability to detect multiple struc-
tures in close proximity. Additionally, the topology of the 
flow field results in multiple flow structures intersecting 
the boundaries of the domain. A secondary purpose of this 
evaluation is to test the implementation of the Neumann 
boundary condition, and situations where strong pressure 
gradients are present on the boundary represent a worst-
case scenario for this boundary condition.

The analytical form of the Taylor–Green vortex field is 
unstable, and it is typically used to simulate the genera-
tion of turbulence as the vortices in the field decay (Bra-
chet et al. 1983; Brachet 1991; Shu et al. 2005). However, 
the velocity, material-derivative, and pressure fields can be 
described by closed-form expressions in the instant before 
the field begins to decay (denoted as t = 0). Therefore, this 
case can be used to generate synthetic PTV data. Pressure 
extractions can be performed on this synthetic data, and 
the results can be compared to the exact analytical pressure 
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field. The velocity field at t = 0 in the semi-three-dimen-
sional Taylor–Green vortex field is given by:

where V0 is the characteristic velocity of the flow, and L is 
the characteristic length scale of the flow. The correspond-
ing instantaneous pressure field can be analytically derived 
using Poisson’s equation for pressure, and is given by:

where ρ is the density of the fluid. Figure  2 shows a 2D 
slice of the pressure field at t = 0 and z/L = 0, wherein the 
periodic nature of the flow field can clearly be observed. 
Finally, in order to assign acceleration values to particles in 
the synthetic datasets, the material-derivative field must be 
calculated. Typically, the material-derivative field would be 
calculated using the following vector equation:

(11)ux = V0 sin(x/L) cos(y/L) cos(z/L),

(12)uy = −V0 cos(x/L) sin(y/L) cos(z/L),

(13)uz = 0,

(14)p =
ρV2

0
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However, since the Eulerian temporal derivatives of the 
velocity field (∂u/∂t) are nonzero and unknown, the above 
relations cannot be used. Instead, the closed-form expres-
sion for the instantaneous pressure field can be used to cal-
culate the instantaneous material-derivative field by rear-
ranging the incompressible, vector Navier–Stokes equation:

where µ is the dynamic viscosity of the fluid. For 
all of the tests conducted in this work, the Reyn-
olds number was fixed at Re = 104 by choos-
ing L = 1m,V0 = 10m/s, ρ = 1 kg/m3, and 
µ = 10−3 kg/(ms).

Synthetic tests were conducted in a cubic region of 
side length 3π centred at the origin of the coordinate 
system. This domain was selected to ensure that a suf-
ficient number of vortex structures were contained within 
the volume to adequately test each pressure extraction 
method. Moreover, the selected domain size allowed a 
smaller sub-domain to be defined that itself contained 
several vortex structures. This sub-domain, a smaller, 
cubic region with side length 2π, centred at the origin, 
was used to quantify the pressure-extraction error in each 
case. Excluding points near the boundaries of the domain 
is done to mitigate the influence of erroneous aberrations 
in the extracted pressure field, which are more likely to 
occur near domain boundaries in both the Eulerian and 
Lagrangian methods.

In order to generalize the results of the analysis, it 
is most useful to discuss pressure fields in terms of the 
dimensionless pressure coefficient. The pressure coefficient 
is defined as:

where p0 is some reference pressure and was defined as 
p0 = 0 for the purposes of this analysis. For the remain-
der of the discussion of the analytical test case, all pres-
sure fields will be shown in terms of the pressure coeffi-
cient. Spatial particle densities in the analytical case will be 
shown in terms of the normalized spatial particle density, 
defined as:

Using the STB tracking algorithm with a four megapixel 
camera would allow for up to approximately 4 × 105 par-
ticles to be tracked. Assuming the measurement volume 
is approximately ten times the volume of the character-
istic volume of the flow structures of interest, this results 
in a normalized spatial particle density of approximately 
N∗ ≈ 4× 104.

(16)
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Fig. 2   A 2-D slice (at z/L = 0) of the analytical pressure field, in 
terms of the pressure coefficient, corresponding to the Taylor–Green 
vortex field at t = 0. This flow field is spatially periodic and extends 
infinitely in all directions. The dotted line indicates the intersection 
of the x − y plane with the smaller subset of the domain used to com-
pare pressure-extraction accuracy between methods. This smaller 
domain was used in order to reduce the impact of erroneous results 
near boundaries, which can occur when Neumann boundary condi-
tions are enforced.
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2.2 � Results of Eulerian versus Lagrangian comparison

First, synthetic Lagrangian datasets were created across a 
range of normalized spatial particle densities. The pressure 
field was then extracted from these datasets using both the 
Eulerian and Lagrangian methods, using both Dirichlet and 
Neumann boundary conditions. Since Eulerian and Lagran-
gian methods produce different distributions of errors, the 
most robust criterion for comparison between the cases is 
the 95th percentile of error in each pressure field. The error 
in the extracted pressure field was calculated at each parti-
cle or grid point using the following equation:

where �Cp is the normalized pressure-extraction error 
field, Cp,estimated is the estimated or extracted pressure field, 
Cp,analytical is the analytical pressure field, and |·| is the abso-
lute value function. Then, the 95th percentile was calcu-
lated using the nearest rank method, using the following 
equations:

where n is the ordinal rank corresponding to the 95th per-
centile, ⌈·⌉ is the ceiling function, N is the total number 
of data points, �Cp,ordered is an ordered list of the error in 
terms of pressure coefficient at all points within the sub-
domain, and �Cp,95% is the 95th percentile of pressure-
extraction error in the field.

For each case, at each normalized spatial particle den-
sity, the pressure field was extracted from five different 
randomly seeded particle fields, and the resulting error esti-
mates were averaged together. Figure  3 shows the results 

(19)�Cp =
∣

∣Cp,estimated − Cp,analytical

∣

∣,

(20)n = ⌈.95× N⌉,

(21)�Cp,95% = �Cp,ordered(n),

of this analysis. Initially, for all four cases the relation-
ship between the pressure-extraction error and the normal-
ized spatial particle density follows the same power-law 
relationship observed in the previous investigation into 
this technique (Neeteson and Rival 2015). However, the 
error in the pressure fields extracted using the Lagrangian 
method with Neumann boundary conditions plateaus at 
δCp,95% ≈ 0.12, diverging from the expected power-law 
relationship at N∗ ≈ 75, which is several orders of magni-
tude lower than what is presently achievable using 4D-PTV. 
A linear regression analysis performed on the Dirichlet 
boundary condition case yielded the following power-law 
relations for the Lagrangian and Eulerian methods:

For both methods, the relationship between the pressure-
extraction error and normalized spatial particle density 
agrees with the results obtained in the previous investiga-
tion of this technique (Neeteson and Rival 2015), finding 
a power-law relationship between the pressure-extraction 
error and the normalized spatial particle density. Further-
more, when the Dirichlet boundary condition is applied, the 
95th percentile of error in the Lagrangian extracted pres-
sure fields is approximately half of that in the Eulerian 
fields for a given spatial particle density. Therefore, based 
on this analysis, it can be stated that the Lagrangian method 
produces more accurate pressure fields than the basic 
Eulerian method when Dirichlet boundary conditions are 
enforced on the boundaries. While the Lagrangian method 
with Neumann boundary conditions case initially follows 
the expected power-law relationship with normalized spa-
tial particle density, the error plateaus at Cp,95% ≈ 0.12 

(22)�Cp,95% ≈

{
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Fig. 3   a Plot of the 95th percentile of pressure-extraction error 
(within the previously defined sub-domain) in terms of the pressure 
coefficient versus the normalized spatial particle density for four test 
cases. b Log–log plot of the 95th percentile of pressure-extraction 
error versus the normalized spatial particle density. The Lagrangian 

method, Neumann boundary condition case has been excluded from 
the log–log plot due to its non-conformity to the expected power-law 
relationship. The dashed lines show the results of the linear regres-
sion analysis on the Dirichlet boundary condition cases (red for Eule-
rian, blue for Lagrangian)
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where N∗ ≈ 75. Beyond this point, there appears to be no 
gain in pressure-field accuracy as the density of the data 
is increased. Therefore, when Neumann boundary condi-
tions are enforced on the boundaries, the Eulerian method 
appears to out-perform the Lagrangian method at higher 
normalized spatial particle densities.

A plateau of pressure-extraction accuracy as the number 
of particles is increased is highly irregular. To comment on 
the possible origin of errors in the extracted pressure fields 
in each case, sample pressure fields, and corresponding 
error fields, are presented in Figs. 4 and 5. Figure 4 shows 
sample pressure fields, and their corresponding error fields, 
extracted using the Eulerian and Lagrangian methods with 
Dirichlet boundary conditions for N∗ ≈ 370. In this figure, 
it can be observed that within the interior sub-domain, the 
Lagrangian pressure field displays overall less pressure-
extraction error than the Eulerian pressure field. Moreover, 
the Lagrangian pressure field is more consistent in its accu-
racy when compared to the Eulerian pressure field. In both 
cases, the error in the extracted pressure field is largest in 
regions of high or low pressure, as expected.

Figure  5 shows sample pressure fields, and their cor-
responding error fields, extracted using the Eulerian and 
Lagrangian methods with Neumann boundary conditions 
for N∗ ≈ 370. The cause of the increased error in the 
Lagrangian domain is immediately apparent when Figs. 4 
and 5 are compared. In each figure, the error in the pressure 
field extracted using the Eulerian method is roughly equiv-
alent in both form and magnitude. This result suggests that 
in the basic Eulerian method, the type of boundary condi-
tions implemented have little influence on the overall accu-
racy of the extracted pressure field away from the bounda-
ries. However, the error in the pressure fields extracted 
using the Lagrangian method differs greatly, depending 
on which boundary conditions are employed. It can be 
observed in Fig. 5 that there is a relatively high amount of 
pressure-extraction error on the boundaries of the domain 
when a Neumann boundary condition is employed. The 
error in the extracted pressure field is highest in locations 
where a significant flow structure is cut off by the bound-
ary, and is relatively low in locations where no such struc-
ture is present on the boundary.
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Fig. 4   Sample extracted pressure fields, and corresponding error 
fields, for N∗ ≈ 370 with Dirichlet boundary conditions. The top 
row shows the extracted pressure field, while the bottom row shows 
the corresponding error field. The left column displays results from 

the Eulerian frame, and the right column displays results from 
the Lagrangian frame. All pressure fields shown are a 2D slice at 
z/L = 0, in the Lagrangian frame the slice is constructed by com-
pressing points within the range −0.5 < z/L < 0.5 to a plane
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Due to the nature of an iterative Poisson solver, rela-
tively high errors in one location of the field will diffuse 
through the network and adversely impact the accuracy 
of the solution in neighbouring regions. This effect can be 
clearly observed in Fig. 5: in regions of low pressure on the 
boundary of the domain, there are relatively high errors in 
the extracted pressure field. The errors on the boundary of 
the domain adversely influence the accuracy of the solu-
tion at their neighbours, and this effect diffuses through-
out the domain of integration. The error field observed in 
the Lagrangian domain in Fig. 5 can be seen to be a com-
bination of this diffusion of solution error and the analo-
gous error field in Fig. 4. Therefore, it can be argued that 
observed inaccuracy of the extracted pressure field using 
the Lagrangian method with Neumann boundary condi-
tions is due to a combination of the following factors: first, 
relatively high errors occur in the extracted pressure field 
where strong flow structures intersect the domain bound-
ary. Then, these errors are diffused throughout the domain, 
due to the nature of the iterative Poisson solver.

It is important to note at this point that the chosen ana-
lytical test case represents a near-worst-case scenario in 
terms of the implementation of Neumann boundary condi-
tions. The periodic nature of the flow field guarantees that 
flow structures will be present on the boundaries of the 
domain, regardless of the selected synthetic measurement 
domain. Additionally, the flow structures cut off by the 
boundaries are identical in size and strength to the struc-
tures contained within the synthetic measurement domain. 
In practice, when acquiring flow data for the purposes of 
pressure extraction, it would be desirable to choose a meas-
urement volume such that the boundaries of the domain 
do not cut off significant structures in the flow, if possible. 
In such cases, either a Dirichlet boundary condition could 
be employed, assuming the flow on the boundaries is in 
free-stream, or the pressure gradient used in the Neumann 
boundary condition would be minimal. However, it will 
often not be possible to choose such an optimal measure-
ment domain with favourable boundary conditions. If sig-
nificant flow structures are found to exist on a Neumann 
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Fig. 5   Sample extracted pressure fields, and corresponding error 
fields, for N∗ ≈ 370 with Neumann boundary conditions. The top 
row shows the extracted pressure field, while the bottom row shows 
the corresponding error field. The left column displays results from the 

Eulerian frame, and the right column displays results from the Lagran-
gian frame. All pressure fields shown are a 2D slice at z/L = 0, and in 
the Lagrangian frame the slice is constructed by compressing points 
within the range −0.5 < z/L < 0.5 to a plane
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boundary, and the Lagrangian method is used in its current 
implementation, it is highly probable that the accuracy of 
the solution on the domain would be adversely affected.

The following general conclusions can be drawn based 
on the tests performed using the analytical test case:

First, as expected, Dirichlet boundary conditions have 
been observed to produce better estimates of the overall 
pressure field than Neumann boundary conditions in both 
cases. When Dirichlet boundary conditions are imple-
mented properly, the pressure that is set on the boundaries 
is correct. This results in zero pressure-extraction error on 
the Dirichlet boundary. However, even when the Neumann 
boundary conditions are implemented optimally, the pres-
sure-extraction error on the boundary will be nonzero. The 
pressure gradient on the boundary is calculated from the 
data using discretized expressions, so in addition to what-
ever underlying uncertainty there is in the data, there is an 
added layer of discretization error in the estimate of the 
pressure gradient. This error in the pressure gradient then 
propagates to the estimate of the pressure on the bound-
ary. Finally, the errors diffuse throughout the domain in the 
integration process. Therefore, so long as the pressure gra-
dient is calculated from the data itself, rather than being set 
using some sort of external knowledge about the flow field, 
Dirichlet boundary conditions will result in lower pressure-
extraction error than Neumann boundary conditions.

Second, in situations where the Dirichlet boundary con-
dition can be employed on the boundaries of the measure-
ment volume, the Lagrangian pressure-extraction method 
will produce more accurate estimates of the pressure field 
than the Eulerian pressure-extraction method. This is 
observed in Fig. 3, where the Lagrangian method consist-
ently out-performs the Eulerian method when using Dir-
ichlet boundary conditions. Third, in situations where sig-
nificant flow structures are present at the boundary of the 
measurement volume, the accuracy of the pressure field 
extracted using the Lagrangian method will suffer due to 
a combination of high errors at the intersection of the flow 
structure and the boundary, and the diffusion of these errors 
through the domain. Figure  5 clearly shows that the dif-
fused error from the flow structures at the boundaries is the 
dominant source of error in the pressure field. In the cur-
rent implementation of the technique, this error source will 
dominate whenever there are strong pressure gradients on 
the domain boundary.

Finally, in situations where the Neumann boundary con-
dition must be employed on the boundaries of the measure-
ment volume, but the pressure gradient at the boundary is 
minimal and no significant flow structures exist near or on 
the boundaries, the Lagrangian pressure-extraction method 
will most likely function in a similar manner as it would 
with Dirichlet boundary conditions. The magnitude of the 
diffused error from the boundary is proportional to the 

strength of the pressure gradient at the boundary, see Fig. 6. 
Therefore, if the pressure gradient is minimal at the bound-
ary, then the truncation error, which is dependent on the 
particle density, will once again dominate. However, it is 
clear that in situations where strong pressure gradients can 
be expected to coincide with boundaries of the measure-
ment domain, the current proposed Lagrangian technique 
will produce an estimate of the pressure field which is less 
accurate than that of an Eulerian technique. This limitation 
makes it clear that the proposed technique requires fur-
ther investigation, in order to determine the root cause and 
assess whether modifications can be made to the boundary 
condition implementation strategy in order to remedy this 
weakness.

3 � Experimental case

In addition to evaluating the technique relative to a typi-
cal Eulerian procedure with analytical data, experimental 
data were used to qualitatively and quantitatively validate 
the results of the technique in practice. In order to collect 
the type of high-quality, high-density Lagrangian flow 
data required for Lagrangian pressure extraction, without 
performing phase-averaging, it was necessary to employ 
a more advanced tracking algorithm than standard PTV. 
Experimental data were processed using Shake-The-Box, a 
novel volumetric particle tracking algorithm developed by 
Schanz et al. (2013b), more formally known as 4D-PTV. In 
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Fig. 6   The normalized pressure-extraction error is plotted against the 
normalized absolute pressure gradient in the x-direction for all of the 
points along the east boundary (x+) of the domain for the pressure 
field extracted in the Lagrangian domain, with Neumann boundary 
conditions, and N∗ ≈ 370. The pressure gradient is normalized in a 
similar manner as the pressure coefficient, albeit multiplied by the 
characteristic length scale to fully non-dimensionalize
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this section, the experimental methods are described, and 
the resulting experimental data are analysed.

3.1 � Experimental methods

The experiment was performed at Queen’s University in a 
free-surface octagonal water tank, with a width of 60 cm 
and filled with water to a height of 52  cm. A hydrogel 
sphere, with a diameter of 4.318 ± 0.001 cm, was manu-
ally released from rest at a submerged location above the 
measurement volume. The sphere was observed to be 
travelling at an approximately constant velocity (Vs) of 
0.049 m/s as it travelled through the optical measurement 
volume. The hydrogel sphere, produced by M2 Polymer 
Technologies, was composed of an acrylic-acrylamide 
co-polymer and is referred to as a ‘super-absorbent poly-
mer’ (SAP) sphere. SAP spheres are soaked in water for 
24–48 h prior to testing, in order to saturate the structure 
with water. After soaking, the sphere is predominantly 
composed of water, and therefore the refractive index and 
density of the sphere are very closely matched to that of 
water. Figure 7 shows a picture and diagram of the experi-
mental set-up, and Table  1 shows a list of the relevant 
experimental parameters.

Using a SAP sphere as the model provides two benefits 
critical to this experiment: first, with the hydrogel sphere’s 
index of refraction closely matched to that of water, light 
reflected from particles is not occluded or significantly 
refracted by the spherical model. This allows imaging of 
the entire flow field around the sphere. Second, the closer 
the densities of the sphere and water are, the slower the 
free-fall descent of the sphere will be. A low descent veloc-
ity is important in the current experimental set-up, as the 
temporal frequency of data collection is constrained by the 
amount of light in the measurement volume, and this in 
turn limits the maximum trackable particle velocity.

The octagonal tank was seeded with 100-µm, silver-
coated, hollow glass spheres with a density of approxi-
mately 1000  kg/m3. Tracking errors were estimated to be 
less than 1  % of the characteristic velocity, based on the 
Stokes number of the seeding particles satisfying Stk 
≪ 10−3 (Raffel et al. 2007). The temperature of the water 
in the octagonal tank was reduced to 15.2  °C in order to 
further slow the descent of the sphere. At this temperature, 
with a characteristic length of 4.32 cm and a characteristic 
velocity of 4.9  cm/s, the Reynolds number of the experi-
mental case was approximately Re ≈ 2100. The measure-
ment domain was limited to a circular cylinder, oriented in 
the direction of travel of the spherical model, with a diam-
eter of d ≈ 8.0 cm and a height of h ≈ 6.8 cm. The meas-
urement domain was illuminated using an HID light source 
which was mounted underneath the table, with a hole cut in 
the table wide enough to allow the beam of light to pass up 

through the measurement volume. A Cartesian coordinate 
system was used, with the z-axis aligned with the direction 
of travel of the sphere. The x- and y-axes were defined by 
the orientation of the calibration target.

Figure  7a shows the experimental set-up. Four pco.
edge sCMOS high-speed cameras were used, each record-
ing a field of view of 8.0 ×  6.8  cm2 with a resolution of 
2560 ×  2160 pixels, at a framerate of 100  Hz. First, the 
camera array was calibrated using a standard pinhole 
calibration. Next, the volume self-calibration technique 
developed by Wieneke (2008) was used to refine the cali-
bration. This technique has been shown to produce much 
more accurate camera system calibrations when combined 
with the standard pinhole calibration technique utilized 
in more basic particle tracking packages (Wieneke 2008). 
Finally, an optical transfer function (OTF) is calibrated 
(Schanz et al. 2013a). The OTF is particularly important in 
STB, since it attempts to account for distortions of parti-
cle shapes on the camera images and allows for more accu-
rate particle triangulations. Images recorded by the camera 
array were then processed using the Shake-The-Box (STB) 
processing technique developed by Schanz et  al. (2013b). 
A general description of the STB-processing work-flow is 
given below, for more details refer to the studies performed 
by Schanz et al. (2013b, 2014).

Under the assumption that the trajectories of (nearly) all 
particles within the system are known for a certain number 
of time-steps tm to tn, the STB-method scheme for the sin-
gle time-step t(n+1) is as follows:

1.	 Fit a function (polynomial) to the last n positions of 
every tracked particle;

2.	 Predict the position of the particle in t(n+1) by evaluat-
ing the fitted polynomial;

3.	 Shake the particles to their correct position and inten-
sity, eliminating the error introduced by the predic-
tion—this step is realized using an image matching 
technique;

4.	 Find new particles, entering the measurement domain, 
on the residual images;

5.	 Shake all particles again to correct for residual errors;

Table 1   Parameters of the experimental case used for pressure 
extraction

model SAP sphere

medium Water

Model diameter (m) Ds 0.0432

Model radius (m) Rs 0.0216

Measured descent velocity (m/s) Vs 0.049

Temperature (°C) T 15.2

Reynolds number Re ≈2100
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6.	 Remove particles either if leaving the volume or if 
intensity falls below the threshold;

7.	 Iterate steps 4, 5 and 6, if necessary;
8.	 Add new tracks for all new particles that are identified 

within four consecutive time-steps.

Following this scheme, the algorithm can work its way 
through an entire time-series, consisting of possibly thou-
sands of images. The effort needed for every single time-
step is low, as the system is largely pre-solved after the 
prediction-step, and only minor deviations have to be cor-
rected. However, the knowledge of a vast majority of parti-
cle tracks is not a given, since at the beginning the method 
has to start from scratch. Therefore, the first few time-steps 
receive an enhanced treatment in order to quickly identify 
as many particle tracks as possible.

In the present experimental case, this initialization phase 
lasted for the first four time-steps. In each of these time-
steps, the following procedure was carried out: first, four 
standard triangulation operations were performed, followed 
by five shake iterations. Next, two times four triangulations 
were executed using a reduced camera system (iteratively 
leaving one camera out in order to reduce effects of particle 
overlap and/or decalibrations), again each followed by five 
shake iterations. During normal operations, the procedure 
consisted of two normal triangulations and one reduced-
camera-system triangulation, each followed by five shake 
iterations. Particles are deleted from the tracking system 
if the intensity falls below 0.12 times the average particle 
intensity. In this case, it is assumed that the particle track 

was lost. Due to the relatively low seeding density (approx-
imately 0.005 ppp on average) and lack of particle motion 
in the initialization stage, no particle trajectory predictor 
was necessary in the initialization stage. Table  2 displays 
the relevant parameters used for the STB algorithm during 
normal operation in the present experimental case.

Four passes of the STB procedure were employed on 
the collected images: as soon as the algorithm has pro-
cessed the whole sequence of 500 images, time can be 
reversed and the algorithm walks backwards—elongating 
existing tracks backwards in time and possibly connect-
ing existing track fragments. Figure 8 shows the number of 
tracked particles in each time-step for the different passes, 
as well as track length statistics for the present experimen-
tal case. In the final dataset, 696 particles are tracked over 
the whole 500 time-steps, and the average track length is 
49.4 time-steps. The presence of the sphere (and therefore 
a region void of particles within the measurement area) is 
documented by the decrease in tracked particles for images 
60–280.

As this technique has only recently been developed, 
robust methods of estimating the uncertainty in the flow 
data are not yet available. Currently, the best method 
for estimating the uncertainty in the particle positions, 
velocities, and accelerations is to use the average devia-
tion of particle positions from the temporal fit applied to 
the tracks during the STB processing. Using third-order 
polynomials fit to nineteen time-steps, the standard devia-
tion in the polynomial fit was 0.3 pixels in the current 
case. This uncertainty is relatively large compared to ideal 

(a) (b)

Fig. 7   a A photograph of the experimental apparatus. Labelled are 
(i) the octagonal tank, (ii) the cylindrical light column produced by 
the HID light source attached underneath the table, and (iii) one of 
the four pco.edge sCMOS cameras used to capture images for PTV. 
All four cameras are aimed perpendicular to the walls of the octago-
nal tank in order to minimize refractions and reflections on the cam-

era images. b A diagram of the experimental set-up. The sphere is 
released from rest from a submerged position above the measurement 
domain. Once it has entered the measurement domain, the sphere 
has ceased accelerating, or the acceleration is negligible, and falls 
through the domain at an approximately constant velocity
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volume-self-calibrated STB output [0.07 pixels for a signal-
to-noise ratio of 10, and 0.13 pixels for a signal-to-noise 
ratio of 5 (Schanz et al. 2013b)]. There are several reasons 
for this: first, the quality of the calibration in the current 
experimental set-up was adversely affected by the insuffi-
cient light intensity provided by the HID light source. In 
order to allow enough light to hit the sensor to provide an 
acceptable signal-to-noise ratio (SNR), the aperture could 
not be closed enough to contain the entire measurement 
domain within the depth of field. This resulted in poor cali-
bration in the near- and far-field for each camera, adversely 
affecting the calibration on all boundaries of the measure-
ment domain. Second, many particles adhered to the sur-
face of the sphere. These particles appeared ‘patchy’ on 
the raw images and potentially detrimentally impacted the 
tracking of any nearby particles, by occluding them on the 
camera sensors. Finally, particles travelling near the veloc-
ity limit of the PTV system (Vmax ≈ 6.25  cm/s) tended to 
become elongated on the camera images due to streaking. 
This elongation increased the difficulty in triangulation of 
the particles’ positions, contributing to the overall particle 
location uncertainty.

Starting from a pixel uncertainty of ±0.3 pixels in the 
system, the overall uncertainty in the particle positions can 
be calculated by translating the pixel uncertainty into spa-
tial uncertainty using the resolution and field of view of the 
cameras:

The uncertainty in the velocity and acceleration data 
can then be calculated by applying error propagation to the 
particle uncertainty: assuming that the spatial uncertainty 
dominates the temporal uncertainty (δx/�x ≫ δt/�t ), 

(23)
Spatial uncertainty =

(

Spatial camera width

Pixel camera width

)

× (Pixel uncertainty)

the uncertainty in a temporal derivative will be equal to 
the framerate multiplied by the uncertainty of the derived 
quantity:

where �t is the period of a single frame, or �t−1 is the 
framerate. The uncertainty in particle positions (δx), veloci-
ties (δu), and accelerations (δDu/Dt) are then:
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Fig. 8   a Number of tracked particles over time for each pass through the dataset. b Track length statistics for each pass through the dataset

Table 2   Parameters of the STB-processing algorithm

Allowed triangulation error 1.7 pixel

Triangulation threshold 250 counts

Search radius for finding new tracks around particles 
which have a predictor

6 pixel

Search radius for finding new tracks around particles 
which have NO predictor

21 pixel
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Finally, the characteristic error in the particle positions 
and velocities can be determined by calculating the ratio 
of the uncertainty to the characteristic length or veloc-
ity. The characteristic uncertainty in the position field is 
δx/Rs ≈ ±0.05%, and the characteristic uncertainty in the 
velocity field is δu/Vs ≈ ±2%.

3.2 � Experimental results: sphere position, lagrangian 
tracks

The first step in the data analysis was to determine the spa-
tial position of the hydrogel sphere at each time-step. Since 
the hydrogel sphere was index-matched to the water, its 
location could not be accurately determined from the raw 
images. Instead, the sphere was located using the Lagran-
gian particle field. Seeding particles were distributed evenly 
throughout the measurement volume. Since the surface of 
the hydrogel sphere was impermeable, it created a spheri-
cal region devoid of seeding particles as it travelled through 
the measurement domain. Using a MATLAB script to cal-
culate the number of particles contained within a moving 
spherical volume, the position of the hydrogel sphere could 
be estimated for each time-step. Since tracked particles are 
not always present right up to the boundaries of the sphere, 
the tracking technique was only able to estimate the posi-
tion of the sphere to within ±1 mm. Figure 9a displays the 
tracked location of the sphere for 1.2 < t [s] < 1.7, as well 
as a line of best fit produced by a linear regression on the 
tracking data. Due to the technique used to track the sphere, 
it could only be tracked within a space of approximately 

25  mm (when it was fully enclosed within the measure-
ment domain). The sphere was observed to be falling at a 
constant velocity. A linear regression estimated the descent 
velocity of the sphere to be Vs = 0.049 m/s, and the linear 
fit matches the observed data quite closely.

Figure 9b shows Lagrangian particle tracks in the refer-
ence frame of the sphere, translated from the original three-
dimensional Cartesian coordinate system to a cylindrical 
axisymmetric coordinate system for easier visualization. 
A stagnation point is observed at the leading point. Rela-
tive to the sphere, the flow is accelerated to approximately 
1.4 times the descent velocity as it passes by the side of 
the sphere. It can be seen that the boundary layer separates 
from the body at approximately 125° from the front lead-
ing stagnation point, forming a circulating wake region on 
the trailing end of the sphere. The separated boundary lay-
ers appear to be in the process of reattaching approximately 
1.5Rs downstream from the trailing point on the sphere. 
Particle tracks in the dataset lasted for approximately 45 
time-steps on average. In each time-step, approximately 
15,000 individual particles were tracked. Based on the 
volume of the measurement domain and the characteristic 
length of the flow case, the corresponding normalized spa-
tial particle density in a given time-step is N∗ ≈ 4000.

3.3 � Experimental results: pressure‑field analysis

The next step in the data analysis was to extract the pressure 
field around the sphere for every time-step where the sphere 
was surrounded by tracked particles (1.3 ≤ t [s] ≤ 1.6). The 
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Fig. 9   a The tracked position of the hydrogel sphere in a laboratory-
fixed reference frame, zs, as it travelled through the measurement 
domain. zs = 0 corresponds to the approximate vertical centre of 
the measurement volume, as defined by the location of the calibra-
tion plate. b Particle tracks are shown in the reference frame of the 

sphere, translated into a cylindrical axisymmetric coordinate system. 
Tracks are shown for 1 < t [s] < 1.5 and coloured by the ratio of their 
z-velocity to the descent velocity of the sphere (or the free-stream 
velocity in the sphere-centred frame)
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pressure was extracted in each frame using the method 
described in Sect. 1.2, using both the Lagrangian and Eule-
rian techniques. For the Eulerian technique, the domain 
was discretized using the same process as was used for the 
analytical case. Since the pressure was not known at any 
location in the measurement domain, Neumann boundary 
conditions were implemented on all domain boundaries. 
For the Lagrangian case, boundary conditions were handled 
as such: at the exterior boundaries of the domain, unbound 
particles were used to explicitly enforce the boundary con-
ditions. At the interior boundaries, artificial boundary parti-
cles were added to the flow. These boundary particles were 
distributed evenly across the spherical surface of the model, 
for two purposes: first, the even distribution of boundary 
particles results in a consistent network between the bound-
ary and the surrounding fluid (assuming the particles in the 
surrounding fluid are evenly distributed). Second, since all 
boundary particles represent equal proportions of the total 
surface of the model, integrating across the surface to cal-
culate the pressure force is simplified.

In the Eulerian process, boundary conditions were han-
dled by determining which points in the structured grid 
aligned with the boundaries of the sphere and exterior 
boundaries of the measurement domain. Each voxel in the 
grid was classified as either an interior point, a boundary 
point, or an exterior point. On interior points, the pres-
sure was iteratively extracted using the Poisson equation, 
boundary points were used to enforce Neumann boundary 
conditions, and exterior points were simply disregarded, in 
both calculations and visualizations. The distance between 
the centre of a sphere-surface voxel and the centre of the 
sphere was found to be (0.94± 0.03)Rs. Given that the 
side length of a voxel was approximately 0.14Rs, it was 
assumed that the difference in surface area captured by 
each voxel could be neglected, and it could be assumed that 
each voxel captured an approximately equal portion of the 
sphere’s overall surface area. As in the Lagrangian case, 
this approximation simplifies the process of integrating 
across the surface to calculate the pressure force.

Before analysing the results of the Lagrangian and Eule-
rian pressure-field extraction, the issue of the Neumann 
boundary condition enforcement must be addressed. First, 
referring again to Fig. 6, it can be observed that the error 
induced by the Neumann boundary condition implemen-
tation is proportional to the normalized pressure gradient 
normal to the boundary. Therefore, by examining the nor-
malized pressure gradient on the domain boundaries in 
the experimental data, an approximate assessment can be 
made of the error which will be induced by the Neumann 
boundary condition in the experimental Lagrangian pres-
sure extraction.

In the Lagrangian particle field, 80  % of particles 
which are connected to the sphere boundary points, and 

therefore which are used in boundary condition enforce-
ment, have |∂p/∂n|[Rs/(0.5ρV

2
s )] < 1.5. Furthermore, 

80  % of these points which are located either within 60° 
of the front stagnation point, or trailing point of the sphere 
have |∂p/∂n|[Rs/(0.5ρV

2
s )] < 1. Referring to Fig.  6, these 

normalized pressure gradients normal to the surface of the 
sphere correspond to �Cp ≈ 0.25 and �Cp ≈ 0.2, respec-
tively. On the outer boundary of the measurement domain, 
80 % of the particles used to enforce the Neumann boundary 
condition have |∂p/∂n|[Rs/(0.5ρV

2
s )] < 0.5, correspond-

ing to an induced pressure-extraction error of �Cp < 0.1. 
While it is unavoidable that the enforcement of Neumann 
boundary conditions will have deleterious effects on the 
overall estimate of the pressure field, the relatively lower 
normalized pressure gradients on the domain boundaries in 
the experimental case indicate that the error induced by the 
Neumann boundary condition will be less detrimental to the 
overall pressure-field estimate than in the analytical case.

In the absence of reference data, the extracted pressure 
fields cannot be quantitatively validated. However, the 
Lagrangian pressure field can be qualitatively validated by 
examining its agreement with the Eulerian pressure field as 
well as the flow field topology. Figure 10 shows slices and 
axisymmetric views of the pressure field for t = 1.4 s, for 
both the Lagrangian and Eulerian cases. Qualitatively, the 
pressure fields are in good agreement and are both of the 
general form that would be expected based on Fig. 9b: at 
the leading stagnation point of the sphere, the pressure is 
approximately Cp ≈ 1. As fluid accelerates around the sides 
of the sphere, a pressure minima can be observed ninety 
degrees from the front stagnation point. In the free-stream 
far from the sphere, the pressure approaches Cp ≈ 0, as 
expected. There is a severe spatial particle density deficit in 
the near-wake of the sphere. This deficit is caused primarily 
by ‘streaking’ in the raw camera images, which is a blur-
ring or smearing of particle images that occurs when the 
particle velocities approach or exceed the maximum track-
able velocity. This deficit in spatial particle density makes 
it difficult to comment on the structure of the pressure in 
this region, for the Lagrangian case.

Additionally, it should be noted that the structured grid 
used for the Eulerian pressure-extraction procedure was 
uniform throughout the domain. In the near-wake zone, 
where a dearth of Lagrangian particles is observed, values 
interpolated to the structured grid will suffer additional 
interpolations errors due to oversampling. Because of this 
oversampling error, the Eulerian pressure-field estimates in 
the near-wake zone are likely to be much less accurate than 
in the rest of the domain. However, it can be observed in 
both cases that as fluid moves from the sides of the sphere 
into the wake, the pressure appears to be increasing from 
the observed pressure minima towards the free-stream 
pressure.
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To further compare the Lagrangian and Eulerian tech-
niques, the distribution of the pressure field on the surface 
of the sphere can be examined. Figure 11 shows plots of the 
pressure coefficient versus the angular distance from the 
front stagnation point, for the Lagrangian and the Eulerian 
cases. Qualitatively, the form of the pressure distribution is 
quite similar for the two cases—as observed in the analysis 
of the pressure field, the pressure is Cp ≈ 1 at the stagnation 
point, gradually drops to a pressure minima approximately 
ninety degrees from the stagnation point, and trends back 
towards the free-stream pressure towards the trailing point. 
However, quantitative differences between the two distribu-
tions can be observed as well. In the Lagrangian case, the 
pressure minima is within the range of −1 ≤ Cp ≤ −0.5, 
while in the Eulerian case, the pressure minima is within 
the range of −0.6 ≤ Cp ≤ −0.2. Additionally, while in the 

Eulerian case the pressure converges on Cp ≈ 0 approxi-
mately 150° from the front stagnation point, this con-
vergence is not observed in the Lagrangian case. Beyond 
150° from the front stagnation point, the pressure field is 
scattered and inaccurate in both cases. This is expected, as 
the dearth of Lagrangian particles in the region around the 
trailing point of the sphere elevates the pressure-extraction 
error in this region, as previously discussed.

In the absence of reference data, it cannot be determined 
whether the Lagrangian technique has incorrectly underes-
timated the value of the pressure minima, or whether the 
Eulerian technique has incorrectly overestimated the value 
of the pressure minima. It can, however, be noted that in 
the Lagrangian technique, every boundary point placed on 
the surface of the sphere was located precisely on the sur-
face of the sphere. In the Eulerian case, the boundary points 
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Fig. 10   Sample pressure coefficient fields are shown in the reference 
frame of the sphere at t = 1.4  s for: a Lagrangian slice in xz-plane, 
b Lagrangian axisymmetric, c Eulerian slice in xz-plane, d Eulerian 
axisymmetric. The bounds of the Lagrangian and Eulerian slices are 
|y| < 0.3Rs (bounds required to display sufficient number of particles) 

and |y| < 0.13Rs (width of a voxel in y), respectively. A particle den-
sity deficiency can be observed in the regions near the trailing point 
on the sphere, which would adversely impact the accuracy of the 
extracted pressure field in the near-wake
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representing the surface of the sphere are limited to loca-
tions where the structured grid is intersected by the surface 
of the sphere, resulting in less accurate positioning of the 
boundary points. Additionally, in the Lagrangian technique, 
fluid particles measured very close to the surface will allow 
for more accurate gradients to be calculated in the vicinity 
of the sphere’s surface, when compared to interpolating the 
flow quantities to a non-refined structured grid near a wall 
(Kähler et  al. 2012). With all of these factors in mind, it 
can be stated that, while we do not know for certain which 
technique has provided a better estimate of the pressure 
minima on the surface of the sphere, there are several fac-
tors which would indicate that the Lagrangian technique is 
likely to provide a better estimate of the pressure field near 
the surface of the sphere.

3.4 � Experimental results: drag coefficient comparison

Finally, the estimated drag from the pressure force on the 
sphere was compared to estimates from the literature for a 
drag on a sphere at a Reynolds number of Re ≈ 2100, for 
both cases. The pressure-drag force was evaluated in each 
frame where the sphere was both fully contained in the 
measurement volume and surrounded by tracked particles. 
The pressure force on the sphere was estimated by integrat-
ing the pressure over the surface of the sphere:

where Fp is the vector pressure force, and dA is an infini-
tesimal vector area element pointing outwards from the 
sphere’s surface. Since the surface area of the sphere corre-
sponding to each data point on the sphere is approximately 
constant, for both the Lagrangian and Eulerian case, this 
integral can be easily discretized:

(29)Fp = −

∫

∂S

pdA,

where N is the number of points on the boundary, i is an 
index to sum over, pi is the pressure at boundary point i, 
and n̂i is the normal unit vector pointing out from the 
sphere surface at boundary point i. Finally, the drag force 
is the component of the force aligned with the direction of 
motion of the sphere. Therefore, the drag coefficient was 
calculated for each frame as:

where êz is the Cartesian basis vector aligned with the 
direction of motion of the sphere. Using this proce-
dure, the pressure drag on the sphere was calculated for 
1.3 ≤ t [s] ≤ 1.6, and the estimate of the coefficient of pres-
sure drag on the sphere was CD = 0.32± 0.07 using the 
Lagrangian pressure fields, and CD = 0.34± 0.07 using 
the Eulerian pressure fields. This is an excellent agreement 
between the two pressure-field extraction techniques, and 
further serves to validate the results of the novel Lagran-
gian pressure-extraction technique.

A model for the relationship between drag coefficient 
and Reynolds number for a falling sphere was recently pro-
posed by Brown and Lawler (2003):

Based on this model, for a sphere falling at a Reyn-
olds number of Re ≈ 2100, the expected drag coefficient 
is CD ≈ 0.404. The estimated drag coefficients from the 
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Fig. 11   The pressure-field distribution on the surface of the sphere at t = 1.4 s is shown in the form of the pressure coefficient as a function of 
the angular distance from the leading stagnation point, for a the Lagrangian case, and b the Eulerian case



Exp Fluids (2016) 57:102	

1 3

Page 17 of 18  102

Lagrangian and Eulerian pressure fields predict the drag 
coefficient to within two and one standard deviations of this 
reference value, respectively. However, it should be noted 
that this is a comparison of a total drag coefficient, from 
literature, to the pressure force component of the drag coef-
ficient in the experiments. Since the Reynolds number is 
Re ≈ 2100, it can be reasonably assumed that the pressure 
force contribution to the drag will be dominant, but the vis-
cous skin friction contribution cannot be totally neglected. 
With the current experimental dataset, it is not possible to 
reliably extract, or estimate, the contribution of skin fric-
tion to the total drag across the body. Therefore, the com-
parison to the reference value of drag can be used to dem-
onstrate that the drag force coefficient estimates from the 
pressure fields are qualitatively reasonable, but cannot be 
used for a quantitative evaluation.

4 � Conclusions

The present investigation uses an analytical test case and 
dense 4D-PTV data to verify and validate a novel technique 
for Lagrangian pressure extraction, developed by Neet-
eson and Rival (2015). This technique utilizes the Delau-
nay triangulation and Voronoi tessellation to construct a 
network on a field of scattered particles, allowing vector 
calculus operations to be performed without interpolating 
data to a structured grid. Using this network, the pressure 
is extracted by iteratively solving Poisson’s equation for 
pressure in a discrete Lagrangian frame. The purpose of 
the current study was to further evaluate and validate the 
technique. The proposed Lagrangian pressure-extraction 
technique was compared to the standard Eulerian pressure-
extraction technique for an analytical case and an experi-
mental case. The analytical case was the semi-three-dimen-
sional Taylor–Green vortex, and for the experimental test 
case, 4D-PTV data of the flow around a free-falling sphere 
were used.

Based on the results of the analytical and experimental 
test cases, three main conclusions can be drawn:

First, the proposed Lagrangian pressure-extraction tech-
nique has been shown to be superior to the typical Eulerian 
pressure-extraction technique when applied to analytical 
data with Dirichlet boundary conditions, and it can be rea-
sonably concluded that, given Dirichlet boundary condi-
tions and a Lagrangian dataset with approximately evenly 
distributed particles, the Lagrangian pressure-extraction 
technique will provide a more accurate estimate of the 
pressure field than the standard Eulerian pressure-extrac-
tion technique.

Second, the proposed Lagrangian pressure-extraction 
technique was shown to produce a pressure field in close 
agreement with that of the Eulerian pressure-extraction 

technique when applied to experimental data with Neu-
mann boundary conditions. Since the Eulerian pressure-
extraction technique has been used extensively in the 
literature, the agreement between the two functions as a 
validation of the proposed Lagrangian pressure-extraction 
technique, even with the current sub-optimal implementa-
tion of the Neumann boundary condition.

Finally, it can be concluded that while the proposed 
Lagrangian pressure-extraction technique cannot currently 
be described as superior to existing Eulerian techniques, 
the results of the experimental analysis clearly demon-
strate its validity, while the results of the analytical test case 
demonstrates the potential of the technique, and inform the 
direction of future investigation into the technique. Specifi-
cally, it is imperative that the issues with the implementa-
tion of the Neumann boundary condition are identified and 
rectified, and moving forward, it will be necessary to utilize 
a canonical flow case to quantitatively assess the precision 
error in pressure-field estimates from experimental data. 
As Lagrangian flow measurement techniques continue to 
improve and become more widely adopted, the sustained 
development and investigation into specialized Lagrangian 
analysis techniques will allow researchers to fully exploit 
the unique advantages of Lagrangian flow data.
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