
1 3

Exp Fluids (2016) 57:83
DOI 10.1007/s00348-016-2163-3

RESEARCH ARTICLE

Estimation of the measurement uncertainty in magnetic 
resonance velocimetry based on statistical models

Martin Bruschewski1   · Daniel Freudenhammer2 · Waltraud B. Buchenberg3 · 
Heinz‑Peter Schiffer1 · Sven Grundmann4 

Received: 3 February 2016 / Revised: 5 April 2016 / Accepted: 7 April 2016 / Published online: 4 May 2016 
© Springer-Verlag Berlin Heidelberg 2016

prototyping, flow models of arbitrary shape and complex-
ity can be fabricated and the flow can be measured in an easy 
and cost-efficient way. This combination, enabling very short 
design cycle times, makes MRV a unique tool for experimen-
tal fluid mechanics. What has been lacking so far is a detailed 
discussion of the statistical models that are used to estimate 
the measurement uncertainty. This is the purpose of this study.

The scientific basis for flow measurements with MRI 
was established by Moran (1982). Since then, MRV has 
been widely used in medicine, for example to measure the 
velocities of the blood flow in the human vascular system 
(Pelc et al. 1994; Markl et al. 2012). Over the past decade, 
there has been a considerable amount of work address-
ing MRV in the field of engineering and science. Com-
prehensive reviews on the possibilities and constraints of 
MRV for fluid mechanics research are provided in Fuku-
shima (1999), Elkins and Alley (2007), and Gladden and 
Sederman (2013). Recent examples of engineering studies 
employing MRV can be found in the field of turbo machin-
ery (Benson et  al. 2012; Coletti et  al. 2013; Bruschewski 
et  al. 2016), power generation (Lo et  al. 2012; Piro et  al. 
2016), and gasoline engines (Freudenhammer et al. 2014), 
among other engineering disciplines (Onstad et  al. 2011; 
Issakhanian et al. 2012; Grundmann et al. 2012a, b; Was-
sermann et al. 2013; Buchenberg et al. 2015).

As for any other measurement modality, it is essen-
tial to estimate the statistical uncertainty of the results. 
In MRV, the uncertainty of the velocity data is typically 
calculated from the standard deviation of the noise in the 
reconstructed image (Pelc et al. 1994). A prominent source 
of noise is the thermal noise from the MRI receiver chain 
(den Dekker and Sijbers 2014). In the absence of noise 
correlations, the entire image is homogeneously affected 
by this noise. Thus, it would be irrelevant in which part of 
the image the noise is measured. However, this assumption 

Abstract  Velocity measurements with magnetic resonance 
velocimetry offer outstanding possibilities for experimental 
fluid mechanics. The purpose of this study was to provide 
practical guidelines for the estimation of the measurement 
uncertainty in such experiments. Based on various test 
cases, it is shown that the uncertainty estimate can vary 
substantially depending on how the uncertainty is obtained. 
The conventional approach to estimate the uncertainty from 
the noise in the artifact-free background can lead to wrong 
results. A deviation of up to −75% is observed with the 
presented experiments. In addition, a similarly high devia-
tion is demonstrated with the data from other studies. As 
a more accurate approach, the uncertainty is estimated 
directly from the image region with the flow sample. Two 
possible estimation methods are presented.

1  Introduction

Magnetic resonance velocimetry (MRV) refers to all nuclear 
magnetic resonance imaging (MRI) techniques that allow 
a quantification of the flow field. In combination with rapid 
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does not hold in actual images. Spurious signals, com-
monly termed imaging artifacts, can locally increase the 
noise. Especially in measurements of turbulent flows, ran-
dom velocity changes between sampling instances can 
lead to motion artifacts that appear as signal ‘ghosts’ in the 
image. In case of Cartesian sampled k-space, the artifact 
formation extends across the entire image in the direction 
of the phase encoding.

The original guidelines for the uncertainty estimation 
in MRV do not address the issue of the inhomogeneous 
noise in the image (Pelc et al. 1994). Typically, the stand-
ard deviation of the noise is simply measured in an artifact-
free background region. This approach is here defined as 
the ‘conventional approach.’ The artifact-free background 
is defined as the image part which is free of signal and 
(motion) artifacts. As a result, the conventional approach 
includes only the uncertainty associated with thermal noise, 
while the measured velocity data might be subject to higher 
uncertainty because of motion artifacts.

This issue is addressed here. Based on experiments with 
five test cases and measurement data from other studies, it 
is shown that the conventional approach can lead to a clear 
underestimation of the measurement uncertainty. Finally, 
it is demonstrated how the uncertainty estimate should be 
obtained instead. Two possible estimators are presented.

As a constraint, the scope of this study is limited to MRV 
velocity measurements in (statistically) stationary turbulent 
flows. Other MRV techniques such as turbulence measure-
ments will not be considered here. Parallel imaging tech-
niques with subsampled k-space such as GRAPPA (Gris-
wold et al. 2002) and SENSE (Pruessmann et al. 1999) are 
also outside the scope of this paper. The main reason for 
this constraint is that the statistical noise model for these 
imaging techniques is still subject to current research (den 
Dekker and Sijbers 2014). All presented measurements are 
based on a conventional gradient echo sequence using a 
Cartesian sampled k-space.

2 � Theory—statistical model

This section briefly describes the mathematics behind 
velocity measurements with MRV, which is necessary to 
understand the dependence between image noise and meas-
urement uncertainty. Later in this section, the statistical 
models, relevant to this study, are presented.

2.1 � Influence of noise on the reconstructed image

In general, the reconstructed magnetic resonance data set, 
termed image, is subject to noise. The complex image 
intensity S(r) can be modeled as (den Dekker and Sijbers 
2014):

with r as the generalized image coordinate. The parameter 
Z(r) is the complex noise-free component of the image 
intensity and N (r) is the superimposed complex noise.

Modern MRI systems typically employ a large number 
of receiver coils to extend the coverage of the receiver sys-
tem. A commonly used technique to combine the images 
from different coils is the sum-of-squares (SOS) technique 
(Roemer et  al. 1990). Using this combination technique, 
the image magnitude M(r), representing the spin density in 
the sample, is obtained as:

where kS(r) represents the image from the kth coil and L 
is the total number of receiver coils. The asterisk ∗ denotes 
complex conjugation. The noise-free component of the 
image magnitude is defined as:

In this context, the image phase Ψ (r) is obtained as:

where ∠ denotes the complex angle. The noise-free compo-
nent of the image phase is defined as:

The SOS combination inherently includes a weighting of 
the individual images. Thus, images with weaker magni-
tude will contribute less to the final image magnitude and 
image phase. Note that this combination technique simpli-
fies to a standard single coil acquisition if only one coil is 
used.

In velocity measurements, the image phase is made 
sensitive to the velocity in the sample. Typically, a phase 
difference, �Ψ (r), is measured to remove spurious phase 
effects. For the phase difference between two images, 
known as the two-point scheme, the SOS combination 
becomes (Bernstein et al. 1994):

where k,1S(r) and k,2S(r) represent the two images obtained 
from the kth coil. Introducing the velocity sensitivity Venc, 
the spatially dependent velocity information u(r) is finally 
obtained as (Pelc et al. 1994):

(1)S(r) = Z(r)+N (r)

(2)M(r) =

√

∑L

k=1

kS(r) kS∗(r)

(3)A(r) =

√

∑L

k=1

kZ(r) kZ∗(r).

(4)Ψ (r) = ∠

L
∑

k=1

kS(r)

(5)Φ(r) = ∠

L
∑

k=1

kZ(r).

(6)�Ψ (r) = ∠

L
∑

k=1

k,1S(r) k,2S∗(r)
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2.2 � Statistical distribution of the image values

The noise in Eq.  (1) is typically modeled as a complex 
additive white Gaussian noise (den Dekker and Sijbers 
2014). Therefore, it is assumed that the real and imagery 
components of this noise have the same standard devia-
tion. Furthermore, it is assumed that the standard deviation 
is identical for different receiver coils and that the noise is 
uncorrelated. This is usually ensured by a process which is 
known as decorrelation or noise prewhitening (Hansen and 
Kellman 2015).

Based on these assumptions, the statistical model rel-
evant to this study is presented. In a SOS reconstruction 
with Eq. (2), the real and imaginary noise components are 
rectified. It can be shown that the distribution of the image 
magnitude follows a non-central χ distribution (Constanti-
nides et al. 1997). The probability density function (PDF) 
for an individual data point in the image, termed voxel, is 
defined as:

where σn is the standard deviation of the real and imaginary 
noise components and IL−1 is the (L − 1)th modified Bessel 
function of first kind. Note that Eq. (8) simplifies to a cen-
tral χ distribution for A = 0. Furthermore, for single coil 
acquisitions (L = 1), the distribution is equal to a Rician 
distribution. In the case that A = 0 and L = 1, the distribu-
tion is equal to a Rayleigh distribution.

The phase reconstruction in Eq. (4) is given by the non-
linear computation of the angle which makes it difficult 
to derive the exact PDF (Lathi 1998). However, it can be 
shown that the distribution of the image phase is asymp-
totically equal to a Gaussian distribution (Gudbjartsson and 
Patz 1995). The PDF for an individual voxel is approxi-
mated as:

where σΨ is the standard deviation of the image phase due 
to noise. Note that the distribution is independent of the 
number of receiver coils. Furthermore, it can be shown that 
σΨ is approximately equal to the reciprocal value of the 
signal-to-noise ratio (SNR = A/σn) (Gudbjartsson and Patz 
1995). The bias of this approximation is less than 1 % for 
SNRs larger than 8. In image coordinates, the approxima-
tion reads:

(7)u(r) =
Venc

π
�Ψ (r).

(8)

p(M | σn,A, L)

=

A1−L

σ 2
n

ML exp

(

−(M2
+ A2)

2σ 2
n

)

IL−1

(

MA

σ 2
n

)

(9)p(Ψ | Φ, σΨ ) ≈
1

σΨ
√

2π
exp

(

−

(Ψ −Φ)2

2σ 2
Ψ

)

The statistical distribution of a phase difference, as in 
Eq. (6), is related to the distribution of the individual image 
phases. Assuming that the individual images have identi-
cal SNR, the spatially dependent standard deviation of the 
phase difference, σ�Ψ (r), is defined as:

where the factor c� depends on the computation method 
that is used to obtain the phase difference. For a phase dif-
ference between two independent images, and hence uncor-
related noise, the factor is determined as c� =

√

2. This 
applies to the encoding of the velocity in one direction 
[two-point scheme, as in Eq.  (6)]. The factor can signifi-
cantly change for other measurement schemes. The values 
of c� for common measurement schemes is provided in 
Table 1.

3 � Methods—uncertainty estimation

The measurement uncertainty σu(r) is defined as the stand-
ard deviation of the measured velocity values. It must be 
emphasized that the uncertainty does not include systematic 
errors, such as spatial misregistration or velocity encoding 
errors. In MRV, there are two possible ways to estimate the 
uncertainty from the image (Pelc et  al. 1994). The uncer-
tainty is directly calculated from the standard deviation of 
the phase difference:

(10)σΨ (r) ≈
σn(r)

A(r)
.

(11)σ�Ψ (r) = c� σΨ (r)

(12)σu(r) =
Venc

π
σ�Ψ (r)

Table 1   Influence of the measurement scheme on the standard devia-
tion of the phase difference (Pelc et al. 1991)

For readability, the equations are written in simplified form, com-
pared to Eq. (6)

Method Encoding example c� = σ�Ψ /σΨ

Two-point �Ψ = ∠
∑

1S 2S∗
√

2

Six-point �Ψx = ∠
∑

1S 2S∗
√

2

�Ψy = ∠
∑

3S 4S∗

�Ψz = ∠
∑

5S 6S∗

Four-point referenced �Ψx = ∠
∑

1S 4S∗
√

2

�Ψy = ∠
∑

2S 4S∗

�Ψz = ∠
∑

3S 4S∗

Four-point balanced �Ψx = ∠
∑

1S 2S 3S∗ 4S∗/2 1

�Ψy = ∠
∑

1S 2S∗ 3S 4S∗/2

�Ψz = ∠
∑

1S 2S∗ 3S∗ 4S/2



	 Exp Fluids (2016) 57:83

1 3

83  Page 4 of 13

or more commonly, the uncertainty is obtained from the 
dependency on the SNR, using Eqs. (10) and (11):

Generally, the measurement uncertainty is spatially 
dependent. However, since a voxel-wise estimation is not 
always possible, the measurement uncertainty is typically 
expressed as a constant value which is valid for the entire 
image, hence σu(r) ≈ σ̂u. The circumflex is used to distin-
guish an estimate from the true value.

The research on the parameter estimation in MRI has 
led to a number of review articles (e.g., Sijbers et al. 2007; 
Aja-Fernández et  al. 2009). A list of some estimators is 
provided in Table  2. The following paragraphs focus on 
the estimation methods that are most applicable for stand-
ard MRV velocity measurements. Two constraints are con-
sidered: First, the estimator is designed for single coil and 
SOS-reconstructed images. And secondly, no access to the 
raw data or imaging sequence is required. Thus, the estima-
tor is applied to the reconstructed image.

Based on these constraints, four selected uncertainty esti-
mators are presented. The first two methods resemble the 
conventional approach of estimating the uncertainty from 
the noise in the artifact-free background. The latter two 
methods focus on the uncertainty estimation directly from 
the image region with the flow sample. In this context, the 
image background is termed ‘BG’ and the image region with 
the flow sample is termed ‘ROI’ (region of interest). Finally, 

(13)σu(r) ≈ c�
Venc

π

σn(r)

A(r)
.

the reference method is presented which will be used in the 
results section to evaluate the presented estimators.

3.1 � Conventional approach (CA)—segmented image 
background (σ̂ u,CA1)

As a widely used approach, the standard deviation of the 
noise is estimated from the image magnitude in the artifact-
free background. The estimate is obtained from the second 
central moment of the central χ distribution (Constantinides 
et al. 1997):

where 〈. . .〉 defines the sample mean and M(rBG) is a vector 
containing the magnitude values of the voxels in the arti-
fact-free background. This method is sensitive to segmen-
tation errors. Typically, a manual segmentation is required 
to remove all voxels not associated with the artifact-free 
background.

The noise-free image magnitude, necessary for Eq. (13), 
is measured in the ROI. From the second central moment 
of the non-central χ distribution it follows (Constantinides 
et al. 1997):

where M(rROI) is a vector containing the magnitude values 
of the voxels in the manually segmented ROI. Using both 

(14)σ̂n =

√

1

2L
�M2(rBG)�

(15)ˆA =

√

�M2(rROI)� − 2L σ̂ 2
n

Table 2   List of noise and 
signal estimators

Method Associated density References

Estimators that require prior segmentation of the image magnitude (M(r))

  σ̂n =

√

2/(4− π)Var{M(r)} Rayleigh Henkelman (1985)

 σ̂n =

√

2/π�M(r)� Rayleigh Henkelman (1985)

 σ̂n =

√

�M2(r)�/2L Central χ Constantinides et al. (1997)

  ˆA =

√

�M2(r)� − 2L σ̂ 2
n

Non-central χ Constantinides et al. (1997)

 σ̂ 2
n = Var{M(r)}/ξ(Θ ,L) Non-central χ Koay and Basser (2006)

 σ̂n =

√

Var{M(r)} Gaussian Kaufman et al. (1989)

 σ̂n =

√

Var
{

1M(r)− 2M(r)
}

/2 Gaussian NEMA (2014)

  ˆA = �M(r)� Gaussian Kaufman et al. (1989)

Estimators that (might) require prior segmentation of the histogram (h(M))

  σ̂n = arg min
σn,K

∑

[

h(M)− K 21−L

Γ (L)
M2L−1

σ 2L
n

exp(− M2

2σ 2
n
)

]

Central χ Aja-Fernández et al. (2009)

 σ̂n = mode{M(r)}/
√

2L − 1 Central χ Aja-Fernández et al. (2009)

 
[

σ̂n(j), ˆA(j)
]

= argmax
σn,A

∑N
i=1 ln

(

p
(

iM(j) | . . .
)) Depending on p Sijbers and den Dekker (2004)

Estimators that do not require prior segmentation

 σ̂n = mode
{

σ̂n,1, . . . , σ̂n,W
}

Depending on σ̂n,w Aja-Fernández et al. (2008)

 σ̂n = argmax
σ̂n,w

{

p̂(σ̂n,w)
}

Depending on σ̂n,w
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estimates, the measurement uncertainty is calculated with 
Eq. (13):

3.2 � Conventional approach (CA)—segmented image 
histogram (σ̂ u,CA2)

Similar to the previous estimator, the image magnitude in 
the background is used. From the central χ distribution, the 
standard deviation of the noise is estimated by searching 
for the maximum of the histogram (Aja-Fernández et  al. 
2009). The estimator is defined as:

where the mode operator provides the value that appears 
most often in the vector M(rBG), hence the peak of the cor-
responding histogram. In contrast to the mean of the same 
vector, the mode is insensitive to outlying data. A certain 
percentage of outliers, hence voxels not associated with 
the artifact-free background, will not affect Eq. (17). For 
this reason, it is sufficient to segment the image by a global 
magnitude threshold. The image region BG is defined as the 
voxels with low magnitude values and the ROI is defined as 
the voxels with high magnitude values. The determination 
of the threshold value will be demonstrated in the results 
section. The estimate obtained from Eq. (17) is then used to 
calculate the measurement uncertainty with Eq. (13):

where ˆA is obtained similar to Eq. (15), except that the ROI 
is defined by the magnitude threshold.

3.3 � ROI‑based uncertainty—local statistics approach 
(σ̂ u,ROI1)

The standard deviation of the noise is estimated from the 
image magnitude in the ROI. This process is consider-
ably more complicated than the noise estimation from the 
artifact-free background. The noise-free component of the 
image magnitude is typically not constant across the ROI. 
As a result, the noise in the ROI is modulated with system-
atic variations. These variations have typically a low spatial 
frequency and can be filtered out. However, the outcome 
will strongly depend on the specific filter characteristics.

As a more robust approach, the method of local statis-
tics by Aja-Fernández et al. (2008) is used. In the original 
paper, the use of local statistics is proposed as an alterna-
tive to the segmentation of the image. The non-segmented 
image is divided into small windows, for which each a local 
estimate is calculated. The global estimate is then obtained 

(16)σ̂u,CA1 = c�
Venc

π

σ̂n

ˆA
.

(17)σ̂n =
mode{M(rBG)}

√

2L − 1

(18)σ̂u,CA2 = c�
Venc

π

σ̂n

ˆA

as the most frequent value of all local estimates. This 
method produces accurate results even if some of the win-
dows contain systematic variations of the image magnitude.

This technique is adopted here. First, the image is 
divided into small quadratic (or cubic) windows. Similar 
to the previous estimator, a magnitude threshold is used to 
define the voxels that belong to the ROI and to the BG. The 
windows that contain less ROI voxels than BG voxels are 
discarded. Based on this selection, a local estimate is then 
calculated for each remaining window. Aja-Fernández et al. 
(2008) propose the mode operator to find the most frequent 
value of the local estimates. However, it must be empha-
sized that the mode operator is only useful with discrete or 
coarsely rounded data. Calculating the mode with the con-
tinuous data of the local estimates is unlikely to provide a 
good estimate. Therefore, it is a more appropriate approach 
to fit a PDF onto the distribution of the local estimates and 
search for the peak of the fitted function. Accordingly, the 
global estimate is defined as:

where p̂(σ̂n,w) is the PDF fitted onto the distribution of the 
local estimates σ̂n,w. A suitable fitting approach is the ker-
nel density estimation (Scott 2012). The kernel density esti-
mation belongs to the category of nonparametric methods. 
Thus, the fitting process does not require a specification of 
the type of the PDF, which is extremely useful since the 
type of the distribution of the local estimates is generally 
unknown. The estimate obtained from Eq. (19) is then used 
to calculate the measurement uncertainty with Eq. (13):

where ˆA is obtained similar to Eq. (15), except that the ROI 
is defined by the magnitude threshold.

There are several ways to calculate the local estimates. 
For example, the iterative optimization scheme by Koay 
and Basser (2006) is used in combination with the sample 
variance (Var{M(r)} = �M2(r)� − �M(r)�2) :

where M(rw) is a vector containing the magnitude values 
of the voxels in the wth window. The correction function 
ξ(Θ , L) is derived from the moments of the non-central χ 
distribution:

where 1F1 is the confluent hypergeometric function and Γ  
is the gamma function. The problem is iteratively solved by 
the fixed-point formula:

(19)σ̂n = argmax
σ̂n,w

{

p̂(σ̂n,w)
}

(20)σ̂u,ROI1 = c�
Venc

π

σ̂n

ˆA

(21)σ̂ 2
n,w =

Var{M(rw)}

ξ(Θ , L)

(22)ξ(Θ , L) = 2L +Θ2
−

[

√

2
Γ (L +

1

2
)

Γ (L)
1F1

(

−

1

2
, L,−

Θ2

2

)

]2



	 Exp Fluids (2016) 57:83

1 3

83  Page 6 of 13

which has a unique solution; however, the convergence can 
be slow for small SNRs. It should be noted that for large 
SNRs, ξ(Θ , L) is close to one. Hence, it is not always nec-
essary to perform the correction in Eq. (21).

3.4 � ROI‑based uncertainty—dual acquisition approach 
(σ̂ u,ROI2)

The uncertainty is estimated from the standard deviation of 
the phase difference data in the ROI. The velocity is typi-
cally inhomogeneous across the ROI, and therefore, the 
variation of the noise-free phase difference can be signifi-
cant. The filtering of the phase difference data to obtain the 
component due to noise is complicated since the systematic 
variations can have the same spatial frequency and ampli-
tude as the statistical variations. Also the local statistics 
approach from the previous method will not lead to reliable 
results because of this reason.

An approach that is insensitive to systematic variations 
in the image is the dual acquisition method (NEMA 2014). 
The adoption of this method for the phase difference data 
is straightforward. Using two repeated acquisitions, termed 
‘image replicas,’ a third image is obtained as the difference 
between the two image replicas. Assuming that the differ-
ence is only due to noise, the standard deviation can be 
simply estimated from the variance of the Gaussian distri-
bution in Eq. (9). Based on Eq. (12), the uncertainty esti-
mator becomes:

where 1�Ψ (rROI) and 2�Ψ (rROI) are vectors containing 
the phase different values of all voxels in the ROIs from 
the first and second image, respectively. The factor 2 arises 
from the subtraction of the two statistically independent 
images.

3.5 � Reference method (σ̂ u,REF)

The presented estimators rely on a number of assumptions, 
for example that the noise is constant across the selected 
image region or that the statistical noise model is true. A 
method with much weaker assumptions is the multiple rep-
lica method (Reeder et al. 2005; Dietrich et al. 2007). With 
this method, the measurement uncertainty is calculated as the 
standard deviation of the results in repeated ‘identical’ acqui-
sitions. The measurement uncertainty is obtained voxel-wise; 
thus, for the jth voxel, the multiple replica estimate becomes:

(23)
Θ =

√

ξ(Θ , L)

[

1+
�M(rw)�2

Var{M(rw)}

]

− 2L

(24)σ̂u,ROI2 =
Venc

π

√

Var
{

1�Ψ (rROI)− 2�Ψ (rROI)
}

2

where i�Ψ (j) with i = [1, . . . ,N] is the phase difference 
value in the jth voxel and the ith image replica. N is the total 
number of image replicas. The ROI average of this estimate 
is then used as the reference value to validate the uncertainty 
estimators from Sects. 3.1–3.4:

In a similar way, the multiple replica method is used to deter-
mine the standard deviation of the noise for each individual 
voxel. This provides the distribution of the noise across the 
image. However, the estimation is more complicated than in 
Eq. (25) due to the non-central χ distribution of the image 
magnitude. The maximum likelihood method is applied, 
as suggested for such problems by Sijbers and den Dek-
ker (2004). This method selects the parameter values of a 
given PDF with the aim to maximize the probability that the 
observed data belong to the resulting distribution. Using the 
PDF of the non-central χ distribution in Eq. (8), the maxi-
mum likelihood estimate is defined as:

where iM(j) is the magnitude value in the jth voxel and the ith 
image replica.

4 � Results—experimental validation

Experiments are carried out with five different test cases. 
The description of these test cases is provided in Fig.  1 
and Table 3. Test case 1 represents a reference case with 
the purpose to demonstrate the noise characteristics with 
a perfectly stationary fluid sample. Test cases (2a), (2b), 
and (2c) provide three different axial flows with a turbu-
lence intensity of about 6 %. The flow rate, and therefore 
the magnitude of the turbulent fluctuations, increases from 
test case (2a) to test case (2c). The purpose of this setup 
is to show how a gradually increased flow unsteadiness 
affects the estimation of the measurement uncertainty. 
Finally, test case 3 provides a strongly swirling turbulent 
flow as a more realistic test case. Such swirling motion is 
found in many natural and technical flows, for example 
in the combustion chambers of gas turbines. In addition, 
test case 3 is set up as a 3D acquisition with a relatively 
large number of receiver coils. The flow rate and tempera-
ture for all test cases with flow are controlled by a flow 
conditioning unit similar to the one described in Grund-
mann et al. (2012b). The Reynolds numbers of these test 

(25)
σ̂u(j) =

Venc

π

√

Var
{

1�Ψ (j), . . . , N�Ψ (j)
}

(26)σ̂u,REF = �σ̂u(rROI)�.

(27)
[

σ̂n(j), ˆA(j)
]

= argmax
σn,A

N
∑

i=1

ln
(

p
(

iM(j) | σn,A, L
))
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cases correspond to the bulk flow velocity Ub and the pipe 
diameter.

The MRV acquisitions are performed on a 3 T MAG-
NETOM Prisma system (Siemens Healthcare, Erlangen, 
Germany) using a Cartesian, fully sampled gradient echo 
FLASH (fast low angle shot) sequence and a flip angle of 
10◦. The images are reconstructed with the SOS combina-
tion technique as specified in Eqs.  (2) and (6). The most 
important acquisition parameters are given in Table 3. The 
values of these parameters are adjusted to produce a target 
SNR of at least 8, which is necessary for the approximation 
in Eq. (10) to be within 1 % of the true value.

The flow velocity is encoded along the direction of the 
pipe axis with a sensitivity of Venc = 0.5m/s using the 
two-point measurement scheme. The water in all test cases 

is at room temperature (21◦) and contains a concentration 
of 1 g/L Copper sulfate as contrast agent. Each test case 
is measured in a batch process consisting of 100 repeated 
MRV acquisitions. During this process, the experimental 
conditions are kept constant.

4.1 � Noise distribution in the image

Figure  2 shows the image magnitude, the phase differ-
ence, and the standard deviation of the noise for all five test 
cases. The standard deviation of the noise is obtained from 
the multiple replica method in Eq. (27). The images are 
manually segmented into an artifact-free background (BG) 
and a ROI which contains the water. The results for test 
case 1 show that the image is free of motion artifacts. The 

44 mm

200 mm

swirl generator

flow

flow

FOV

100 mm

FOVFOV

FOV

screens 50 mm

Fig. 1   Flow system for test case 2 (top drawings) and test case 3 
(bottom drawings). The left drawings show the flow system perpen-
dicular to the pipe axis, the middle drawings show the cut open view 

in the symmetry plane and the right drawings show the field of view 
(FOV) of the MRV acquisition perpendicular to the pipe axis

Table 3   Description of the 
measured test cases 1  (Reference): A cylindrical bottle is filled with a mixture of water, contrast agent, and hydroxyethylcel-

lulose to prevent fluid motion. The 2D acquisition is conducted with a single receiver coil. Matrix size: 
256 × 256 × 1 (0.6 × 0.6 × 2.8 mm3), echo time: TE = 5.0 ms, repetition time: TR = 15.2 ms, acquisition 
time: TA = 3.9 s, bandwidth: BW = 605 Hz/pixel

2  (Axial Flow) Water with contrast agent is pumped through a cylindrical pipe, as shown in Fig. 1 (top). 
The 2D acquisition is conducted with a single receiver coil. Matrix size: 128 × 128 × 1 
(0.67 × 0.67 × 2.8 mm3), TE = 5.0 ms, TR = 15.2 ms, TA = 2.0 s, BW = 605 Hz/pixel

(a) Re = 5000,

Ub = 0.10m/s

(b) Re = 10,000,

Ub = 0.20m/s

(c) Re = 15,000,

Ub = 0.30m/s

3  (Swirl Flow) Re = 10,000, Ub = 0.23 m/s: Water with contrast agent is pumped through a cylindrical 
pipe superimposed with a swirling motion, as shown in Fig. 1 (bottom). The 3D acquisition is conducted 
with L = 12 surface coils. Matrix size: 96 × 96 × 10 (1 × 1 × 1 mm3), TE = 4.9 ms, TR = 15.8 ms, 
TA = 15.3 s, BW = 455 Hz/pixel
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standard deviation of the noise is approximately constant 
across the image. The results for test cases 2 and 3 show a 
different characteristic. The standard deviation of the noise 
is increased in the ROI and in the image regions left and 
right of the ROI, hence along the phase encoding direction. 
In addition, the images show strong motion artifacts along 
the phase encoding direction as clearly visible in the image 
magnitude of test case 3. These effects becomes more pro-
nounced with increasing test case number. For test case 3, 
the average standard deviation of the noise in the ROI is 
approximately four times higher than the standard devia-
tion in the artifact-free background.

The increased noise in the image is caused by random 
signal fluctuations that arise from the turbulent flow. The 
mechanism of the noise increase is demonstrated by a 
numerical simulation. The simulation is set up similar to 
the presented measurements, hence with a Cartesian, fully 
sampled k-space. Two cases are investigated. In the first 
case, the signal in the sample is subject to complex white 
Gaussian noise. Thus, each phase encoding line in the 
k-space corresponds to a slightly different signal. The sim-
ulation results in Fig. 3 show that in this case, the noise is 
homogeneously increased along the phase encoding direc-
tion. The second case describes a scenario in which the 
complex signal is only changed in between acquisitions. In 

this case, the noise increase is limited to the image region 
with the flow sample. In comparison with the measurement 
results in Fig. 2, it can be seen that both effects occur at the 
same time. The reason is that the turbulence in the flow is 
characterized by a broad range of time scales.

The specific effect in the image depends on the acquisi-
tion time and on the time scales in the flow. This can be 
explained as follows. With longer acquisition time and 
unchanged flow characteristics, a wider range of time 
scales contribute to signal changes between k-space lines. 

Fig. 2   Measurement results for all test cases. The top row and center 
row show the magnitude and phase difference of an individual image 
replica, respectively. The bottom row shows the standard deviation of 
the noise from Eq.  (27). The image magnitude is scaled so that the 
standard deviation of the noise yields 10 in the artifact-free back-
ground. This scaling is arbitrary and does not affect the outcome. 

All magnitude values are integers. The manually segmented ROI and 
BG are defined by red and green color, respectively. PE indicates the 
phase encoding direction. Note that in the images of test case 3, the 
shape of the pipe cross-sectional area is skewed due to a misregistra-
tion of the rotating fluid

Fig. 3   Simulation of the noise distribution in images with Cartesian, 
fully sampled k-space and 128 × 128 voxels. The voxels in the sam-
ple are disturbed by a random fluctuation of the complex signal with 
standard deviation of 30. The background noise has a standard devia-
tion of 10. The resulting standard deviation of the noise in the image 
is estimated with Eq. (27) based on 1000 simulated image replicas
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The resultant effect will be a more homogeneous noise 
increase along the phase encoding direction. In the extreme 
case, in which the acquisition time is much longer than the 
longest time scale in the flow, the noise increase will be 
entirely homogeneous along the phase encoding direction, 
as in the middle image of Fig.  3. This is supposedly the 
case in conventional MRV measurements where the acqui-
sition time lies in the order of minutes and longer.

4.2 � Evaluation of the uncertainty estimators

The estimators from Sects. 3.1–3.4 are evaluated. The 
estimators based on manually segmented images (σ̂u,CA1, 
σ̂u,ROI2) use the same image regions as depicted in Fig. 2. 
The estimators based on a segmented histogram (σ̂u,CA2 , 
σ̂u,ROI1) use a magnitude threshold to define these image 
regions. The segmentation of the histogram is demon-
strated in Fig.  4. Using the data from test case 3, it is 
shown that the histogram of the image magnitude con-
tains two clearly distinguishable parts. The left part of 
the histogram corresponds to the image background, and 
the right part corresponds to the ROI. The magnitude 
threshold is determined as the local minimum between 
these two histogram parts. The background part contains 
two peaks, one associated with the artifact-free back-
ground and a second, smaller peak associated with the 
motion artifacts along the phase encoding direction, as 
shown in Fig. 2. The two peaks overlap and as a result, it 
is not possible to isolate the artifact-free background by 
this segmentation technique. Similarly, not all data points 
in the ROI part belong to the actual flow sample. Some 
data points with weaker magnitude belong to voxels with 

partial volume effects at the edges of the flow volume. 
These voxels are excluded from the ROI in the manually 
segmented images.

The local statistics approach used in Sect. 3.3 (σ̂u,ROI1) 
requires a specification of the window size. The effect of 
different window sizes is demonstrated in Fig.  5. Using 
the data from test case 1, it is shown that the peak of the 
distribution of the local estimates is consistent for win-
dows with up to 16× 16 voxels. The issue that arises with 
smaller window sizes is that the distribution is wider and 
the peak of the distribution becomes less pronounced. As 
a compromise between accuracy and precision, a window 
size of 8× 8 voxels was determined for test cases 1 and 2. 
The images of test case 3 contain stronger signal variations 
in the ROI and in this case, a window size of 6× 6 voxels 
was found to yield the best result.

Using all available image replicas, the estimators based 
on individual images (σ̂u,CA1, σ̂u,CA2, σ̂u,ROI1) are evalu-
ated 100 times per test case. The estimator that uses image 
replica pairs (σ̂u,ROI2) is evaluated 50 times per test case. 
Figure 6 shows the evaluation results. The black dots in the 
figure represent the mean of all estimates and the colored 
bars indicate the interval that contains 95 % of all estimates. 
It is shown that the two estimators based on the noise in the 
artifact-free background (σ̂u,CA1, σ̂u,CA2) become inaccurate 
for increasing test case number. These uncertainty estima-
tors represent the conventional approach. The deviation 
is −75% for test case 3. The estimator based on the noise 
in the ROI, hence the image region with flow, (σ̂u,ROI1 ) is 
considerably more accurate for the same test cases. The 
same applies to the estimator that is directly based on the 
velocity deviations in the ROI (σ̂u,ROI2). Note that all four 

Fig. 4   Qualitative histogram of the magnitude data in the images 
of test case 3. The bin size is one. The magnitude threshold (dashed 
line) is determined as the local minimum between the two regions, 
BG and ROI

Fig. 5   Effect of the window size (measured in number of voxels) on 
the uncertainty estimator with local statistic from Sect. 3.3 (σ̂u,ROI1). 
The depicted curves represent the distribution of the local estimates 
for test case 1 as obtained by the kernel density estimation
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estimators produce accurate results for the images of test 
case 1 which contain homogeneous noise.

Finally, it is emphasized, that the precision of these esti-
mators strongly depend on the number of voxels that con-
tribute to the estimate. The images presented here contain 
less than 100,000 voxels, and much less in the segmented 
image regions. Actual MRV measurements can contain sev-
eral 10,000,000 voxels. Accordingly, the precision of the 
estimators will improve significantly when applied to such 
data sets.

5 � Discussion

The experiments suggest that the noise in the image is 
affected by the turbulent flow. The image is subject to 
motion artifacts and therefore to an increased noise in the 
phase encoding direction. The average standard deviation 
of the noise in the image region with flow was found up 
to four times higher than in the artifact-free background. 
This deviation translates directly to the estimation of the 
measurement uncertainty. It is therefore crucial whether 
the measurement uncertainty is based on the noise in the 
artifact-free background or on the noise in the image region 
with flow. The original guidelines for the estimation of the 

uncertainty in MRV do not make a reference on the differ-
ent noise levels (e.g., Pelc et  al. 1994). Consequently, the 
definition of the measurement uncertainty in MRV needs to 
be reconsidered. Two definitions are proposed:

1.	 Background Uncertainty This definition refers to the 
minimum achievable measurement uncertainty if the 
flow sample was perfectly stationary. The uncertainty 
can be estimated from the noise in the artifact-free 
image background which corresponds to the thermal 
noise from the MRI receiver chain and is unaffected by 
the turbulent flow. Possible uncertainty estimators are 
σ̂u,CA1 and σ̂u,CA2.

2.	 Total Statistical Uncertainty This definition corre-
sponds to the standard deviation of the results if the 
experiment was repeated. The Total Statistical Uncer-
tainty combines all statistical uncertainties and can be 
regarded as the actual measurement uncertainty of the 
experiment. As a possible approach, the uncertainty 
can be estimated from the noise in the image region 
with flow, which combines the thermal noise from 
the MRI receiver chain and the motion artifacts from 
the turbulent flow. Possible uncertainty estimators are 
σ̂u,ROI1 and σ̂u,ROI2.

An example to demonstrate the difference between these 
two uncertainty definitions is provided in Fig. 7. The figure 
shows a velocity measurement of test case 3. The depicted 

Fig. 6   Results of the uncertainty estimators from Sects. 3.1–3.4 com-
pared to the reference values from Sect.  3.5. The dots represent the 
mean of all estimates and the bars indicate the interval that contains 
95 % of all estimates

Fig. 7   Axial velocity distribution in the symmetry plane of test case 
3. The velocity data from an individual measurement is compared to 
the expected value (the mean of all measurements, 〈u〉). The colored 
areas represent the 95 % confidence interval obtained from the two 
uncertainty definitions. The Background Uncertainty is evaluated 
with the estimator σ̂u,CA1 from Sect. 3.1. The Total Statistical Uncer-
tainty is evaluated with the estimator σ̂u,ROI2 from Sect. 3.4
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uncertainty intervals correspond to the double standard 
deviation (95  % confidence) which means that the meas-
ured velocity values should lie almost completely within 
these intervals. This is clearly not the case with the Back-
ground Uncertainty. The associated uncertainty interval 
does not represent the statistical variations of the velocity 
data. Obviously, the Total Statistical Uncertainty is a much 
closer representation of this measurement.

Generally, in images with low background noise and 
large degree of motion artifacts, the error of the Back-
ground Uncertainty will be most pronounced. In this 
study, the Background Uncertainty was found up to −75% 
smaller than the Total Statistical Uncertainty. This observa-
tion is based on generic experiments with relatively small 
image size and in which the turbulence in the flow was 
produced on purpose. The question rises whether the same 
effect can be observed in actual MRV experiments. For this 
reason, the two uncertainty definitions are evaluated with 
the measurement data from previously published studies. 
The results are given in Table 4. It is shown that the differ-
ence lies in the same order of magnitude as observed with 
the experiments in this study.

Consequently, the conventional approach of estimating 
the uncertainty from the noise in the artifact-free back-
ground, hence the definition of the Background Uncer-
tainty, is inaccurate. For future MRV experiments, it is 
therefore strongly recommended that the Total Statistical 
Uncertainty is evaluated instead. In the case that two or 
more image replicas are available, the uncertainty can be 
conveniently estimated with the dual acquisition estima-
tor from Sect.  3.4. In experiments where only one image 
is available, the local statistics estimator from Sect. 3.3 can 
be applied.

In addition to the presented estimators, there are other 
methods conceivable. For example, the Total Statisti-
cal Uncertainty could be estimated in the background 
region which is affected by motion artifacts. However, this 
requires that the motion induced noise is homogeneous in 
the phase encoding direction, as for example in the middle 
image in Fig. 3. This method could not be tested here since 
the relatively short acquisition time of the measurements 
led to an inhomogeneous noise increase. The influence 

of the acquisition time on the homogeneity of the noise 
increase was explained at the end of Sect. 4.1.

Finally, it is emphasized that the difference between the 
Background Uncertainty and the Total Statistical Uncer-
tainty also depends on the imaging technique. All presented 
measurements were obtained by conventional Cartesian 
sampling. In medicine, the issue of motion artifacts is often 
addressed with different imaging techniques that are less 
prone to motion. For example, radial schemes rotate the 
phase encoding direction to reduce motion artifacts (Zhang 
et  al. 2010). With single shot echo planar imaging (EPI), 
motion artifacts are effectively removed (Poustchi-Amin 
et  al. 2001). On the downside, these imaging techniques 
have other imperfections, for example they are more prone 
to a variety of other artifacts compared to conventional 
Cartesian sampling.

Consequently, with certain imaging setups, it might be 
possible to use the noise in the image background to cal-
culate the Total Statistical Uncertainty. Nevertheless, the 
most reliable approach which is independent of the imag-
ing setup, is to measure the uncertainty directly in the 
image region where the flow is measured, for example with 
the estimators from Sects. 3.3 and 3.4.

6 � Conclusion

Over the past decade, velocity measurements with MRV 
have found increasing application in the field of engineer-
ing and science. An important research area that has been 
left out so far, is the estimation of the measurement uncer-
tainty. This was the purpose of this study. Based on vari-
ous test cases, it was found that the uncertainty estimate 
can vary substantially depending on how the uncertainty 
is obtained. The widely used approach of estimating the 
uncertainty from the noise in the artifact-free background 
can lead to a clear underestimation of the uncertainty value. 
These outcomes were also verified with the MRV data from 
other studies. Therefore, it is strongly recommended that 
the uncertainty estimate is obtained from the noise in the 
image region with the flow sample or that it is measured 
directly from the velocity data. Two uncertainty estimators 

Table 4   Evaluation of the uncertainty definitions with previously published MRV data

The Background Uncertainty is evaluated with the estimator σ̂u,CA1 from Sect. 3.1. The Total Statistical Uncertainty is evaluated with the estima-
tor σ̂u,ROI2 from Sect. 3.4

Description of experiment σ̂u,CA1

σ̂u,ROI2

Intake flow of an internal combustion engine model (Freudenhammer et al. 2014). Sudden flow expansion (Re = 45,000 at inlet) 0.34

Coaxial heat exchanger similar to Buchenberg et al. (2015). Low turbulence pipe flow (Re = 1800) with buoyancy driven cross-flow 0.63

Turbine blade cooling duct model (Bruschewski et al. 2016). Various geometries. Strongly swirling turbulent pipe flow (Re = 20,000) 0.27–0.56
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were presented which, depending on the specific require-
ments, can be applied in a straightforward manner.
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