
1 3

Exp Fluids (2016) 57:41
DOI 10.1007/s00348-016-2128-6

RESEARCH ARTICLE

Shearlet‑based detection of flame fronts

Rafael Reisenhofer1 · Johannes Kiefer2 · Emily J. King1 

Received: 29 October 2015 / Revised: 13 January 2016 / Accepted: 14 January 2016 / Published online: 22 February 2016 
© Springer-Verlag Berlin Heidelberg 2016

has transformed combustion research (Dyer and Crosley 
1982; Fourguette et al. 1986; Aldén et al. 2011; Thurow 
et al. 2013). Using a light sheet to illuminate an entire 
two-dimensional cross section of a flame and imaging the 
laser-induced emission onto a camera provide spatially cor-
related information in contrast to pointwise scanning. In 
particular, the use of short-pulse laser sources and gated 
cameras enables imaging on timescales that are shorter than 
flow and diffusion phenomena, and hence, a true snapshot 
of a flame can be taken. Consequently, studying transient 
phenomena is possible by capturing flame structures under 
turbulent conditions. However, processing and evaluating 
such images are a challenge. Appropriate methods must 
be reproducible, accurate, and quantitative. In addition, the 
information desired should be available within a reasonable 
period of time. This is particularly important when large 
data sets need to be processed.

The most common task is to identify and to character-
ize the flame front in an image recorded by planar laser-
induced fluorescence (PLIF) (Sweeney and Hochgreb 
2009), laser Rayleigh scattering (LRS) (Pfadler et al. 
2007), or particle imaging velocimetry (PIV) (Pfadler et al. 
2007). Regarding data processing, this task comes down to 
an edge detection problem. Needless to say, the edge detec-
tion step is crucial, as a slightly differently detected edge 
may suggest significantly different flame parameters, e.g., 
in terms of the flame front curvature.

The majority of existing approaches for detecting the 
flame front in an image are based either on direct binariza-
tion (Kiefer et al. 2008; Haq et al. 2002) or on local inten-
sity gradients (Slabaugh et al. 2015; Bayley et al. 2012). 
When direct binarization is applied, an intensity threshold 
filter is used delivering a binary image containing areas of 
zeroes and ones, representing unburnt and burnt regions. 
The boundary between the two is the flame front, from 
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1 Introduction

The development of laser combustion diagnostics employ-
ing planar imaging techniques in the 1970s and 1980s 
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which further information can be derived. In gradient-
based methods, the first step is to convert the initial image 
by computing an approximation of the gradient pixel by 
pixel. Then a local or global threshold is applied in order 
to discriminate between the steep gradients typical for the 
flame front and less pronounced structures. This may be a 
simple threshold or a sophisticated combination of multi-
ple thresholds via hysteresis (Canny 1986). Subsequently, 
the remaining flame front data points can be fitted with a 
mathematical function, from which parameters such as 
curvature and flame surface density can be derived eventu-
ally. Preprocessing the original images with filters for noise 
reduction and contour enhancement may be required in 
order to improve the clearness and robustness of the flame 
front detection (Slabaugh et al. 2015; Sweeney and Hoch-
greb 2009; Malm et al. 2000). However, when the signal-
to-noise ratio is low or the edge to be detected is not suffi-
ciently steep, the common data processing algorithms may 
reach their limits. Further, the typical results must be fur-
ther processed (e.g., by fitting a cubic spline to the detected 
edge) in order to obtain geometric information like curva-
ture (Pfadler et al. 2007). Finally, traditional edge detection 
algorithms are not capable of detecting ridges (lines) as 
coherent structures, which is problematic when analyzing 
images of short-lived radicals like CH and HCO. Instead, 
completely different ridge detection methods have to be 
applied, which often are based on approximating local 
optima (Lindeberg 1998; Staal et al. 2004) or matching 
ridges to set shapes like circles (Duda and Hart 1972).

To overcome the limitations of existing flame image 
analysis tools, we propose the application of an algorithm 
which we have named Complex Shearlet-Based Ridge and 
Edge Measure (CoShREM) for the detection and analysis 
of edges and ridges, based on a so-called shearlet transfor-
mation. Shearlets were introduced a decade ago (Kutyniok 
et al. 2005) to handle geometric structures in 2D data, and 
a novel method to use so-called complex shearlets in edge 
detection initially appeared in Reisenhofer (2014) and 
was fine-tuned in King et al. (2015). A description of the 
basic mathematical intuition behind CoShREM is given in 
Sect. 2. This is the first paper, to the best of the authors’ 
knowledge, to use any sort of shearlet-based method (com-
plex shearlet-based or otherwise) in the processing of flame 
images.

In the present paper, we investigate the potential of 
shearlet transformations for evaluating data from planar 
laser diagnostics. As a first step, in Sects. 3.1 and 3.2 mock 
images with clearly defined structures, which have been 
corrupted by blurring, Gaussian noise and Poisson noise of 
varying levels, are processed in order to allow a systematic 
assessment of the method. The mock images were gener-
ated such that they represent the characteristics of typical 
flame data. One set of images exhibits thin ridges, which 

are commonly observed when short-lived radicals such as 
CH and HCO are visualized using PLIF. The other data set 
shows broader areas (edge detection), which are character-
istic of LRS and PIV data, as well as PLIF images of long-
lived radicals like OH. The new shearlet-based method will 
be shown to work well in detecting edges and ridges over 
a range of noise levels and amounts of added blur, in addi-
tion to giving geometric information—in particular tangent 
slope and curvature—about the edges. However, we shall 
also show that, given the correct parameters, the classical 
method of Canny (1986) is also quite successful at detect-
ing edges (but not ridges or curvature). Thus, in addition to 
introducing a novel method of edge and ridge detection, a 
discussion of how to properly use a very classical method 
will be presented. In the second step, Sect. 3.3, CoShREM 
is applied to CH and OH PLIF images of a turbulent jet 
flame in order to demonstrate its performance in the analy-
sis of experimental data.

The main contributions of this paper are the introduction 
of a new method of flame image analysis and a systematic 
analysis of methods of edge detection, ridge detection, and 
local curvature calculation. Through this analysis, the new 
shearlet-based method CoShREM is shown to be robust to 
noise and blurring when detecting edges or ridges and also 
determining curvature. The proper way to parameterize the 
Canny method to obtain good results for basic edge detec-
tion is also presented.

2  Mathematical background

A very common approach to edge detection is to say that 
edges occur where the gradient—a generalization of the 
derivative to higher dimensions—is high, so one approxi-
mates the gradient and looks for where it is large (Roberts 
1963; Prewitt 1970; Sobel and Feldman 1968; Danielsson 
1990). Simply approximating the gradient is very sensitive 
to noise, so the image is typically smoothed with a Gauss-
ian kernel (Canny 1986) or is approximated in a multiscale 
manner using wavelets (Mallat and Hwang 1992; Mallat 
and Zhong 1992) or even shearlets (Yi et al. 2009). The 
method presented in this paper is different in that it does 
not attempt to approximate the gradient. In order to explain 
the mathematical intuition of the approach, we begin by 
defining some notation.

We shall denote the set of integers by Z, the set of real 
numbers by R, the set of complex numbers by C, and the 
square root of −1 by i. For functions of finite energy f and 
g, 〈f , g〉 represents the standard inner product, which is con-
jugate linear in the second component

�f , g� =
∫ ∞

−∞
f (x)g(x)dx.
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We wish to detect both edges and ridges. Examples of what is 
meant by “edge” and “ridge” in one and two dimensions are 
shown in Fig. 1. Figure 1a shows a 1D model edge, (b) a 1D 
model ridge, (c) a 2D model edge, and (d) a 2D model ridge. 
The approach we shall use involves two key ideas: phase con-
gruency and shearlets. First, the phase congruency approach 
(Morrone and Owens 1987; Morrone et al. 1986; Kovesi 
1999, 2000) to edge and ridge detection is strengthened (see 
also van Deemter and Buf 2000). Then, it is implemented 
using systems of complex shearlets (Kutyniok et al. 2005; 
Storath 2013; Reisenhofer 2014), which are wavelet-like func-
tions that yield geometric information. A detailed explanation 
of the mathematics behind the method will be in a forthcom-
ing paper with a shorter synopsis in King et al. (2015) and an 
earlier version appearing in Reisenhofer (2014).

We first summarize the intuition behind phase congru-
ency, which is a type of harmonic-analysis-based signal 
processing. That is, given a signal or image represented 
as a function f, we want to obtain information about f by 
considering the inner products of f with some collection of 
functions {ϕj}, namely the set {�f ,ϕj�}. Examples of com-
mon functions ϕj used in this context are complex exponen-
tial functions (used in Fourier analysis) and wavelets. For 
simplicity’s sake, we describe the approach in one dimen-
sion. Further, while the original papers about phase con-
gruency (Morrone and Owens 1987; Morrone et al. 1986) 
dealt with Fourier-based phase congruency, this is highly 
sensitive to noise and the spacing between edges. Thus, for 
brevity, we shall explain wavelet-based phase congruency, 
which avoids these issues.

Wavelets were first introduced by Haar (1909, 1910) in 
the early twentieth century and rose to prominence about 
80 years later. Unlike the Fourier basis, formed from peri-
odic sines and cosines, wavelet collections are built from 
functions which take values close to zero away from the 
origin and which are stretched and shrunk. This means that 
inner products of a function with sines and cosines yield 
information about periodic phenomena, while inner prod-
ucts with wavelets result in a characterization of local 
traits. See, for example (Daubechies 1992) for a general 
reference. Given a function ψ : R → C which satisfies cer-
tain mathematical properties, we define a wavelet system as

(1){ψa,y(x) := (
√
a)ψ(a(x − y)) : a > 0, y ∈ R}.

That is, we form the system by dilating by a and translat-
ing by y the function ψ. Figure 2a contains an example of 
a wavelet, and Fig. 2b shows various shifts and translates 
of that wavelet. The quantities of interest for us are the so-
called wavelet coefficients,

Often in applications instead of dilating by all possible 
a > 0 and translating by all possible y ∈ R, one dilates 
by 2n for n ∈ Z and shifts by k ∈ Z; however, for our pur-
poses, we gain more information by allowing more dila-
tions and translations. Furthermore, since we will always 
use ψ which are centered at the origin, the parameter y tells 
one where—regardless of the value of a− ψa,y is centered, 
namely at y.

We shall use a special type of ψ called a complex wave-
let. A complex wavelet is formed as

where ψ(e) and ψ(o) are both real-valued, ψ(e) is even-
symmetric (that is, ψ(e)(−x) = ψ(e)(x) for all x ∈ R), ψ(o) 
is odd-symmetric (that is, ψ(o)(−x) = −ψ(o)(x) for all 
x ∈ R ), and ψ(e) and ψ(o) have a particular relationship to 
each other (Kingsbury 1999; Selesnick 2001; Selesnick and 
Abdelnour 2004). In Fig. 2, one can see examples of ψ(e) 
(a) and ψ(o) (c), as well as the model for a one-dimensional 
edge (d) that we shall use as a motivating example. We shall 

�f ,ψa,y�, a > 0, y ∈ R.

ψ(c) = ψ(e) + iψ(o),

Fig. 1  a A 1D model edge (jump). b A 1D model ridge. c A 2D 
model edge. d A 2D model ridge
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Fig. 2  a The so-called Mexican hat wavelet, an even-symmetric real-
valued wavelet ψ(e). b Various shifts and dilations of the Mexican hat 
wavelet. ψ(e) = ψ

(e)
1,0 is in black, ψ(e)

1/2,0 in dark red, ψ(e)
2,2 in blue, and 

ψ
(e)
1/4,−2 in light green. c The odd-symmetric wavelet ψ(o) paired with 

the Mexican hat wavelet. d An idealized edge in one dimension
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call 〈f ,ψ(e)
a,y 〉 the even-symmetric coefficients and 〈f ,ψ(o)

a,y 〉 
the odd-symmetric coefficients. The underlying idea of 
wavelet-based phase congruency is that when the wavelets 
ψ(e)
a,y and ψ(o)

a,y are properly normalized and there is an ideal-
ized edge in a function f at position y, �f ,ψ(e)

a,y � = 0 for all 
a > 0 and 〈f ,ψ(o)

a,y 〉 is constant and nonzero for all a > 0. 
This can be seen in Fig. 3. Figure 3a shows three dilations 
of ψ(e) centered on the edge, while Fig. 3b shows the values 
of the inner product of f with shifted versions of the three 
dilations of ψ(e). In particular, notice that when each of the 
dilated wavelets is centered on the edge, their inner product 
with f is zero. As the dilated wavelets are shifted away from 
the edge, the inner product increases or decreases rapidly 
away from zero. On the other hand, if we consider dilated 
and shifted odd-symmetric wavelets as in Fig. 3c, we can 
see in Fig. 3d that their inner product with f reaches a maxi-
mum, in fact the same maximum, when they are centered on 
the edge. As they are shifted away from the edge, the value 
of the inner product drops rapidly from that maximum. Of 
course, in real data, edges are not usually so sharp and are 
corrupted by noise. However, it is still true that for a > 0, 
〈f ,ψ(e)

a,y 〉 is close to zero if f has an edge at y and 〈f ,ψ(o)
a,y 〉 

is both “large” relative to nearby values of y and approxi-
mately equal across different values of a. We use these three 
properties to define a measure between 0 and 1 of—in some 
sense—the likelihood that a pixel is part of an edge.

Definition 2.1 Given a pair of even-symmetric and odd-
symmetric wavelets ψ(e) and ψ(o) which satisfy certain 
hypotheses (in particular, a normalized version of the wave-
lets in Fig. 2a, c work), we choose a set of J positive dila-
tions {aj}j∈{1,2,...,J} and a very small ǫ > 0. Then we define 
for a 1D signal f : R → C

and

E is a function of y, the location, which yields a value 
between 0 and 1 showing likelihood that there is an edge 
at y. Considering an idealized edge as in Fig. 2d, we can 
see from Fig. 3b, d that when y is the location of the jump, 
regardless of which aj are chosen, 〈f ,ψ(e)

aj ,y
〉 are all 0 and 

each 〈f ,ψ(o)
aj ,y

〉 is equal, hence

The absolute values are important because the edge may be 
a “negative edge”; that is, the edge to be detected looks like 
the mirror image of Fig. 2d. The epsilon is added to prevent 
division by zero. Note that when y is on an edge, the odd-
symmetric coefficients are large and equal and the even-sym-
metric coefficients are zero. So as long as ǫ is small, E(y) is 
still basically 1. If the even-symmetric coefficients are larger 
than the odd-symmetric coefficients, resulting in a negative 
Ẽ(y), then there is essentially no chance that there is an edge 
located at y. Thus we simply set the value to be 0 as in Eq. 2.

In order to get a ridge measure, one notes that when 
the wavelets are centered on a ridge (Fig. 1b) at y, across 
scales a > 0, each 〈f ,ψ(e)

a,y 〉 is large, while 〈f ,ψ(o)
a,y 〉 is close 

Ẽ(y) =

∣

∣

∣

∑J
j=1�f ,ψ(o)

aj ,y
�
∣

∣

∣
−

∑J
j=1

∣

∣

∣
�f ,ψ(e)

aj ,y
�
∣

∣

∣

J ·maxj∈{1,2,...,J}
∣

∣

∣
�f ,ψ(o)

aj ,y�
∣

∣

∣
+ ǫ

(2)E(y) = max{Ẽ(y), 0}.

∑

j�f ,ψ(o)
aj ,y

� −
∑

j�f ,ψ(e)
aj ,y

�

J ·maxj�f ,ψ(o)
aj ,y�

=
∑

j�f ,ψ(o)
aj ,y

�
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Fig. 3  a ψ(e)
a,0, dilations of the even-symmetric wavelet centered on 

the edge. b A graph of the wavelet coefficients of the differently 
dilated even-symmetric wavelets at different positions. The horizontal 
axis is the shift y and the vertical axis is the value of 〈f ,ψ(e)

a,y 〉. c ψ(o)
a,0, 

dilations of the odd-symmetric wavelet centered on the edge. d A 
graph of the wavelet coefficients of the differently dilated odd-sym-
metric wavelets at different positions. The horizontal axis is the shift 
y and the vertical axis is the value of 〈f ,ψ(o)

a,y 〉

Fig. 4  a A small portion of the image processed in Fig. 13. b Ridges 
detected by CoShREM. c Results of the Canny edge detector. The 
figure illustrates that gradient-based methods such as the Canny edge 
detector can only detect the boundary curves of ridges but fail to rec-
ognize ridges as coherent structures
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to zero. So basically, one more-or-less switches the roles 
of ψ(e)

a,y and ψ(o)
a,y in the above definition to get a ridge meas-

ure. This trick leads to a measure that truly picks up the 
structure of ridges, which is something gradient-based edge 
detectors by construction fail to do. Gradient-based detec-
tors like Canny can only pick up the boundary edges of a 
ridge rather than the ridge itself, as shown in Fig. 4.

This edge measure works quite well in one dimension, 
but we are of course interested in finding the edges of two-
dimensional images. We want to generate a system by 
manipulating a function ψ : R2 → C that is wavelet-like. 
While it is possible to consider the most obvious generali-
zation of Eq. 1 to two dimensions

such systems do not handle curvilinear structures well due 
to their isotropic nature. That is to say, when dilating by 
a to get ψa,y, the function is stretched the same in each 
direction, so angled edges cannot be picked up very well. 
A number of systems like curvelets (Candès and Donoho 
2004), ridgelets (Candès and Guo 2002), contourlets (Do 
and Vetterli 2003), bandlets (Pennec and Mallat 2005), 
wedgelets (Donoho 1999), and shearlets (Guo et al. 2006; 
Kutyniok and Labate 2009; Kutyniok et al. 2005) have been 
created over the last decade or so in an attempt to construct 
wavelet-like systems that give more geometric (directional) 
information in higher dimensions than wavelets can. The 

(3){ψa,y(x) := ψ(a(x − y)): a > 0, y ∈ R
2},

Fig. 5  Tiling of the frequency domain generated by the essential fre-
quency support of a a wavelet system in the form of Eq. 3 [Meyer 
MRA], b a shearlet system in the form of Eq. 4, and c a shearlet sys-
tem with the form we use [cone-adapted]. Source: Gitta Kutyniok and 
Martin Genzel, TU Berlin

Fig. 6  Detection and analysis of edges in a noisy mock image with 
CoShREM. a Mock image perturbed with Gaussian blur (σblur = 1.0) 
and additive Gaussian white noise (σnoise = 50). b Pixels colored in 
dark red correspond to a high value of the complex shearlet-based 
edge measure. For illustrative purposes, a brightened version of the 
processed image is shown in the background. c The dark red lines are 
obtained from thresholding and thinning the output of the shearlet-

based edge measure, depicted in the previous image. d Color-coded 
estimates of the local tangent orientation, where light blue indicates 
a perfectly horizontal and dark red represents a perfectly vertical ori-
entation. e Color-coded estimates of the local curvature, where light 
blue denotes zero curvature and dark red indicates a curvature greater 
or equal than 5◦. f Enlarged section of local tangent orientation esti-
mates. g Enlarged section of the local curvature estimates



 Exp Fluids (2016) 57:41

1 3

41 Page 6 of 14

basic idea is to replace a scaling factor a > 0 with an aniso-
tropic scaling matrix

which treats the two dimensions differently and whose 
degree of anisotropy can be controlled via the param-
eter α ∈ [0, 1] [for more information on so-called α-mol-
ecules, see Grohs et al. (2016)]. Naturally, anisotropic 

Aα
a =

(

a 0

0 aα

)

,

scaling requires the introduction of a third degree of free-
dom besides scaling and translating, namely a means to 
change the preferred orientation of an anisotropic two-
dimensional function. The first idea which comes to mind 
is to add in rotations, that is to consider systems of the form

where the matrix Rθ rotates the input by θ degrees. How-
ever, rotations are not easy to implement digitally, so 
instead, we apply shearing. Namely,

where α ∈ [0, 1] and the shearing matrix is defined as

When we defined a wavelet system in Eq. 1, ψa,y meant 
that we had taken the generating function ψ : R → C , 
dilated it by a > 0 and then translated it by y ∈ R. For the 
shearlet system defined in Eq. 4, we start with a function 
ψ : R2 → C and fix the parameter of anisotropy α. Then 
ψa,s,y is ψ which has been sheared by parameter s ∈ R (sim-
ilar to rotation), anisotropically dilated by the matrix Aα

a, 
and then translated by y ∈ R

2. Thus in both systems, y indi-
cates location and a scale. In the shearlet system, one also 
gets directional information from s.

In the left-hand (a) and middle (b) images of Fig. 5, the 
difference between systems stemming from Eq. 3 and sys-
tems generated from Eq. 4 is depicted via the respective 
essential frequency supports of their elements. Note that 
the latter yields a polar-like decomposition. The system 

{

ψa,θ ,y(x) := ψ(RθA
α
a (x − y)) : a > 0, y ∈ R

2
, θ ∈ [0, 2π)

}

,

(4)
{

ψa,s,y(x) := ψ(SsA
α
a (x − y)) : y ∈ R

2, a > 0, s ∈ R

}

,

Ss =
(

1 s

0 1

)

.

Table 1  Numerical comparison of CoShREM with five other edge 
detectors

The table shows PFOM values for all considered algorithms and a 
total of 20 differently distorted versions of the mock image shown 
in Fig. 6, where 1.0 would indicate a perfect reproduction of the 
ground-truth. For each algorithm, parameters remained fixed for all 
test images but were carefully optimized such that the maximal error 
was minimized across all levels of noise. The binary ground-truth 
was drawn from hand and consisted of minimally connected lines 
(i.e., with the exception of intersections, each pixel with value 1 has 
at most two neighbors with value 1). To ensure a fair comparison, a 
thinning operation was applied to the binary outcome of each method. 
For a visual comparison of the results in the noisiest case (σblur = 1.5, 
σnoise = 100), see Fig. 7

σnoise 0 20 50 80 100

σblur = 0.0

 CoShREM 0.97 0.96 0.93 0.92 0.91

 Canny 0.90 0.90 0.88 0.88 0.88

 Sobel 0.93 0.92 0.89 0.70 0.44

 Phase congruency 0.95 0.94 0.90 0.78 0.72

 Yi et al. shearlet edge detector 0.88 0.88 0.88 0.87 0.88

 Canny (default parameters) 0.92 0.11 0.10 0.11 0.11

σblur = 0.5

 CoShREM 0.97 0.96 0.93 0.92 0.91

 Canny 0.90 0.90 0.88 0.89 0.88

 Sobel 0.93 0.91 0.89 0.65 0.43

 Phase congruency 0.95 0.94 0.88 0.75 0.62

 Yi et al. shearlet edge detector 0.88 0.89 0.88 0.88 0.87

 Canny (default parameters) 0.92 0.11 0.10 0.11 0.11

σblur = 1.0

 CoShREM 0.96 0.95 0.94 0.92 0.91

 Canny 0.89 0.89 0.89 0.89 0.89

 Sobel 0.91 0.90 0.76 0.44 0.33

 Phase congruency 0.94 0.92 0.83 0.60 0.39

 Yi et al. shearlet edge detector 0.88 0.88 0.88 0.87 0.85

 Canny (default parameters) 0.92 0.10 0.10 0.10 0.11

σblur = 1.5

 CoShREM 0.95 0.94 0.93 0.90 0.89

 Canny 0.89 0.89 0.88 0.87 0.87

 Sobel 0.89 0.93 0.47 0.32 0.27

 Phase congruency 0.89 0.80 0.72 0.33 0.16

 Yi et al. shearlet edge detector 0.87 0.88 0.87 0.86 0.86

 Canny (default parameters) 0.91 0.10 0.10 0.10 0.11

Table 2  Numerical comparison of the stability under additional Pois-
son noise

The table shows PFOM values for all six considered edge detectors 
and a total of five differently distorted versions of the mock image 
shown in Fig. 6a, where 1.0 would indicate a perfect reproduction of 
the ground-truth. The test images were first perturbed with five differ-
ent levels of additive Gaussian noise. Then, each pixel was resampled 
from a Poisson distribution with an expectancy of one-tenth of the 
original pixel value. Finally, the values of the thereby obtained gray-
scale image were rescaled by a factor of 10. To test the stability with 
respect to this kind of shot noise, the same parameters as in Table 1 
were used for all algorithms

σnoise 0 20 50 80 100

Poisson and Gaussian noise

 CoShREM 0.95 0.94 0.91 0.89 0.83

 Canny 0.90 0.89 0.87 0.50 0.28

 Sobel 0.65 0.49 0.36 0.22 0.24

 Phase congruency 0.93 0.90 0.70 0.24 0.00

 Yi et al. shearlet edge detector 0.89 0.88 0.86 0.78 0.65

 Canny (default parameters) 0.18 0.11 0.11 0.11 0.12
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used in what follows is formed by gluing together two sys-
tems of the form in Eq. 4 generated by an even-symmetric 
and real-valued ψ (e), one oriented horizontally and one ori-
ented vertically (see the right-hand (c) image of Fig. 5) and 
then taking the even- and odd-symmetric pair formed from 
the Hilbert transform. Then at each point, essentially a one-
dimensional edge (resp., ridge) measure is calculated in 
the direction with the largest odd-symmetric (resp., even-
symmetric) coefficient. More details may be found in King 
et al. (2015).

There is another shearlet-based edge detector, which 
was introduced in Yi et al. (2009). Their approach may be 
seen as a generalization of Canny which uses shearlets. 
That is, they in some sense approximate the gradient of 
various smoothed versions of the image using a shearlet 
system. The shearlet system they use is generated from a 
single odd function ψ rather than a pair of even and odd 
functions ψ(o) and ψ(e) as in CoShREM. They search for 
which values of y give local maxima of 

∣

∣〈f ,ψa,s,y〉
∣

∣ for cer-
tain values of a and set those to be the initial guess of the 
edge locations. Then they use a sophisticated technique to 
decrease the number of false negatives and false positives. 
Since their method is built on a shearlet transform, they are 
also able to approximate the tangent direction of a detected 

edge. Our method leverages both even- and odd-symmet-
ric shearlet coefficients, which distinguishes our approach 
from theirs and also allows us to detect ridges. Also, our 
implementation of the shearlet transform allows one to tune 
the anisotropy α of the scaling matrix as well as employ 
a finer-grained (non-dyadic) range of dilations a, which is 
not part of Yi et al. (2009).

3  Results

3.1  Edge detection on mock data

We first demonstrate the applicability of CoShREM by 
processing a grayscale mock image containing structures 
typically occurring in experimentally obtained flame data 
which has been corrupted in various ways. Figure 6 contains 
the visual results of CoShREM being applied in one such 
experiment. Figure 6a shows the mock image after corrup-
tion by Gaussian blur (σblur = 1.0) and additive Gaussian 
white noise (σnoise = 50). Alongside the original (Fig. 6b) 
and thresholded, thinned (Fig. 6c) values of the complex 
shearlet-based edge measure, estimates of the local tangent 
orientation and the local curvature are plotted in Fig. 6d–g.

Fig. 7  Visual comparison of different edge detection algorithms. The 
processed image was perturbed with Gaussian blur (σblur = 1.5) and 
additive Gaussian white noise (σnoise = 100). The displayed results 
were obtained from a CoShREM, b the Canny edge detector, c the 
Sobel edge detector, d the phase congruency measure, e Yi et al.’s 

shearlet edge detector, and f the Canny edge detector with its default 
configuration in MATLAB. The PFOM values corresponding to the 
results shown here can be found in the last column of Table 1. For 
illustrative purposes, brightened versions of the processed images are 
shown in the background
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In the experiments, we compare the newly proposed 
measure to a number of established methods such as the 
Canny edge detector (Canny 1986), the Sobel edge detector 
(Sobel and Feldman 1968), and the phase congruency 
measure (Kovesi 1999, 2000) as well as another shearlet-
based edge detector developed by Yi et al. (2009). This 
comparison is made visually but also numerically by com-
puting Pratt’s figure of merit (PFOM) (Abdou and Pratt 
1979) on the obtained results.1 To put an emphasis on test-

1 While the corresponding ground-truth is often created applying one 
of the edge detectors on the noiseless image, in this case, it was hand-
made by the authors to prevent favoring a particular method.

ing the stability of CoShREM, two different types of exper-
iments were performed on the mock image. First, in line 
with traditional image processing literature, the image ana-
lyzed in Fig. 6 was perturbed by four levels of Gaussian 
blur (i.e., convolution with a Gaussian filter kernel) and five 
levels of additive Gaussian white noise for a total of 20 dif-
ferent levels of corruption before CoShREM and other 
edge detection algorithms were applied. Second, there are a 
number of different sources of noise (electronic noise, pho-
ton noise/shot noise; readout noise, etc) in combustion 
diagnostics, and their accumulated effect on the image 
depends on the camera model, the laser source, the flame 
condition, the imaging optics, etc. (Pfadler et al. 2006; 

Fig. 8  Visual comparison of tangent orientation and curvature esti-
mates obtained from different algorithms. The processed image is the 
same as in Fig. 6 (σblur = 1.0, σnoise = 50). Light blue indicates a per-
fectly horizontal and dark red represents a perfectly vertical orienta-
tion in the first column while light blue denotes zero curvature and 

dark red indicates a curvature greater or equal than 5◦ in the middle 
column. The final column shows enlarged sections of the preceding 
images. a–c Results obtained from CoShREM. d–f Results obtained 
from the phase congruency measure. g–i Results obtained from Yi 
et al.’s shearlet edge detector
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Frank et al. 2005; Seitzman et al. 1994; McMillin et al. 
1993). Therefore, the assumption of an overall Gaussian 
noise distribution is reasonable. However, for completeness 
we have run a comparison of the edge detection algorithms 
on the mock data which has been corrupted by five differ-
ent levels of additive Gaussian noise and then Poisson/shot 
noise. For each of these test images, the parameters config-
uring the various edge detection algorithms remained fixed. 
However, for each method, the set of parameters was cho-
sen such that both visually and with respect to the PFOM 
metric, the maximal error was minimized across all levels 
of noise. To highlight the importance of carefully choosing 
fitting parameters for each edge detector, the Canny edge 
detector applied with its default parameters in MATLAB 
was also included in the comparison.

In the case of the Canny and the Sobel edge detectors, 
the implementations provided by the MATLAB Image 
Processing Toolbox (version 9.2) were applied. The soft-
ware used to compute the phase congruency measure can 
be downloaded from Peter Kovesi’s homepage (Kovesi 
2015) while an implementation of the other shearlet-based 
edge detector was kindly provided by the authors of Yi 

et al. (2009). For the latter, preprocessing with a Gaussian 
smoothing filter was added such that the algorithm could 
also handle more severe levels of noise.

All results of the success of the edge detection algo-
rithms applied to the images corrupted by Gaussian blur 
and additive Gaussian noise with respect to the PFOM met-
ric are compiled in Table 1 while detection results for all 
algorithms for the noisiest case are plotted in Fig. 7. The 
PFOM values of the different methods applied to the mock 
image perturbed by Gaussian noise followed by Poisson 
noise are given in Table 2. Under all noise and blurring 
regimes, CoShREM yields the best PFOM values.

While the Canny and Sobel edge detectors are based on 
approximations of the local gradients in horizontal and ver-
tical directions, the three other methods considered apply 
analyzing elements associated with numerous orientations, 
thereby automatically yielding more or less refined estimates 
of the local tangent orientation. A visual comparison of the 
approximated local orientation and curvature of the edges in 
the distorted mock image from Fig. 6 is depicted in Fig. 8. 
Please note that the computation of the local tangent orienta-
tions differs in all three applied edge detectors. However, all 

Fig. 9  Detection and analysis of ridges in a noisy mock image with 
CoShREM. a Mock image perturbed with Gaussian blur (σblur = 1.0) 
and additive Gaussian white noise (σnoise = 50). b Pixels colored in 
dark red correspond to a high value of the complex shearlet-based 
ridge measure. For illustrative purposes, a brightened version of the 
processed image is shown in the background. c The red lines are 
obtained from thresholding and thinning the output of CoShREM, 

depicted in the previous image. d Color-coded estimates of the local 
tangent orientation, where light blue indicates a perfectly horizon-
tal and dark red represents a perfectly vertical orientation. e Color-
coded estimates of the local curvature, where light blue denotes zero 
curvature and dark red indicates a curvature greater or equal than 5◦. 
f Enlarged section of local tangent orientation estimates. g Enlarged 
section of the local curvature estimates
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curvature estimates were made by computing the central dif-
ference with respect to the local tangent orientation.

3.2  Ridge detection on mock data

Just as in the edge detection case, we demonstrate the 
applicability of the complex shearlet-based ridge meas-
ure by processing a distorted grayscale mock image (see 
Fig. 9).

Out of the five algorithms considered in Sect. 3.1 only 
CoShREM and the phase congruency measure are capable 
of detecting ridges as coherent structures (see Fig. 4). To 
the other methods, a ridge just looks like a thin homoge-
neous region bounded by two edges. Hence, instead of a 
single ridge, two edges would be detected. This behavior 
is highly unfeasible for the detection of flame fronts as 
these edges will get increasingly weak and hidden by noise 
as ridges get thinner. Furthermore, merging two detected 
edges to calculate the location of a single ridge would 
require an additional post-processing step that again is non-
trivial and could also destroy finer structure.

Again, the robustness of CoShREM is subjected to 
a detailed analysis by processing a total of 20 differently 
distorted mock images with a fixed set of parameters. This 
time however, for the aforementioned reasons, only the 

Table 3  Numerical comparison of CoShREM and the phase congru-
ency-based ridge detector

The table shows again PFOM values, where 1.0 would indicate a per-
fect reproduction of the ground-truth. Both methods were applied to 
a total of 20 differently distorted versions of the mock image shown 
in Fig. 9. For both algorithms, parameters remained fixed for all test 
images but were carefully optimized such that the maximal error 
was minimized across all levels of noise. The binary ground-truth 
was drawn from hand and consisted of minimally connected lines 
(i.e., with the exception of intersections, each pixel with value 1 has 
at most two neighbors with value 1). To ensure a fair comparison, a 
thinning operation was applied to the binary outcome of each method. 
For a visual comparison for three differently distorted images, see 
Fig. 10

σnoise 0 20 50 80 100

σblur = 0.0

 CoShREM 0.94 0.95 0.95 0.93 0.93

 Phase congruency 0.90 0.94 0.94 0.93 0.93

σblur = 0.5

 CoShREM 0.93 0.93 0.92 0.89 0.89

 Phase congruency 0.88 0.92 0.93 0.92 0.88

σblur = 1.0

 CoShREM 0.94 0.92 0.92 0.90 0.86

 Phase congruency 0.88 0.92 0.92 0.88 0.81

σblur = 1.5

 CoShREM 0.93 0.92 0.91 0.88 0.88

 Phase congruency 0.88 0.91 0.89 0.74 0.37

Fig. 10  Visual comparison of CoShREM (a–c) and the phase con-
gruency-based ridge detector (d–f). The PFOM values correspond-
ing to the results shown here can be found in the first (σblur = 0, 

σnoise = 0), thirteenth (σblur = 1.0, σnoise = 50), and last (σblur = 1.5, 
σnoise = 100) column of Table 3. For illustrative purposes, brightened 
versions of the processed images are shown in the background
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Fig. 11  Visual comparison of tangent orientation and curvature 
estimates obtained from CoShREM (a–c) and the phase congru-
ency measure (d–f). The processed image is the same as in Fig. 9 
(σblur = 1.0, σnoise = 50). Light blue indicates a perfectly horizontal 

and dark red represents a perfectly vertical orientation in the first col-
umn while light blue denotes zero curvature and dark red indicates 
a curvature greater or equal than 5◦ in the middle column. The final 
column shows enlarged sections of the preceding images

Fig. 12  Detection and analysis of flame fronts with CoShREM. 
a PLIF visualization of long-lived OH radicals. b Pixels colored in 
dark red correspond to a high value of CoShREM. For illustrative 
purposes, a brightened version of the processed image is shown in 
the background. c The red lines are obtained from thresholding and 
thinning the output of CoShREM, depicted in the previous image. d 

Color-coded estimates of the local tangent orientation, where light 
blue indicates a perfectly horizontal and dark red represents a per-
fectly vertical orientation. e Color-coded estimates of the local curva-
ture, where light blue denotes zero curvature and dark red indicates a 
curvature greater or equal than 15◦. The second row depicts enlarged 
sections of the images shown in the top row
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phase congruency measure is included in this analysis, 
which again is based on a visual comparison and a numeri-
cal comparison via the PFOM metric. The numerical 
results are summarized in Table 3. A visual comparison of 
the detection results of the complex shearlet-based measure 
and the phase congruency measure for three differently per-
turbed test images is provided in Fig. 10.

Finally, a visual comparison of the tangent orientation and 
curvature estimates obtained from the complex shearlet-based 
ridge measure and the phase congruency measure for the dis-
torted mock image from Fig. 9 can be found in Fig. 11.

3.3  Edge and ridge detection on PLIF images

We conclude Sect. 3 with two real-world applications of 
CoShREM. For this purpose, we reuse images recorded in 
simultaneous single-shot CH/OH PLIF experiments of a 
turbulent jet flame. A description of the experimental con-
ditions as well as an analysis of the images can be found in 
a previous article (Kiefer et al. 2008), where the burner and 
the diagnostic setup as well as the two images are discussed 
from a combustion point of view in detail. In Fig. 12, 
detected flame front locations, local tangent orientations, 

and local curvature in a PLIF recording of long-lived OH 
radicals are shown. Figure 13 depicts detected flame front 
locations, local tangent orientations, and local curvature in 
a PLIF recording of short-lived CH radicals. It can be seen 
that the flame front is picked up reliably in both cases.

4  Conclusion and outlook

A novel edge and ridge detection technique for the auto-
mated extraction of flame fronts in recordings obtained 
from imaging techniques such as PLIF or LRS was intro-
duced. Both in the edge and the ridge detection case this 
method is based on complex-valued anisotropic analyzing 
elements—so-called complex shearlets—and exploits the 
special scale-independent behavior of the real and imagi-
nary parts of the coefficients associated with these ele-
ments at the locations of edges and ridges. Furthermore, 
the newly proposed CoShREM yields estimates of the 
local tangent orientations as well as the local curvatures 
at the locations of edges and ridges. This new method was 
also honestly compared to the state of the art. That is, the 
authors attempted to optimize the success of the competing 
methods which were tested.

Fig. 13  Detection and analysis of flame fronts with CoShREM. 
a PLIF visualization of short-lived CH radicals. b Pixels colored in 
dark red correspond to a high value of CoShREM. For illustrative 
purposes, a brightened version of the processed image is shown in 
the background. c The red lines are obtained from thresholding and 
thinning the output of CoShREM, depicted in the previous image. d 

Color-coded estimates of the local tangent orientation, where light 
blue indicates a perfectly horizontal and dark red represents a per-
fectly vertical orientation. e Color-coded estimates of the local curva-
ture, where light blue denotes zero curvature and dark red indicates a 
curvature greater or equal than 15◦. The second row depicts enlarged 
sections of the images shown in the top row
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Detection results on PLIF recordings of OH and CH 
radicals suggest the applicability of the measures proposed 
in this paper for real-world data. In addition, numerical 
experiments on mock images distorted by Gaussian blur 
and additive Gaussian white noise or Gaussian white noise 
followed by Poisson noise indicate that the performance of 
CoShREM is at least visually similar to already established 
methods such as the properly parameterized Canny edge 
detector or the phase congruency measure. However, it 
should be highlighted at this point that for certain applica-
tions requiring edge but not ridge detection, all needs might 
be satisfied by using the well-known Canny edge detec-
tor or the shearlet-based edge detector more recently pro-
posed by Yi et al. While the former, when given the correct 
parameters, seems to provide very stable and precise detec-
tion results in the presence of noise, the latter also yields 
approximations of the local tangent orientation and curva-
ture, although not as fine-tuned as our method.

The arguably most important feature of CoShREM is 
that it offers a unified approach to edge and ridge detection 
while naturally yielding approximations of the local tan-
gent orientations, which can then be used for an effortless 
computation of local curvature estimates. It hence provides 
a self-contained package capable of computing many things 
that might be of interest in the computer-assisted evaluation 
of experimental data from planar combustion diagnostics. 
While the current implementation of CoShREM is at least 
partially outperforming many well-established methods, 
there is room for future improvement given the relative 
novelty of the approach.

As it is the case with many edge detectors, CoShREM 
sometimes has difficulties precisely locating corners and 
intersections, especially when the parameters are chosen in 
the expectancy of severe distortions. Concerning approxi-
mations of the local curvature, there seems to be an imbal-
ance between the curvature detected in the vicinity of cor-
ners formed by one vertical and one horizontal edge and 
the curvature detected around meeting points of two diago-
nal edges (see, e.g., Fig. 8). Furthermore, the curvature pat-
terns in Figs. 8 and 11 both show small oscillations—espe-
cially on the detected circles—that are clearly not present 
in the analyzed image. However, it seems to be likely that 
both these issues can be overcome by refining the approxi-
mations of the local tangent orientations.

The CoShREM-based analysis of the PLIF recording 
of long-lived OH radicals depicted in Fig. 12 took roughly 
9.5 s on a 3.60 GHz Intel Core i7-4790 CPU, where 6.5 s 
were required for constructing a set of analyzing complex-
valued shearlets that can be stored and reused for pro-
cessing images of the same size. While this seems to be 
fast enough to put the algorithm to use in most practical 
situations, it should be noted that processing one image 
of similar size with the Canny edge detector, Yi et al.’s 

shearlet-based edge detector or the phase congruency 
measure only took about 1 s on the same machine.

The current implementation of CoShREM requires the user 
to set a total of ten different parameters, where six parameters 
are needed to define a system of complex-valued shearlets 
and four parameters configure the actual edge or ridge detec-
tion. Especially in comparison with the Canny edge detector 
and the shearlet-based edge detector introduced by Yi et al., 
which do not require more than three parameters in the imple-
mentations used for this work, this is a lot. However, all of 
the parameters used in the paper for all of the methods (not 
just CoShREM) as well as a discussion on how to choose the 
proper parameters for CoShREM may be found on http://
www.math.uni-bremen.de/cda. Furthermore, we would also 
like to emphasize again that when testing our method on the 
mock data, we used the same parameters across all noise lev-
els. In particular, the parameters remained the same whether 
or not the mock image was corrupted by Poisson noise. Also, 
since CoShREM is implemented with a GUI, it is very easy to 
modify the parameters. Finally, it seems reasonable that all ten 
parameters currently required might be derived from a set of 
only two to three parameters, specifying the expected degree 
of distortions, the scale of the structures that are to be detected 
and the expected smoothness of their boundary curves.

Besides the possible improvements outlined in the preced-
ing paragraphs, there is a straightforward generalization of 
CoShREM to 3D via the three-dimensional shearlet transform 
(Kutyniok et al. 2012, 2016; Negi and Labate 2012). While 
computationally demanding, such a generalization could again 
significantly improve the detection of flame fronts in high-fre-
quency videos or 3D snapshots of combustion processes.

A Matlab toolbox implementing CoShREM—including 
a GUI—as well as scripts reproducing all results shown in 
the figures and tables of Sect. 3 can be downloaded from 
http://www.math.uni-bremen.de/cda. A video of detected 
flame fronts is also hosted on the site.
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