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1  Introduction

Particle image velocimetry (PIV) is one of the most effi-
cient non-invasive techniques to capture velocity informa-
tion from complex flows. The technique deduces velocity 
field by the cross-correlation analysis of particle images 
recorded by digital cameras (Adrian and Westerweel 
2011). Since these images of tracer particles from experi-
ments usually suffer from background noise, issue of out-
of-pair particles and model shadows or reflecting light, the 
velocity fields from PIV measurements are inevitably sub-
ject to noise, outliers and missing vectors (Garcia 2011). 
Theses defects may not only affect the visualization of the 
flow, but also have a great influence on derivative quanti-
ties of velocity such as vorticity and quantities of vortex 
identification, as well as flow statistics. Therefore, post-
processing on error correction is a necessary procedure for 
PIV data.

Typically, the post-processing of PIV contains the fol-
lowing three steps: data validation, replacement of spurious 
or missing vectors, and smoothing (Garcia 2011). In previ-
ous research, considerable attention was focused on outlier 
detection (Westerweel 1994; Nogueira et  al. 1997; Song 
et al. 1999; Liang et al. 2003; Young et al. 2004). Most of 
those methods, such as the local-median test and cellular 
neural network (CNN) (Liang et  al. 2003), need different 
values of threshold to regulate the number of detected outli-
ers, which makes the threshold become a subjective setting. 
Shinneeb et al. (2004) proposed an outlier detection method 
with variable threshold technique, which made the thresh-
old parameter more objective. The normalized median test 
(NMT) method (Westerweel and Scarano 2005) utilizes a 
universal approach of threshold determination for a wide 
range of PIV measurements by normalizing the median 
residual using a robust estimation of the local variance of 
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velocity. This method was demonstrated as an effective 
way of identifying outliers for different PIV experiments. 
After outliers have been detected, the corresponding veloci-
ties need to be replaced by interpolation methods. Kriging 
interpolation is an effective method in recovering the gappy 
velocity fields (Gunes et  al. 2006; Gunes and Rist 2007). 
Proper orthogonal decomposition (POD) based methods 
such as gappy POD was also proposed to reconstruct miss-
ing velocities in PIV data, which outperformed Kriging 
interpolation for sufficient temporal resolution (Gunes et al. 
2006). Wang et al. (2015b) proposed a POD-based outlier 
correction technique to deal with outliers and missing val-
ues by using reconstructed field of low-order POD modes 
as reference field. For noisy experimental data, smooth-
ing is another necessary procedure to reduce noise error 
from following approaches. The most common smoothing 
method is to convolute the velocity field with a smoothing 
kernel. To avoid the additional error caused by the low-
pass filtering on the velocity field, the kernel size should be 
smaller than the effective interrogation window size (Raffel 
et al. 2007).

Different from the conventional 3-step procedure, Gar-
cia (2011) proposed a fast all-in-one technique to accom-
plish all the post-processing procedures in just one algo-
rithm. The all-in-one method is based on the penalized least 
squares (PLS) regression (Wahba 1990), combining with 
the discrete cosine transform (DCT) and the generalized 
cross-validation (GCV) (Craven and Wahba 1978). PLS is a 
common method for data smoothing, which determines the 
smooth data ỹ from raw noisy data y by minimizing a cri-
terion function F(ỹ). F(ỹ) represents a balance between the 
fidelity to the raw data y, which is measured by the residual 
sum of ỹ− y, and a penalty term R(ỹ) that describes the 
roughness of ỹ, namely (Garcia 2010)

Here, || · || denotes the 2-norm of vectors as a convention in 
this paper. The scalar parameter s controls the smoothing 
degree, which should be determined before applying PLS 
smoothing. In order to avoid under- or over-smoothing on 
raw data, Craven and Wahba (1978) suggested to determine 
s by minimize the generalized cross-validation score, who 
also validated the effectiveness of such GCV method. The 
PLS method could be carried out on a fast way of applying 
DCT and inverse discrete cosine transformation (IDCT) on 
the raw data (Buckley 1994), which was named as DCT-
based penalized least squares method (DCT-PLS). The all-
in-one method improved DCT-PLS to deal with outliers 
and missing values by employing weights on the raw data 
and changing the weights iteratively according to the resid-
uals of smoothing results and raw data (Garcia 2010, 2011). 
The all-in-one method is an automatic adaptive process 
and does not require subjective adjustment on threshold 

(1)F(ỹ) = ||ỹ− y||2 + sR(ỹ).

parameters or kernel size. Garcia (2011) also demonstrated 
that the all-in-one method is very well adapted to raw PIV 
data due to its efficiency, accuracy and rapidness. In this 
paper, we follow Garcia (2011) to use DCT-PLS to stand 
for the all-in-one method.

Most available methods for post-process resort to pure 
mathematical tools and ignore the physical mechanism 
behind flows, which would generate non-physical errors 
into the data. For a volumetric PIV data, one physical 
mechanism is very obvious that the flow should be gov-
erned by the Navier–Stokes equations. For incompress-
ible flow, the 3D velocity field satisfies the divergence-free 
equation, ∇ · u = 0, where u is the velocity vector. How-
ever, volumetric velocity measurements usually suffer a 
nonzero-divergence error due to experimental errors and 
uncertainties. The divergence corrective scheme (DCS) was 
designed by de Silva et al. (2013) to clear up the divergence 
error by solving an optimization problem, which seeks a 
divergence-free velocity field uc by making the smallest 
modification to the raw experimental velocity field uexp, 
namely

The technique of DCS is verified helpful in reducing the 
experimental error and improving the flow statistics (de 
Silva et al. 2013). However, the improvement is limited and 
susceptible to noise and outliers since only the weakest cor-
rection is applied to the original data. In fact, DCS usually 
leads to a reduction of noise by 1−

√
2/3 ≈ 18% because 

the number of constraints employed in the method is about 
one-third of the total number of variances (Schiavazzi et al. 
2014). There are several alternative techniques (Yang et al. 
1993; Sadati et al. 2011; Schiavazzi et al. 2014) to recon-
struct divergence-free velocity field from noisy velocity 
data. Unfortunately, those methods lack enough smoothing 
manner for removing strong noise effectively.

This work proposes a divergence-free smoothing (DFS) 
method for the post-processing of volumetric PIV data. The 
method determines a well-smoothed and divergence-free 
velocity field from the original noisy field by solving an 
optimization problem. The optimization problem combines 
the PLS regression and DCS, which uses Eq. (1) as goal 
function and the divergence-free condition as constraint. To 
avoid over- or under-smoothing, DFS also employs GCV 
method to automatically determine the smoothing degree 
like DCT-PLS. Instead of using DCT in the DCT-PLS 
method, the raw velocity field is projected onto a set of 
divergence-free smoothing bases (DFSBs), which are con-
structed by the divergence-free constraint and roughness 
criterion. The DFSBs are a set of bases with zero diver-
gence, which are ordered according to their roughness. 
By introducing a weight-changing iterative algorithm into 

(2)
min ||uc − uexp||
s.t. ∇ · uc = 0.
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DFS, similar to the DCT-PLS method, a robust version of 
DFS could deal well with outliers and missing vectors.

This paper is arranged in the following fashion. Section 2 
provides the general framework of DFS. Section 3 details 
the assessment of DFS based on synthetic noisy veloc-
ity fields from a direct numerical simulation (DNS) data. 
Section  4 discusses the computational efficiency of DFS 
and provides suggestion for improvement. Section  5 tests 
DFS on tomographic PIV measurements followed by con-
clusions in Sect. 6.

2 � Divergence‑free smoothing method

2.1 � Theory of DFS

The original velocity field uexp from the experiment is usu-
ally neither divergence-free nor smooth because of the con-
tamination of noise and outliers. We are going to determine 
a new velocity field us from uexp, which meets the require-
ment of zero divergence and has been somehow smoothed 
as well. The experimental velocities are supposed to dis-
tribute on a uniform volumetric grid of nx × ny × nz with 
spacings of �x, �y and �z, which are common in tomo-
graphic PIV (Elsinga et al. 2006).

The divergence-free of velocity field means that us satis-
fies the continuity equation, namely ∇ · us = 0 for incom-
pressible flows. By using a second-order finite difference 
scheme, the equation is approximated as a set of linear 
equations:

where i, j, k stand for the indices of three coordinates, and 
u
i,j,k
s , vi,j,ks , wi,j,k

s  denote the three components of us at the 
position of (i, j, k). Similarly, a first-order forward or back-
ward difference scheme is employed at the boundary of the 
domain. For simplicity, the above equations are written in a 
matrix form,

where A is the divergence operator matrix, and Us is a col-
umn matrix (vector) reshaped from us, which contains all 
three components of the entire velocity field. Thus, after 
the smoothing operation, Us needs to be restored back 
into the format of us with volumetric grid of (i,  j,  k). In 
this paper, without noticing, both Us and Uexp denote such 
column matrices. Their subscripts of ‘s’ and ‘exp’ indi-
cate the smooth velocity field and the original experimen-
tal field, respectively. It should also be noted that A is a 

(3)

u
i+1,j,k
s − u

i−1,j,k
s

2�x
+

v
i,j+1,k
s − v

i,j−1,k
s

2�y

+
w
i,j,k+1
s − w

i,j,k−1
s

2�z
= 0,

(4)AUs = 0,

matrix with dimensions of n rows by 3n columns, where 
n = nx × ny × nz denotes the total number of the grid points.

Evidently, the number of variations is much larger than 
the equations, which means that numerous solutions exist 
for these equations. Thus, optimal approach is needed 
for solving this kind of underdetermined problem. DCS 
chooses the most conservative modification on velocity 
field Uexp to reach the critical value of its objective func-
tion of the optimal method. However, such minimal-change 
criterion ignores the characteristics of noise degree, which 
causes a failure when the noise level on the measurement 
data is high. Fortunately, noise is highly associated with 
smoothness, which could be used to estimate noise level. 
Therefore, differently from DCS, the goals of the new tech-
nique on Us is not only to achieve the divergence-free, but 
also to automatically estimate the noise level and possibly 
reduce the noise in a smoothing manner. Referring to the 
PLS method, we choose a minimized objective function as:

The function R(Us) is a description of the roughness of the 
velocity field. Large R value associates with a field con-
taining lots of small-scale flow structures or high-frequent 
noise, appearing to be not smooth. The function F(Us) 
represents a balance between the fidelity to the raw data 
and the roughness of the resulting field. The smoothing 
parameter s is a real positive scalar that controls the degree 
of smoothing. As the smoothing parameter increases, the 
smoothing degree of Us also increases.

A simple and straightforward approach to express the 
roughness is by using a second-order divided difference 
(Weinert 2007). For three-dimensional vector field, R 
should contain the full second-order derivatives of all three 
components, which yields

(5)F(Us) = (Us − Uexp)
T(Us − Uexp)+ sR(Us).

(6)

R(u) =
∫

(

∂2u

∂x2

)2

+
(

∂2u

∂y2

)2

+
(

∂2u

∂z2

)2

+ 2

(

∂2u

∂x∂y

)2

+ 2

(

∂2u

∂y∂z

)2

+ 2

(

∂2u

∂z∂x

)2

dxdydz,

(7)

R(v) =
∫

(

∂2v

∂x2

)2

+
(

∂2v

∂y2

)2

+
(

∂2v

∂z2

)2

+ 2

(

∂2v

∂x∂y

)2

+ 2

(

∂2v

∂y∂z

)2

+ 2

(

∂2v

∂z∂x

)2

dxdydz,

(8)

R(w) =
∫

(

∂2w

∂x2

)2

+
(

∂2w

∂y2

)2

+
(

∂2w

∂z2

)2

+ 2

(

∂2w

∂x∂y

)2

+ 2

(

∂2w

∂y∂z

)2

+ 2

(

∂2w

∂z∂x

)2

dxdydz,
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Taking u-component for instance, the second-order deriva-
tives can be approximated by the finite difference scheme 
as

At the boundaries of measurement domain, the velocity of 
outer layer is extrapolated by the neighboring inner girds 
like u0,j,k = u1,j,k and unx+1,j,k = unx ,j,k. Thus, Eqs. (10) and 
(11) reduce to

The integral operations in Eqs. (6)–(9) are substituted by 
calculating the sum of these differential terms from differ-
ent spatial points. The resulting R(Us) has a quadratic form 
as

where M is a constant and symmetrical matrix associated 
with the discrete coefficients of R(Us) and only depended 
on the spatial grids. The specific forms of the divergence 
operators A and M adopted in this paper are detailed in the 
“Appendix 1”.

Therefore, the eventual description of the problem 
becomes the following optimization problem with linear 
constraint:

where ‘min’ means the minimum of the objective func-
tion, and ‘s.t.’ is the abbreviation of ‘subject to’ indicating 
that the following equations would be the constraints. The 
optimization problem indicates that the smoothed veloc-
ity field Us that we are seeking should achieve the mini-
mum of the objective function and be divergence-free at 
the same time. Such optimization problem could be solved 
directly by using well-developed optimization methods 
once the parameter s is given. Unfortunately, the best value 
of s is unknown here. Therefore, Eq. (15) actually has two 
unknowns, and we need one more objective function to 
make the optimal problem closed. As we will see in Sect. 
2.3, another optimization problem is proposed to find the 

(9)R(u) = R(u)+ R(v)+ R(w).

(10)
∂2u

∂x2
|ijk =

u
i+1,j,k
s + u

i−1,j,k
s − 2u

i,j,k
s

�x2
,

(11)
∂2u

∂x∂y
|ijk =

u
i+1,j+1,k
s + u

i,j,k
s − u

i+1,j,k
s − u

i,j+1,k
s

�x�y
.

(12)
∂2u

∂x2
|nxjk =

u
nx−1,j,k
s − u

nx ,j,k
s

�x2
,

(13)
∂2u

∂x∂y
|nxjk = 0.

(14)R(Us) = UT
s MUs,

(15)
min (Us − Uexp)

T(Us − Uexp)+ sUT
s MUs,

s.t. AUs = 0.

optimal s, which need an explicit expression between Us 
and Uexp for fast computation. At this stage, we can just 
assume that s is known that we could try to find the explicit 
solution of Us from Eq. (15).

According to the knowledge of linear algebra, there are 
a set of orthonormal bases existing in the solution space 
of Eq. (4), which could express all the solutions by linear 
combinations. Assuming that one set of such orthonormal 
bases {�i}(i = 1, 2, . . . , d) have been acquired, Us can be 
expressed in the following form

where � = [�1,�2, . . . ,�d]. d is the dimension of the 
solution space, which depends on the rank of A. By replac-
ing the Us in the Eq. (5), the problem becomes uncon-
strained optimization as

To find out the minimal value of Eq. (17), one order 
derivative of a is performed, which generates a set of linear 
algebra equations:

In order to avoid the complex inverse of matrix, we assume 
that �TM� is diagonal, which means that

where � is the related diagonal matrix. As we will show 
in the Sect. 2.2, such bases are not difficult to obtain, 
which can be named as divergence-free smoothing bases 
(DFSBs). Once DFSBs are obtained, the expressions for a 
and Us could be rewritten as

Therefore, it suggests that Us can be obtained by three 
procedures. Firstly, project the original velocity field Uexp 
onto the DFSBs to get the corresponding projection coef-
ficients. Uexp could be divided into two parts, divergence-
free part and remaining part. Such projecting operation 
abandons the remaining part implicitly because DFSBs are 
specifically chosen in the divergence-free space. Secondly, 
weight the coefficients by diagonal matrix (I+ s�)−1. The 
smoothing mechanism is introduced in this procedure by 
imposing larger weights on the smoother ones of DFSBs. 
Lastly, reconstruct a new velocity field with DFSBs and 
the weighted coefficients. The reconstruction process [Eq. 
(16)] is a reverse projecting operation. Such bases-project-
ing operation employed here could also be understood as 
coordinate transformation in a linear space, which is famil-
iar in other smoothing method (Wang et al. 2015a).

(16)Us =
∑

�iai = �a,

(17)min F(a) = min (�a − Uexp)
T(�a − Uexp)+ saT�TM�a.

(18)(I+ s�TM�)a = �
TUexp.

(19)�
TM� = �,

(20)a = (I+ s�)−1
�

TUexp,

(21)Us = �(I+ s�)−1
�

TUexp.
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It is also worthy to note that the Eq. (21) is similar to 
the DCT-PLS. The differences are that DFS replaces the 
DCT method with the projection of the new bases �, and 
DCT-PLS deals with velocity components one by one 
independently, while DFS processes all three components 
at the same time under the divergence-free condition. 
DCS could be considered as a special case of DFS when 
the smoothing parameter s equals zero, which means that 
the smoothness of velocity Us is ignored, and only mini-
mal modification on the raw velocity field is considered in 
DCS. Thus, both DFS and DCS can be implemented by a 
quick matrix multiplication in Eq. (21) as we will further 
discuss in Sect. 4 regarding computational cost. The com-
parison of DCS, DCT-PLS and DFS is well summarized in 
Table 1.

2.2 � Constructing of divergence‑free smoothing bases

Starting from this section, we take � as DFSB. According 
to Sect. 2.1, the base matrix � should satisfy the following 
two conditions,

(i)	 � is a set of orthonormal bases from the solution space 
of the Eq. (4).

(ii)	� could diagonalize M as Eq. (19).

Assume that � is a set of orthonormal bases from the 
solution space of the Eq. (4). In fact, it is easy to find them 
from the results of the singular value decomposition of A. 
� is usually not the DFSB which we are seeking, because 
it does not satisfy Eq. (19). However, � could be easily 
acquired from �. In fact, the following expression holds 
since both of them are sets of bases in the solution space 
of Eq. (4),

where Q is a transforming matrix of the two sets of bases. 
Replacing � in Eq. (19) with Eq. (22), we get

Obviously, Q is the eigenvector matrix for �TM�. Consid-
ering �TM� is a real symmetric matrix as well as M, it 
yields QTQ = I. Therefore, � is also a orthonormal matrix, 
because

Consequently, � is the DFSB which we are seeking for.
To sum up, � could be obtained by the following 

steps:

(i)	 Compute one specific set of orthonormal bases � 
from the solution space of Eq. (4) by the singular 
value decomposition of A.

(22)� = �Q,

(23)QT
�

TM�Q = �.

(24)�
T
� = (�Q)T(�Q) = (Q)T(�)T�Q = I.
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(ii)	 Perform eigenvalue decomposition on the matrix 
�

TM� to get the eigenvector matrix Q and the 
eigenvalue matrix �.

(iii)	Obtain � by Eq. (22).

Since the important role of DFSBs in DFS method, fur-
ther discussion on DFSBs is provided here. First, in this 
work, the ‘null’ function in MATLAB is employed to cal-
culate a specific � with � = null(A), and the ‘eig’ function 
in MATLAB is employed to solve this eigenvalue problem 
to get Q and �. Second, matrix � is determined only by the 
matrix M and A. Therefore, it is independent to the experi-
ment data, which means that DFS does not require differ-
ent DFSBs for each instantaneous velocity field, and only 
needs one calculation of DFSBs for the entire data set with 
the same grid structure.

Denote � = diag(�1, �2, . . . , �d). Equation (19) indi-
cates that �i describes the roughness of �i because of 
R(�i) = �

T
i M�i = �i. Assume that �i is ordered as 

�1 < �2 < · · · < �d, which means that DFSBs are sorted 
in order of their roughness. Thus, it could be proved 
that �i is a solution of the following optimization 
problem:

It suggests that the DFSBs could be acquired from the 
solution space of divergence equations by minimizing the 
roughness. In other words, the DFSBs are the most smooth 
orthonormal bases satisfying the divergence-free condition.

DFSBs could be reshaped into the velocity-field form 
according to the correspondence between the indices of 
base vectors and their spatial positions (i, j, k) as stated in 
Sect. 2.1. Such field-form bases are used to be called as 
modes. Four example modes have been displayed in Fig. 1, 
in which only the velocity vectors at the center cross-sec-
tion of the fields along z-direction are presented. The data 
are from the numerical tests that will be further assessed 
in Sect. 3. From Fig. 1, it is clearly shown that each mode 
has a good centrosymmetric/anti-centrosymmetric man-
ner since the modes are only dependent on the structures 
of grids and the difference scheme of Eqs. (4) and (9). The 

(25)

minR(�i),

s.t. R(�i) < R(�j), (i < j),

�
T
i �j =

{

0 i �= j

1 i = j
,

A�i = 0.

Fig. 1   A collection of four 
DFSB modes with 30× 30× 10 
uniform spaced grid. The modes 
are shown by section veloci-
ties. The vectors represent the 
in-plane velocity and the color 
denotes the velocity component 
vertical to the plane
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roughness values of DFSBs are plotted in Fig.  2, which 
implies that the modes are arranged in order of increasing 
roughness. The modes with small roughness are relatively 
smooth and contain large-scale structures, while the ones 
with larger roughness are not smooth, containing lots of 
small-scale structures.

DFSBs is similar to POD bases, because both of them are 
sets of bases corresponding to different scales of flow struc-
tures. However, DFSBs are obtained from the solution space 
of continuity equation under the criterion of roughness, 
while POD bases are usually decomposed from the velocity 
fields according to the kinematic energy. If the constraint of 
continuity equation is removed, DFSBs reduce to the bases 
of the discrete cosine transformation, and only the rough-
ness criterion is applied (Buckley 1994; Garcia 2010). The 
POD (Murray and Ukeiley 2007; Raben et al. 2012; Wang 
et al. 2015b), DCT and DFS methods obtain mode bases in 
different ways, but for the same smoothing purpose.

2.3 � Automatic smoothing with DFS

Before employing DFS to the post-process of PIV data, the 
smoothing parameter s in Eq. (21) must be determined first. 
It is a challenge to estimate an optimal s for different noise 
situations. Failure on estimating s would lead to an over-
smoothing or under-smoothing of velocity field. To avoid 
any subjectivity on the choice of smoothing level and opti-
mal estimation of s, smoothing parameter s is determined 
by minimizing the so-called GCV score, which has been 
validated in theory by Craven and Wahba (1978). In this 
work, the GCV is defined as

(26)GCV(s) =
(Us − Uexp)

T(Us − Uexp)/3n

(1− tr((I + s�)−1)/3n)2
,

where tr(·) is the matrix trace, and Us is determined by Eq. 
(21). This is an optimization problem with a single varia-
ble, which could be easily solved by available optimization 
methods. In current work, the function of ‘fminbnd’ in the 
MATLAB is used to find the minimum value of GCV func-
tion. A numerical test for the GCV method is provided in 
“Appendix 2”.

2.4 � Dealing with outliers and missing vectors: robust 
divergence‑free smoothing (RDFS)

In addition to noise, the experimental data also suffers from 
outliers and missing vectors. Similar to the PLS regression, 
DFS is sensitive to significant errors. Furthermore, DFS 
is desired to be able to deal with missing values. Thus, a 
robust DFS algorithm is required. Considering the similarity 
of our technique to the all-in-one method, similar iteratively 
reweighted algorithm (Garcia 2010, 2011) is employed to 
improve the robustness of DFS and pad the missing vectors.

The robust algorithm reduces the influence of outliers 
by using smaller weights at the vectors with larger residu-
als. Therefore, an iterative algorithm is needed to dynami-
cally update the weighs from the residuals that are calcu-
lated from the original velocities and the corresponding 
smoothed vectors. For each iterative step, Us is updated 
repeatedly until convergence according to the following 
weighted smoothing formula:

where the symbol ◦ denotes the element-wise product 
between two vectors and the superscript (r) and (r − 1) 
denote results of r-th or (r − 1)-th updates. At the first itera-
tive step, Ws is initialized by all ones, while at the follow-
ing iterative steps, Ws is determined by a specified weight-
ing function (Heiberger and Becker 1992), which varies 
from 0 to 1 and depends upon the residuals of the original 
field and the smoothed field from the latest iteration. In this 
work, the following bi-square weighting function is chosen,

where Wi
s is the i-th component of weight vector Ws and ui 

is the i-th component of the so-called studentized residual 
u . The parameter c is a tuning constant chosen to adjust the 
asymptotic efficiency of the weighting function for data 
from a known distribution, usually the normal distribution 
(Heiberger and Becker 1992; Coleman et al. 1980). Here, 
c = 4.685, corresponding to a 95  % efficiency to process 
data of normal distribution (Holland and Welsch 1977). 
The studentized residual ui is determined by

(27)U
(r)
s = �(I+ s�)−1

�
T(Ws ◦ (Uexp − U

(r−1)
s )+ U

(r−1)
s ),

(28)Wi
s =

{

(1− (ui/c)2)2 if |ui/c| ≤ 1

0 if |ui/c| > 1
,

(29)ui =
Ui
s − Ui

exp

1.4826MAD(1− h)1/2
,
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Fig. 2   Roughness corresponding to different bases (modes). The 
roughness is defined by Eq. (14)
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where Ui
s
 and Ui

exp
 are the i-th components of Us and Uexp, 

respectively. MAD denotes the median absolute deviation, 
calculated by

1.4826MAD is a robust estimation of the standard devia-
tion of the residuals (Garcia 2010). h is the average value 
of the hat matrix diagonals. In this case, the hat matrix is 
�(I+ s�)−1

�
T and h = tr((I+ s�)−1)/3n.

A second weight vector Wm is used to deal with the 
missing values. The weight vector is made up of zeros and 
ones, corresponding to the positions of missing values and 
normal values, respectively. Therefore, the final weight 
vector W = Ws ◦Wm and the updating formula of Us 
eventually becomes

It is worthy to note that the smoothing parameter s in Eqs. 
(27) or (31) is also updated before calculating U(r)

s  by 
minimizing the following weighted GCV function (Garcia 
2010)

where nmiss is the number of missing vectors and U(r)
s  is 

substituted by Eq. (31) before solving the GCV minimum.
The concrete procedures of dealing with outliers and 

missing data are detailed as follows:

(i)	 Initialize W = Wm, k = 1, 

(ii)	 Update Us according to the weight W;

(a)	 U
(0)
s = Us, r = 1;

(b)	 Find the smoothing parameter s that minimizes 
the GCV score [Eq. (32)];

(c)	 Update U(r)
s  by Eq. (31);

(d)	 if ||U(r)
s − U

(r−1)
s ||/||U(r)

s || < Cr, Us = U
(r)
s  and 

go to step (iii), else r = r + 1 and go to step (b);
(iii)	Calculate weight matrix Ws according to Eq. (28), 

update W by W = Ws ◦Wm;
(iv)	k = k + 1;
(v)	 If k ≤ IterNum, go to step (ii); else, go to step (vi);
(vi)	Return Us.
where k and r are iterative indices of the main loop and 

the sub-loop of step (ii), respectively. In step (ii), Cr 
is the exit condition for the convergence of Us in the 
sub-loop, which takes its default value of 10−4 in this 
paper. IterNum is the iteration number of weight-

(30)MAD = median(|Ui
s − Ui

exp −median(Ui
s − Ui

exp)|),

(31)U
(r)
s = �(I+ s�)−1

�
T(W ◦ (Uexp − U

(r−1)
s )+ U

(r−1)
s ).

(32)GCV(s) =
||W 1

2 ◦ (U(r)
s − U

(r−1)
s )||2/3(n− nmiss)

(1− tr((I+ s�)−1)/3n)2
,

(33)Us =
{

0 for missing values

Uexp for normal values
;

changing. Usually, 3–5 weight-changing iterations 
are enough for the processing of PIV data with out-
liers. In this paper, we perform three iterations as 
default. To process the field with only missing values 
and noise (no outliers), only one iteration is required 
(IterNum = 1), which means that the weights are not 
changed. The initialization of the missing values is 
normally non-sensitive to the final result because of 
the robust iteration algorithm and the zero weight 
imposed at the missing region. Therefore, the initial 
values for the missing vectors are all zeros as default 
in this work. The flowchart of the new approach is 
provided in Fig.  3. Details of the weight function 
and the iterative algorithm were discussed by Garcia 
(2010).

3 � Numerical assessment

In order to validate and quantify the accuracy of DFS, DNS 
dataset of turbulent channel flows (Li et al. 2008; Perlman 

         If                    

Initialize

Finding the smoothing parameter
s by minimizing Eq.32

No

Start
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for missing values
for normal valuess

0
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sU
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r r
s s

r
s

Cr
U U

U

Calculate by Eq.28
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Fig. 3   Flowchart of robust DFS
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et al. 2007; Graham et al. 2013) with synthetic errors is used 
for testing. The DNS velocity field distributes in a zone of 
8π × 3πH × 2H, where H is the half-channel height. This 
computation zone contains 2048× 1536× 512 spatial grid 
points in the streamwise, spanwise, and wall-normal direc-
tions, respectively. In our assessment, 100 independent 
small subzones of the DNS field are considered to obtain 
the averaged quantitative results. Detailed information is 
summarized in Table 2. A linear interpolation is employed 
in both streamwise and wall-normal direction to obtain a 
velocity field on a uniform grid along all three directions, 
making the DNS data more close to a practical PIV con-
figuration, which is similar to what de Silva et  al. (2013) 
did. In DNS simulation, the divergence-free constraint is 
enforced in the Fourier-space. Therefore, when evaluating 
the divergence by finite difference scheme, non-negligible 
error is obtained (Graham et al. 2013) as shown in Fig. 4. 
The maximum divergence error of the original DNS data 
is in the order of 10−3, which is much smaller than other 
quantities based on velocity gradient such as the vorticity. 
To make the DNS data more standard as a divergence-free 
velocity field under finite difference scheme to evaluate 
different algorithms, DCS is first performed to remove the 
remaining divergence errors in the original DNS data. In 
fact, the correction just causes a modification less than 1 % 
on the velocity fluctuation without changing fluid struc-
tures. This procedure can also correct the divergence error 
caused by the grid interpolation for getting a uniform grid. 
In the following discussion, the DNS data refer to the DNS 
data with divergence-free correction, and all the following 
tests are based on it.

The main sources of PIV error including noise, outli-
ers and missing values are tested in Sect. 3.1–3.3, respec-
tively. The PIV filtering effect (Schrijer and Scarano 
2008), as a systematical error source, usually leads to 
two results: frequency truncation and correlated errors. 
In present work, the filtering effect is partially simulated 
by adding correlated noise to DNS field in Sect. 3.1. The 
frequency truncation, which could be simulated by mov-
ing average on the DNS data (de Kat and van Oudheusden 
2012), is not involved in current work since it is impos-
sible for DFS or other processing techniques to inversely 
restore the frequency-truncated velocity field to the origi-
nal status.

3.1 � Reducing noises

Reducing the random noise and correcting the velocity 
field to zero divergence are two basic tasks of DFS method. 
In this section, the accuracy and effectiveness of DFS in 
dealing with noise and divergence error are validated. 
Gaussian-distributed random noise with constant variance 
is added to the three components of the velocity field. The 
standard variance of noise normalized by the root mean 
square (RMS) of the original velocities is denoted as the 
noise level (NL). Similar to de Silva et al. (2013)’s work, 
two types of random white noise are added to the DNS 
velocity field to simulate the biased and unbiased noise in 
experimental measurements.

Case 1	

Case 2	

where UDNS,VDNS and WDNS correspond to the DNS 
velocity fields, and Un, Vn and Wn are the ‘noisy’ velocity 
fields. Γ  denotes the random noise of Gaussian distribution 
in the velocity field, with zero-mean and a variance equal to 
the velocity magnitude. NL stands for the noise level that 
changes from 5 to 25 %, leading to six different noise lev-
els in our tests.

In the second case, the noise level added to WDNS is 
twice to the NL corresponding to the other two veloc-
ity components. The case is designed for simulating the 

(34)
Un = UDNS + Γ × NL,Vn = VDNS + Γ × NL,

Wn = WDNS + Γ × NL;

(35)
Un = UDNS + Γ × NL,Vn = VDNS + Γ × NL,

Wn = WDNS + 2Γ × NL;

Table 2   Summary of parameters for test subzones

Streamwise grid spacing �x+ 6.13

Spanwise grid spacing �y+ 6.13

Wall-normal grid spacing �z+ 6.13

Wall-normal position of the subzone 438.5–555.1

Number of Vectors per subzone 30 ×30 × 10
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1500

Divergence
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Fig. 4   PDF of divergence in the original DNS
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situation that in three-component PIV measurements, the 
velocity component along the direction of the laser sheet 
thickness is typically the least reliable one (Adrian and 
Westerweel 2011). The methods of DCS, DCT-PLS and 
DFS are employed to smooth or correct the velocity field 
in this work for comparison. DCT-PLS is carried out by 
the ‘smoothn’ function in Garcia (2011). DCS is imple-
mented by DFS using a special smoothing parameter s = 0. 
Figure 5 displays their performances on reducing noise and 
removing divergence errors for a sample velocity field with 
noise of case 1 (NL = 5%). It shows that both DCT-PLS 
and DFS could reduce most of the noise resulting in a well-
smoothed velocity field. It seems that they achieve a simi-
lar capability of reducing noise. However, DCT-PLS does 
not make the processed velocity field divergence-free. DCS 
just slightly reduces noise because the method is designed 
to correct the divergence error to zero in a minimal-change 
manner without consideration of noise level. The effect of 
divergence-correcting is also showed in the last column of 
Fig.  5, where the probability density functions (PDFs) of 
the corresponding divergence of the velocity fields are dis-
played. It shows that the DCS and DFS methods can elimi-
nate the divergence error, while DCT-PLS can only reduce 
the divergence error to a relatively low level, but not low 
enough to close to zero. The comparison clearly reveals 
the capability of DFS on removing the noise and the diver-
gence error. Another way to obtain a smoothed and diver-
gence-free velocity field is to apply both the DCT-PLS and 
DCS treatments, which means that DCT-PLS is performed 
for smoothing followed by DCS for removing the diver-
gence error. The combined method DCT-PLS+DCS leads 
to a very similar result with the result of DFS in Fig. 5. The 
performances of DCT-PLS+DCS and DFS will be quanti-
tatively compared in the following tests.

To quantify the accuracy of three methods, we define a 
relative error as

where Us denotes the DFS smoothing result and U
′
DNS is 

the fluctuation obtained by subtracting the freestream 
velocity from UDNS. Besides the above methods, a conven-
tional Gaussian smoothing with filtering size of 3× 3× 3 
and σ = 0.65 is also applied for comparison. The errors 
from Gaussian smoothing, DCT-PLS, DCT-PLS+DCS and 
DFS under different noise levels are provided in Fig. 6. The 
figure shows that the errors corresponding to DCT-PLS, 
DCT-PLS+DCS and DFS methods increase more slowly 
with the noise level comparing to the Gaussian smooth-
ing, which mainly benefits from the GCV method that is 
adaptive to different noise levels. The combined DCT-
PLS+DCS method perform better than DCT-PLS, which 
is attributed to additional DCS correction. For the noise of 

(36)Error =
||Us − UDNS||

||U′
DNS||

× 100%,

case 1, DFS achieves nearly equal noise-reducing effect 
with the combined DCT-PLS+DCS. However, It does not 
mean that DFS is simply equal to the combination of DCT-
PLS and DCS. The outstanding performance and effec-
tiveness of DFS will be shown in the following tests. For 
case 2, DFS brings slightly larger smoothing errors than 
the combined method. The reason is that DFS-PLS is per-
formed on each velocity components separately. Therefore, 
it has three independent optimal smoothing parameters to 
adapt to different noise levels. DFS smooth the three veloc-
ity components simultaneously, which means that only 
one optimal smoothing parameter is employed for the full 
velocity components with divergence-free constraint and 
errors may be redistributed among different velocity com-
ponents. This manner is more robust and does not make 
DFS lose effectiveness in reducing biased noise because it 
still outperforms Gaussian smoothing and DCT-PLS, and 
works very close to DCT-PLS+DCS in Fig. 6.

Besides the white noise in the tests of case 1 and 2, cor-
related noise is another important type of noise specifically 
in PIV data, when a large overlap of interrogation window 
is applied in correlation procedure (Foucaut et  al. 2004). 
Therefore, an additional test is necessary to estimate DCT-
PLS and DFS’s performances on reducing correlated noise. 
According to Foucaut et  al. (2004), the power spectra of 
PIV noise along the i-th direction could be expressed as

Enoise is a parameter employed to fit noise level, and X is 
the window size. k is the wave number along the i-th direc-
tion. The correlated noise with such power spectra can be 
approximately simulated by applying an average smooth-
ing on a white noise, which has been tested in current work 
(not shown) and indicated by Foucaut et al. (2004) as well. 
Thus, the correlated noise is generated by filtering Gauss-
ian white noise with a 3× 3× 3 averaging window, which 
corresponds to an interrogation window of X+ = 18.4 and 
an overlap of 2/3. Note that the standard variance of the fil-
tered noise is reduced to 1/

√
27 of original white noise.

The results of this test are listed in Table 3. Firstly, all 
these methods lead to larger errors compared to the tests 
on the white noise, which suggests that correlated noise is 
more difficult to be reduced. Secondly, DCT-PLS makes 
very limited improvement on noise reduction due to the 
failure of its GCV method, while DCS, Gaussian smooth-
ing and DFS achieve a certain level of noise reduction. 
In fact, for correlated noise, the GCV method employed 
in DCT-PLS (DCT-PLS-GCV) always determines a very 
small smoothing parameter (<10−3) resulting in almost 
no smoothing on the velocity field. The cause of failure 
on DCT-PLS-GCV is that it determines the smoothing 

(37)Eii = Enoise

(

sin(kX/2)

kX/2

)2



Exp Fluids (2016) 57:15	

1 3

Page 11 of 23  15

0

50

100

150

y+

U+

22 23 24
V+

−0.5 0 0.5 1
W+

DNS

−1 −0.5 0 0.5

−1 0 1
0

0.5

1

1.5

× 10−13

× 1013

PDF

0

50

100

150

y+ noise

−0.05 0 0.05
0

10

20

30

40

0

50

100

150

y+ DCS

−1 0 1
0

0.5

1

1.5

× 10−13

× 1013

0

50

100

150

y+ DCT−PLS

−0.01 0 0.01
0

50

100

0

50

100

150

y+

x+ x+ x+

DCT−PLS
+DCS

−1 0 1
0

0.5

1

1.5

× 10−13

× 1013

divergence

0 50 100 150
0

50

100

150

y+

x+
0 50 100 150

x+
0 50 100 150

x+

DFS

−1 0 1
0

0.5

1

1.5

× 10−13

× 1013

divergence

Fig. 5   A slice from test DNS data at the position of z+ = 524.4. The 
six rows, from top to bottom, displays the original DNS data, noisy 
velocity field and the velocity processed by DCS, DCT-PLS, DCT-
PLS+DCS and DFS, respectively. The first three columns correspond 

to the three velocity components U+, V+, and W+, respectively. The 
last column corresponds to the probability density function (PDF) of 
the divergence errors
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parameter according to the roughness of the velocity field, 
while correlated noise already smoothed due to the over-
lap manner. By employing DFSBs instead of DCT bases, 
the improved GCV method in DFS (DFS-GCV) determines 
the smoothing parameter by both smoothness and the 
divergence error, which is more suitable for the correlated 
noise than DCT-PLS. Therefore, DFS has good capability 
of reducing correlated noise, achieving the least smoothing 
error in this test. This is a significant advantage over DCT-
PLS and DCT-PLS+DCS because the correlated noise is 
common in PIV configuration.

Following the strategy of de Silva et al. (2013), we also 
tested the performance of DFS on improving statistics of 
turbulent quantities, such as the mean velocity (U

+
), the tur-

bulence intensities (u2
+

, v2
+

, w2
+

), the enstrophy (ω2
+

) and 

the dissipation (ε+). Herein, ω+2 = ω+2
x + ω+2

y + ω+2
z  and 

ε+2 = 2sijsij, where sij = 1/2(∂u+i /∂x
+
j + ∂u+j /∂x

+
i ). The 

overline denotes the averaging of 100 testing velocity fields.
The so-called percentage differences (de Silva et  al. 

2013) between the statistics of the original DNS flow and 
the noisy and different processed fields under the noise 
level of 10% are calculated for quantitative comparison. 
For instance, the percentage difference of the streamwise 
turbulence intensity for the noisy velocity field is defined as

where u2DNS
+

 and u2n
+

 denote the streamwise turbu-
lence intensity of original DNS field and the noisy field, 
respectively.

Table  4 summaries the statistic quantities of all the 
tests. It provides the mean velocity, the turbulence intensi-
ties, the enstrophy and the dissipation of the original DNS 
data and the percentage differences of the noisy and dif-
ferent processed velocity fields for three test cases. Due 
to the format of the artificial noise, the mean velocity is 
almost unaffected. For Gaussian white noise, both DCT-
PLS+DCS and DFS significantly reduces the noises, 
improving the accuracy of all the statistic quantities of 
fluctuations and high-order gradients. The combined 
method is slightly superior to DFS. For correlated noise, 
DFS has a distinct advantage over DCT-PLS+DCS, which 
is consist with the results of Table 3, and once again vali-
dates the effectiveness of DFS in removing correlated 
noise.

3.2 � Dealing with outliers

Another important task in the post-process of PIV data is 
to deal with outliers. Traditional methods need to identify 
outliers and replace them separately. Differently, DCT-PLS 
and DFS employ a robust iterative algorithm to fix outliers 
directly, which requires no identification of outliers. In this 
section, velocity field with outliers is designed to test the 
performance of DFS. Instead of UDNS, we perform this test 
on U

′
DNS (the fluctuation of UDNS) for better visualization 

of flow structures and different outlier types. According 
to previous research works (Shinneeb et  al. 2004; Garcia 
2011; Wang et al. 2015b) on correlation calculation, three 
types of outliers are added to U

′
DNS (Fig. 7). 

Type 1:	� random scattered outliers with a uni-
form distribution in the range of 
[−5std(|UDNS|), 5std(|UDNS|)] are added to the 
field at random positions.

Type 2:	� clustered outliers with constant size of 
Ns × Ns × Ns points are added to the field 
at random positions. Each point in the 
block has its random value similar to type 1 
independently.

(38)�u2
+
=

|u2n
+
− u2DNS|

+

|u2DNS
+
|

× 100%,
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Fig. 6   The smoothing error for Gaussian smoothing, DCT-PLS, 
DCT-PLS+DCS and DFS in dealing with case 1 and case 2 noise. 
The red, black, purple and blue lines correspond to the errors of 
Gaussian smoothing, DCT-PLS, DCT-PLS+DCS and DFS, respec-
tively. The solid and dashed lines indicate the case 1 and case 2

Table 3   Smoothing error for 
correlated noise

Noise level Noisy (%) DCT-PLS (%) DCT-PLS +DCS (%) Gaussian (%) DFS (%)

NL = 5% 7.71 7.68 6.76 6.05 5.47

NL = 10% 15.45 15.40 13.55 11.61 10.60
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Type 3:	� clustered outliers with size of Ns like type 2 are 
added to the original field at random positions. 
The block has the same random outlier for all 
points within the block.

Type 1 is the most common outlier, which is caused by 
the failure of the cross-correlation analysis. Type 2 occurs 
because of the poor seeding density or other local imperfec-
tion on imaging. When an iterative multi-pass correlation 
algorithm is employed, the failure in the first cross-corre-
lation analysis of a large-size interrogation window would 

affect the vectors of the small-size interrogation windows 
at the corresponding positions during latest passes of corre-
lation analysis, leading to the occurrence of type 3 outliers. 
In previous research, DCT-PLS was validated on its good 
performance in coping with type 1 and type 2. However, 
Type 3 is more difficult to be fixed because of its larger size 
and great local influence.

Figure  7 shows tests on all three types outliers with 
Ns = 3 and 5 under a total outlier rate of 15 % at an exam-
ple cross-section of the test volume. The background noise 
level is 5 %. Both robust DCT-PLS and DFS are employed 

Table 4   Summary of percentage differences for different statistics with/without DCT-PLS+DCS and DFS

DNS statistics Gaussian white noise Correlated noise

Case 1 Case 2

Noisy (%) DCT-PLS 
+DCS (%)

DFS (%) Noisy (%) DCT-PLS 
+DCS (%)

DFS (%) Noisy (%) DCT-PLS 
+DCS (%)

DFS (%)

U
+ 21.60 �U

+ 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0010 0.0010 0.0010

u2
+ 1.09 �u2

+ 0.96 0.24 0.24 0.96 0.25 0.36 1.13 0.85 0.33

v2
+ 0.69 �v2

+ 1.57 0.32 0.34 1.57 0.37 0.52 2.07 1.61 0.79

w2
+ 0.50 �w2

+ 2.09 0.43 0.43 8.42 0.80 0.52 2.48 1.84 0.78

ω2
+ 0.0018 �ω2

+ 63.20 7.84 8.23 119.94 9.29 10.60 42.22 39.69 11.73

ε+ 0.0018 �ε+ 123.88 5.65 6.16 253.96 6.89 8.05 82.89 55.42 20.04
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Fig. 7   A slice from test DNS data at the position of z+ = 463.1. The 
subplots in two rows correspond to two outlier situations with block 
size of 3 and 5, respectively. The three columns, from left to right, 

display the field deteriorated by three types of outliers, and the field 
smoothed by DCT-PLS and DFS. The background colors denote the 
residuals of processing results
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to smooth the contaminated velocity field. The correspond-
ing results are shown in the second column and third col-
umn by in-plane vectors and background colors denoting 
the magnitude of velocity residual. For the case of Ns = 3, 
both DCT-PLS and DFS lead to a smoothed velocity field. 
However, the color contours highlight the areas with large 
residual where the type 3 outliers locate in DCT-PLS. It 
indicates that DCT-PLS could not inhibit the influence of 
type 3 outliers in an appropriate way. The failure of DCT-
PLS in dealing with type 3 outliers is more obvious in the 
case of Ns = 5. It suggests that both methods can deal with 
type 1 and type 2 outliers successfully, while DCT-PLS 
fails to correct the outliers of type 3, and it becomes even 
worse when the size of outlier zone Ns increases. In fact, it 
is also a challenge to distinguish and eliminate type 3 out-
liers from real fluid velocity fields by traditional methods. 
In this work, by employing the divergence-free constraint, 
DFS can significantly reduce the influence of these outliers, 
which is valuable for the post-processing of volumetric PIV 
velocity.

Outliers with the block size of Ns = 3 is utilized for 
quantitative comparisons among DCT-PLS, DFS and DCT-
PLS+DCS as shown in Figs.  8 and 9. Another important 
reference provided is the result of a conventional pro-
cessing method which combines the normalized median 
test, local-median interpolation and Gaussian smoothing 
with filtering size of 3× 3× 3 and σ = 0.65. It is found 
that all DCT-PLS, DCT-PLS+DCS and DFS outperform 
the conventional method on dealing with outliers. DCS 
improves the DCT-PLS slightly, reducing smoothing errors 
for all the three types outliers. DFS performs better than 

DCT-PLS+DCS especially for type 2 and type 3 outliers. 
It seems that the type 3 outlier is the most difficult type to 
be successfully corrected, and all four methods would fail 
when the outliers rate increase. However, among these 
methods, DFS is the most reliable approach. Thus, we 
believe that DFS is a well-functional post-process tech-
nique for extreme outliers under reasonable outlier rate in 
most volumetric PIV experiments.

3.3 � Padding the missing values

Clustered missing values can sometimes occur in PIV 
measurements due to model shadows or light reflection 
resulting in gaps in the flow fields. Clustered missing val-
ues can be considered as a special type of block outlier 
with vector magnitude of zero. However, the positions of 
the missing values are fortunately known, which means 
that the post-process can only focus on the missing values 
without changing other good vectors. In this subsection, 
the ability of DFS in coping with missing values is tested. 
Conventional method for filling the gaps is interpolation, 
which determines the values by their neighbors. DCT-PLS 
pads the missing vectors by modifying the entire velocity 
field, but without any physical constraints. As detailed pre-
viously, DFS employs divergence-free constraint implic-
itly when dealing with the velocity field. Therefore, it is 
expected that DFS would perform better than conventional 
interpolation methods and DCT-PLS. An numerical exam-
ple is displayed in Fig. 10, in which a block of vectors with 
size of 6× 8× 4 is removed and both DCT-PLS and DFS 
are employed to fix the field. The results clearly shows that 
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Fig. 8   The smoothing error for conventional method, DCT-PLS, 
DCT-PLS+DCS, and DFS in dealing with type 1 and type 2 outliers. 
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ventional method, DCT-PLS, DCT-PLS+DCS and DFS, respectively. 
The solid and dashed lines indicate the type 1 and type 2

5 10 15 20 25
0

10

20

30

40

50

60

70

Outlier rate %

Er
ro

r %

Type 3 CONV
Type 3 DCT−PLS
Type 3 DCT−PLS+DCS
Type 3 DFS

Fig. 9   The smoothing error for conventional method, DCT-PLS, 
DCT-PLS+DCS and DFS in dealing with type 3 outliers. The red, 
black, purple and blue lines correspond to the error of conventional 
method, DCT-PLS, DCT-PLS+DCS and DFS, respectively



Exp Fluids (2016) 57:15	

1 3

Page 15 of 23  15

DFS can recover the missing vortex structure better than 
DCT-PLS.

Quantitative comparison among four methods in pad-
ding missing values are also tested, including the linear and 
Kriging interpolations, DCT-PLS and DFS. In the test, vec-
tors from volumes of Ng × Ng × Ng are removed resulting 
in an overall rate of missing vectors equal to 5 %. The Krig-
ing interpolation is implemented using the DACE toolbox 
in MATLAB with a second polynomial regression and a 
Gaussian correlation model (Lophaven et al. 2002). Results 
are displayed in Fig. 11. It shows that Kriging interpolation 
method and DFS are more powerful on recovering miss-
ing values than the other two methods, which both bring 
very little interpolation errors when Ng < 3. DFS has a 
significant advantage in dealing with large gappy zone of 
Ng > 3, which is mainly benefited from the divergence-free 
constraint. It is worthy to note that DCT-PLS leads to very 
large errors in interpolating larger missing zones of DNS 
data, which is consist with the result of Wang et al. (2015b). 
It is believed that the failure of DCT-PLS is associated with 
its failure on smoothing correlated noise caused by initiali-
zation at the missing values. Moreover, experimental data 
usually suffer from noises. Kriging method would lose its 
effectiveness during interpolating noisy field, while DFS 
still performs well in that situation because of its capability 
of reducing noise.

4 � Computational efficiency and smoothing large 
volume

According to the discussions in Sect. 2, the most critical 
step of applying DFS is to calculate the large matrix of 
DFSBs. Usually, it takes about hour-order computational 
time and about 25 GB memory using a common computer 
to calculate a DFSBs matrix corresponding to 30× 30× 10 

or 21× 21× 21 spatial points in MATLAB. However, once 
such matrix is obtained, the DFS operation on a large set of 
velocity fields is fast. The Table 5 provides the time cost of 
DCS, DCT-PLS and DFS in dealing with a 30× 30× 10 
velocity field with combined outlier rate of 5 % and back-
ground noise level of 5%. The test is performed on a com-
puter with quad-core i7 CPU of 3.7GHz and 64 GB RAM. 
100 Monte-Carlo simulations are employed to reach the sta-
tistical convergence. The time cost of calculating DFSBs is 
also involved when averaging the computational time of the 
DFS processing on a single field. It shows that DCT-PLS 
is the fastest method, which is mainly benefited from the 
fast DCT and IDCT operation. DCS is proposed to solve 
the optimization problem using the ‘fmincon’ function of 

0

0.1

0.2

0.3

0.4

0.5
DFSDNS with missing values DCT−PLS

Fig. 10   A slice from one example DNS velocity field at the position 
of z+ = 463.1. The three columns, from left to right, display the field 
with missing values, and the field smoothed by DCT-PLS and DFS. 

The background colors denote the residuals of processing results. The 
gap size is 6× 8× 4
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MATLAB (de Silva et  al. 2013), which takes much more 
time and memory than DFS method. In this paper, DCS is 
also achieved very fast by DFS technique under smoothing 
parameter of s = 0, as we can see in Table  5. DFS takes 
longer time than DCT-PLS but still acceptable compar-
ing to the time-consuming particle reconstruction and 3D 
cross-correlation in volumetric PIV measurement. Further-
more, the average processing time would be less if more 
fields are being processed, because the DFBSs only need to 
be calculated once.

To reduce time cost and memory usage when dealing 
a large volumetric velocity field, it is smart to divide the 
entire flow field into several smaller blocks of same size 
with certain overlap. Thus, only one small DFSBs matrix is 
necessary for applying DFS on all the blocks, saving con-
siderable memory and time. After processing the sub-fields 
with DFS, the finally processed flow field is assembled 
from all the smoothed blocks. The vectors at the overlap 
can be easily generated by averaging or combining the vec-
tors from the corresponding blocks. A numerical test on 
the smoothing error of DFS is performed on velocity fields 
of 30× 30× 10 with NL = 5%. The contours of the rela-
tive error averaged from 256 testing DNS velocity fields 
(detailed in Sect. 3) are shown in Fig. 12. The relative error 
is defined as the magnitude of the difference between the 
DFS-processed velocity and DNS velocity, normalized 
by the DNS velocity fluctuation. The figure indicates that 
DFS method usually leads to larger errors at the borders 
of smoothing block, while the inner region has fairly low 
relative errors around 2 %. Such border-effect is caused by 
the first-order difference scheme at the border, which only 
affects about two layers of grid in the inner region. There-
fore, when block DFS is used, the smoothing blocks should 
share a overlap of at least four layers of grid, and two layers 
of border need to be removed when generating the entire 
processed field to avoid the large errors at the borders.

To validate the effectiveness of block DFS further, 
two tests on a large DNS velocity field (turbulent channel 
flow as introduced in Sect. 3) with 256× 256× 16 spa-
tial points are performed. In case 1, only Gaussian white 
noise with NL = 5% is added to the DNS field. In case 2, 
besides background Gaussian noise, all the three types of 
outliers each with outlier rate of 5 % and Ns = 3 are added, 
similar to Fig.  7. The whole velocity field is divided into 
12× 12 sub-volumes with 25× 25× 16 spatial grid points, 
sharing an overlap of 4× 4× 16. After block DFS opera-
tion, these sub-volumes abandon two layers of border grid 

at the overlap and combine into a complete velocity field. A 
sketch of block DFS is shown in Fig. 13 to explain how to 
merge two sub-volumes.

Table 5   Time cost of different 
methods

DCS DCT-PLS DFS

By fmincon By s = 0 Not robust Robust Not robust Robust

Time cost (s) >1000 58.3 <0.1 0.3 63.1 135.3
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Fig. 12   Contours of the relative error magnitude of DFS-smoothed 
velocity fields (NL = 0.05)
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In the tests, the smoothing errors of velocity are defined 
as Eq. (36) in Sect.  3.1. Errors calculated from three dif-
ference regions are compared for showing the influence 
of border-effect. They are the average error in the entire 
field, the error at the boundaries and the error at the inner 
region excluding the boundaries (as shown in Fig.  13). 
Considering that the calculation of vorticity at boundaries 
is based on the velocities from two neighboring smoothed 
blocks, the corresponding errors at the boundaries are the 
biggest concern for block DFS. The errors of vorticity are 
defined by a similar equation with the errors of velocities. 
Table  6 provides all three different errors of velocity and 
vorticity for the tests. Errors of DCT-PLS are also provided 
in Table 6 as important references. It shows that errors at 
boundaries and the interior appear similarly for both veloc-
ity and vorticity in the noise test (case 1), which indicates 
that the block scheme does not cause biased errors at 
boundaries. For another test with 15  % of three types of 
outliers (case 2), the smoothing errors at the boundaries 
are obviously larger than the ones at the interior. How-
ever, even at the boundaries, the smoothing errors of DFS 
are smaller than the ones for DCT-PLS, indicating that the 
boundary effect is not a significant issue for block DFS. 
The root mean squares (RMSs) of divergence residuals 
for DCT-PLS and DFS are presented in Table 7. It shows 
that the block DFS cannot completely remove the diver-
gence errors at the boundaries, because the calculation of 
divergence at the boundaries involves velocities from two 
separated blocks. However, the remaining divergence errors 
at boundaries are much smaller than the corresponding 
errors caused by DCT-PLS, which means that block DFS 
still retains good divergence-reducing capability at the 

boundaries. On the other hand, it is worthy to note that the 
boundary effect will be further reduced if larger overlap 
region is applied in the block DFS.

5 � DFS on tomographic PIV data

In this section, DFS is applied to process real TPIV data. 
Two sets of tomographic PIV (TPIV) data of different 
flows are employed for evaluating DFS. One is a turbulent 
boundary layer (TBL) flow, which is a similar flow with 
the former DNS data in Sect. 3. Another is about a vortex 
breakdown over a delta wing, which is a complex flow phe-
nomenon. In the test of TBL, statistics are assessed to vali-
date the effectiveness of DFS quantitatively. In the test of 
vortex breakdown, the ability to improving instantaneous 
flow visualization and vortex identification is addressed.

5.1 � Turbulent boundary layer

The experiment of turbulent boundary layer was conducted 
in a large water tunnel in the Beijing University of Aero-
nautics and Astronautics in China. The tunnel has a work-
ing section of 16 m× 1 m× 1.2 m in the streamwise, 
spanwise and vertical directions, respectively. A 1 m× 7m 
acrylic glass plate with a tripwire near the elliptic leading 
edge was vertically put in the tunnel to generate the turbulent 
bounder layer. A schematic of the channel flow facility and 
the experimental setup is shown in Fig. 14. The TPIV system 
includes four high-resolution (2058× 2456 pixels) and dual-
exposure CCD cameras with 45 mm Nikon lenses, and a 500 
mJ Nd:Yag laser device. The measurement was focused on a 
region of 80 mm× 45 mm× 16 mm at 6.7 m downstream 
the leading edge of the plate. The x, y and z axes were set as 
the streamwise, spanwise and wall-normal directions of the 
plate, respectively. The laser sheet was parallel to the plate, 
illuminating a volume with vertical range from z = 0.6mm 
to z = 2.1  mm along the thickness direction, which is in 
the logarithmic law region of the velocity profile. The free-
stream velocity was adjusted to 412.8 mm/s, and the corre-
sponding turbulence level was <1 %.

Laser Doppler velocimetry (LDV) was employed to 
measure the velocity profile and obtain the flow param-
eters. The wall viscous unit and skin friction velocity were 
obtained by fitting the LDV data with the Musker profile 
method (Kendall and Koochesfahani 2008). This resulted in 
a wall unit of 0.068 mm and a skin friction velocity of 15.6 
mm/s, corresponding to a friction Reynold number Reτ of 
1769. The experimental TPIV data were processed by an 
in-house Tomo-PIV program. The multiplicative algebraic 
reconstruction technique (MART, Elsinga et al. 2006) with 
pixel-to-voxel ratio of one was employed to reconstruct 
the 3D particle intensity field, giving a volume size of 

Table 6   Smoothing errors of DCT-PLS and block DFS (%)

DCT-PLS DFS

Entire field Entire field At boundaries In inner

Noisy field

 Velocity 2.44 1.98 2.05 1.97

 Vorticity 13.95 12.66 12.46 12.71

Outlier field

 Velocity 7.00 3.22 4.19 2.99

 Vorticity 27.75 16.78 19.26 16.19

Table 7   RMSs of divergence residuals ∇ · u+ for DCT-PLS and 
block DFS

DCT-PLS DFS

Entire field Entire field At boundaries In inner

Noisy field 0.0032 0.0002 0.0006 <10−13

Outlier field 0.0066 0.0010 0.0025 <10−13
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1454× 818× 291 voxels with magnification of 0.055 mm 
per voxel. The cross-correlation was performed on window 
of 48× 48× 48 voxels with 75 % overlap. The parameters 
of the TPIV velocity field are listed in Table 8.

The TPIV velocity fields were further processed by 
DCT-PLS, DCS, DCT-PLS+DCS and DFS, respectively. 
Statistics of the mean velocity, turbulent intensity, enstro-
phy and dissipation, as defined in Sect. 3.1, were calculated 
based on the processed velocity fields. To save memory and 
time, the original velocity fields were divided into several 
blocks with size of 25× 25× 19 spatial grid points. There-
fore, all the processing methods could be employed to deal 
with the same small blocks. More than 1200 such blocks 
were calculated to obtain converged statistic results.

To provide a standard reference, another set of DNS data 
was employed to get statistics. The DNS data came from a 
direct numerical simulation of a zero pressure gradient tur-
bulent boundary layer over a flat plate (Simens et al. 2009; 
Sillero et al. 2013; Borrell et al. 2013). The total DNS data 
contains 15,361× 4096× 535 spatial nodes for stream-
wise, spanwise and wall-normal directions. The developing 
TBL has a range of friction Reynold number from 976 to 
2040. The data selected here were extracted from the entire 
data at the local with the local Reτ from 1749 to 1793 and 
wall-normal position ranging from 100 to 276 (wall units), 
which are very close to our experimental configuration. 

The testing DNS data have 651× 4096× 45 nodes for 
streamwise, spanwise and wall-normal directions, with cor-
responding average spacings ∆+ of 6.42, 3.71 and 3.32. 
Linear interpolation was employed to make the selected 
DNS data have equal spacings as the experimental data. To 
simulate the PIV filter effect, the DNS data were further fil-
tered by a moving average block with equal size of the spa-
tial resolution of the TPIV data (39.0, wall unit).

The velocity profile is shown in Fig. 15. It shows that the 
filter effect brings very small change on the velocity pro-
file. The LDV data match quite well with the DNS data as 
well as the TPIV data. The TPIV profile here is obtained 
from the raw velocity field with only post-processing of 
outliers correction, but not other smoothing or correcting 
processes. It is worthy to note that the slope of the TPIV 
velocity is slightly smaller than DNS and LDV data. The 
bias error is believed to be caused by modulation effect of 
ghost particles, which was also reported by Atkinson et al. 
(2011) and Gao (2011).

Table 9 provides all the statistical results for DNS, fil-
tered DNS, TPIV and processed TPIV data at z+ = 197.8 . 
It shows that the filtering effect brings very limited vari-
ation on the mean velocity of the original DNS data and 
slightly reduce the turbulent intensities. However, the 
enstrophy and dissipation are significantly reduced by the 
filtering. Considering that such filtering effect is inherently 
introduced in the correlation analysis, the filtered DNS data 
provide a better reference to estimate the accuracy of the 
testing processing methods. It shows that the raw TPIV 
data cause a significant overestimate on the third turbu-
lent intensity w2

+
 (even larger than v2

+
), which is caused 

by the high uncertainty along the thickness direction of 
measurement volume. During the particle reconstruction, 
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Fig. 14   Experimental setup for TBL measurement

Table 8   Parameters for TPIV velocity field

Spacing ∆+ 9.75

Correlation window W+ 39.0

Wall-normal range z+ 100.3–275.8

Number of vectors per volume 118× 65× 19

Size of velocity field (wall unit) 1135.6× 621.2× 175.5

Number of velocity fields 150

Repetition frequency 4 Hz

100 150 200 250
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Fig. 15   Mean velocity profile calculated from DNS, filtered DNS, 
LDV, and TPIV data
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the reconstructed particles are normally elongated along 
the thickness direction due to the small viewing angles 
of imaging, which causes a high uncertainty of determin-
ing the particle displacements along that direction. All the 
testing methods reduce the turbulent intensities at different 
degrees. A highly effective correction on the overestimated 
turbulent intensity w2

+
 has been observed. Among all the 

testing methods, DCT-PLS+DCS and DFS perform the 
best. The enstrophy and dissipation for raw TPIV data are 
much larger than the filtered DNS because of their sensitiv-
ity to the noise error. In the comparison, DCT-PLS+DCS 
and DFS provide the most accurate corrections on the 
enstrophy and dissipation as well. It seems that DFS and 
DCT-PLS+DCS share similar performance on improving 
the flow statistics. Results in Table 9 show a little different 
trend to the results of Table 4. In fact, the real experimen-
tal contains a comprehensive error of all different types of 
errors, while those errors are individually tested in Table 4. 
Furthermore, other experimental errors uncovered in Sect. 
3 might cause more complicated situation in the real exper-
imental data, such as the errors due to the ghost particles 
(Elsinga et al. 2011).

5.2 � Vortex breakdown

Besides the testing on the statistics, a further test of DFS 
for its performance on instantaneous field is presented in 
this subsection based on a complex flow of vortex break-
down. The TPIV measurement for vortex breakdown 
over a delta wing was conducted in a small water chan-
nel at the Beijing University of Aeronautics and Astro-
nautics in China. The water channel has a working sec-
tion of 3 m× 0.6 m× 0.7 m in the streamwise, spanwise 
and vertical directions, respectively. The channel facility 
and experimental setup are illustrated in Fig. 16. The free 
stream velocity U∞ was 60 mm/s. The delta wing with 
52 degree sweep angel generated leading vortices when 
the angle of attack was 20◦ under Reynolds number of 
1.2× 104 with chord length c of 200 mm. The thickness of 
the delta wing is 3mm, leading to a thickness-to-chord ratio 

of 1.5  %. A laser sheet with thickness of 20 mm emitted 
by a dual-exposure Nd:YAG laser was aligned parallel to 
the delta wing. Four high-resolution (2058× 2456 pixels) 
and dual-exposure CCD cameras were employed to record 
the particle images at 5 Hz. The measurement zone was 
focused on the middle of the chord length, where vortex 
breakdown occurred. An in-house module of Tomo-PIV 
was used to process the experimental data. MART was 
used to reconstruct the particle field in the measurement 
volume, and cross-correlation analysis with window size 
of 48× 48× 48 and 50  % overlap was applied to obtain 
the 3D velocity field. The resulting velocity field has vec-
tors of 44× 35× 17 corresponding to a physical domain 
of 56.76 mm× 44.88 mm× 21.12 mm. The origin of the 
coordinate is set at the apex of the delta wing. Three coor-
dinates correspond to the chordwise, spanwise and wall-
normal directions (x, y, z), respectively.

We post-process the data by four methods for compari-
son: conventional smoothing, DCT-PLS, DCT-PLS+DCS 
and block DFS. The conventional method (CONV) com-
bines the determination of outliers with the normalized 
media test, replacement of outliers with the local-median 
interpolation, and Gaussian smoothing of 3× 3× 3 ker-
nel size with a default standard variance of 0.65. The 
block DFS divided the entire domain into two subzones of 

Table 9   The statistical results 
for DNS, filtered DNS, TPIV 
and processed TPIV data

DNS TPIV

Original Filtered No process DCS DCT-PLS DCT-PLS+DCS DFS

U
+ 17.81 17.81 17.66 17.66 17.66 17.66 17.66

u2
+ 1.95 1.86 1.89 1.88 1.85 1.85 1.85

v2
+ 1.37 1.26 1.17 1.17 1.12 1.12 1.12

w2
+ 1.11 0.99 1.37 1.19 1.15 1.05 1.04

ω2
+ 0.0147 0.0040 0.0119 0.012 0.0055 0.0054 0.0052

ε+ 0.0153 0.0041 0.0213 0.0138 0.0086 0.0064 0.0060
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Fig. 16   Experimental setup for vortex breakdown measurement
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24× 35× 17 grids with a overlap of 4× 35× 17. The final 
processed field is composed of two 22× 35× 17 subzones 
coming from the two smoothed subzones, which means that 
each subzone provides a 2× 35× 17 domain to recover the 
overlapped region.

An example snapshot of vortex breakdown phenom-
enon is shown in Fig. 17. After smoothing with three tech-
niques, the velocity field is improved on noise reduction. 
The leading vortex is identified using the Q-criterion (Hunt 
et  al. 1988). The vorticity lines starting from x = 72.57 
mm near the leading vortex core are displayed as well on 
the same figures. All post-processed results show a clear 
curled vortex core associated with the spiral vortex break-
down. It shows that compared to conventional processing 
method, DCT-PLS, DCT-PLS+DCS and DFS improve the 
visualization by reducing noisy isosurfaces of Q and make 
the vortex core more smooth. In the result of DCT-PLS, 
the vortex core is still not smoothed enough, and the vor-
ticity lines are messy at the downstream of the breakdown 
spot. DCS improves the result of DCT-PLS by making 

the vortex core more smooth and well-identified. DFS 
achieves best smoothing results among all these meth-
ods, which gives a clear cluster of spiral vorticity lines, 
agreeing well with the well-smoothed leading vortex core, 
which provides an experimental evidence of the advantage 
of DFS.

6 � Conclusions

The divergence-free smoothing method discussed in this 
article is a combination of penalized least squares regres-
sion and divergence corrective scheme, which smooths 
the vector field of volumetric experiment measurement 
while removing the divergence errors at the same time. 
DFS employs GCV method to find the optimal smooth-
ing parameter s, which is adaptive to different noise situa-
tions. Tests suggest that DFS has an outstanding advantage 
in smoothing correlated errors over DCT-PLS, DCS and 
DCT-PLS+DCS.

Fig. 17   Isosurfaces of Qc/U∞ = 100 and vorticity lines from the results of the four method
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By employing an iterative weight-changing algorithm, 
DFS achieves validation of raw data, replacement of spu-
rious and missing vectors, smoothing, and zero-divergence 
correction for the velocity field simultaneously. Numeri-
cal assessments demonstrate that DFS always outperform 
DCT-PLS, DCT-PLS+DCS and some traditional process-
ing methods in dealing with different types of outliers and 
missing values. For padding missing values, DFS could 
recover the velocity field under reasonable rate of missing 
vectors, while DCT-PLS normally does not work very well. 
On fixing velocity fields with large gaps (Ng > 3), DFS 
is superior to all other methods including the well-known 
Kriging interpolation.

Calculating the large matrix of DFSBs is usually time-
consuming and memory-hogging. Block DFS is suggested 
to process large velocity field to save time and memory 
usage. Numerical tests validate the applicability of the 
block DFS. Block DFS is also applied to process two sets 
of TPIV data, resulting in improved statistical results and 
better flow visualization compared to conventional method, 
DCT-PLS and even the combined method DCT-PLS+DCS.
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Appendix 1: Specific forms of A and M

Assume that the l-th (l = 1, 2, 3) component of 
velocity at the position (i,  j,  k) is arranged as the 
(i + (j − 1)nx + (k − 1)nxny + (l − 1)n)-th element of 
Uexp or Us. Then corresponding divergence operator A 
and M are calculated by the Eqs.  (39)–(42), noting that 
the symbol ⊗ denotes the Kronecker product between two 
matrices.

where Inx, Inx and Inz are identical matrices and Dnx, Dnx and 
Dnz take the following form

(39)

A =
[

1

�x
Inz ⊗ Iny ⊗ Dnx ,

1

�y
Inz ⊗ Dny ⊗ Inx ,

1

�z
Dnz ⊗ Iny ⊗ Inx

]

,

(40)Dm =













−1 1

−1/2 0 1/2

−1/2 0 1/2

. . .

−1 1













m×m

(m = nx, ny or nz).

where Nnx, Nnx and Nnz take the following form.

The Eq. (41) is a generalization of the work of Buckley 
(1994), who detailed the form of M for the smoothing of 
two-dimensional scalar data.

Appendix 2: Numerical test for GCV

To validate the performance of the GCV method on esti-
mating smoothing parameter, a test based on 100 DNS 
velocity fields with different noise levels is performed to 
get the average results. Details of the testing DNS data 
and the added artificial noise are introduced in Sect. 3, 
where more tests of DFS are performed on the same DNS 
data. To find the best smoothing parameter s directly in 
this test, DFS using different value of s (from 0.02 to 1) 
is scanned to smooth the noisy velocity field, with which 
the estimation of s by GCV method is compared. The rela-
tive smoothing error is defined as the norm of the differ-
ence between the DFS-processed field and the original 
DNS field, normalized by the norm of the original DNS 
field with the free-stream velocity subtracted [Eq. (36) 
in Sect. 3.1]. Errors of DFS using different s to smooth 
velocity field with different noise levels are contoured in 
Fig. 18. The best s marked in Fig. 18 is acquired by find-
ing the result with the smallest smoothing error under the 
corresponding noise level. The estimations of s by GCV 
are also marked in the figure for comparison. It shows that 
GCV method always choose a decent smoothing param-
eter, which is very close to the best DFS results at different 
noise levels. In fact, the differences between the smooth-
ing errors resulting from GCV estimation and the ones 
using the best s are always less than 0.1 %. It suggests that 
the GCV method is a good adaptive method for different 
noise levels. Another interesting result is that the optimal 
smoothing parameter s is proportional to the noise level. 

(41)

M =
1

�x2
I3 ⊗ Inz ⊗ Iny ⊗ N2

nx
+

1

�y2
I3 ⊗ Inz ⊗ N2

ny
⊗ Inx

+
1

�z2
I3 ⊗ N2

nz
⊗ Iny ⊗ Inx +

2

�x�y
I3 ⊗ Inz

⊗ Nny ⊗ Nnx +
2

�y�z
I3 ⊗ Nnz

⊗ Nny ⊗ Inx +
2

�x�z
I3 ⊗ Nnz ⊗ Iny ⊗ Nnx ,

(42)Nm =













−1 1

1 −2 1

1 −2 1

. . . 1

1 −1













m×m
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Therefore, it seems possible to estimate the noise level of 
the experimental data according to the GCV estimation of 
smoothing parameter s.

Besides the theoretical proof (Craven and Wahba 1978) 
and the above numerical test, the GCV method, as a gen-
eral method, has been successfully applied in the DCT-
PLS method on dealing with various types of experimental 
errors (Garcia 2010). In current work, we also perform a 
systematical test of DFS on all possible errors of PIV data 
in the following Sects. 3–5. The good performances of both 
DCT-PLS and DFS in practical application strongly evi-
dence that the GCV method is an effective and robust algo-
rithm in choosing the smoothing parameter.

At last, it is worth to note that any smoothing operation 
has certain low-pass filtering effect for the flow field. For 
DFS, larger smoothing parameter means stronger noise-
reduce effect and, therefore, larger range of frequency trun-
cation. DFS seeks a good balance between the two effects 
of noise reduction and spatial attenuation by using the 
GCV method.
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