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which deflect the light from its natural path, as shown in 
Fig. 1.

BOS was pioneered by Dalziel et al. (2000) and Raffel 
et al. (2000) who developed most of the early theory. The 
practical aspects were subsequently documented by Rich-
ard and Raffel (2001). These studies focussed on the large-
scale applicability of BOS, but it has since been shown to 
excel in laboratory environments (Venkatakrishnan and 
Meier 2004; Atcheson et al. 2007; Reinholtz et al. 2010; 
Todoroff et al. 2014).

Goldhahn and Seume (2007) investigated the sensi-
tivity, accuracy, and resolution of BOS. The sensitivity 
depends primarily on the experimental set-up, such as the 
focal length of the camera lens, the distance of the object 
from the camera and background, and the smallest detect-
able displacement in the background plane. Conversely, the 
accuracy and resolution are predominantly determined by 
the digital image processing algorithms.

Previous campaigns applied BOS to reconstruct the 
density from a single perspective. Elsinga et al. (2004) 
mapped the density of a two-dimensional Prandtl–Meyer 
expansion fan using calibrated colour schlieren (CCS) and 
BOS. The use of a two-dimensional geometry enabled the 
direct integration of the density gradients to obtain the local 
distribution. CCS and BOS agreed to within 2 and 3 % of 
Prandtl–Meyer expansion theory, respectively. Inaccura-
cies in BOS were due to insufficient resolution limiting the 
accuracy of the cross-correlation algorithm and the depth 
of field, which controls the focus of the density object. 
The dynamic range of BOS was reported to be five times 
greater than that of CCS. Hargather and Settles (2012) 
arrived at the same result by applying calibrated schlieren, 
colour schlieren, and BOS to a two-dimensional laminar 
free-convection boundary layer.

Abstract A novel application of the adaptive Fourier–
Hankel (AFH) Abel algorithm to reconstruct the radial den-
sity distribution of axisymmetric jets is presented. The fluid 
is imaged using the non-intrusive path-integrated back-
ground-oriented schlieren (BOS) technique. BOS images 
are cross-correlated to obtain background displacements 
that are proportional to the first derivative of the refrac-
tive index. The critical step is deconvolving the projected 
displacements. The AFH method is applied to simulated 
displacement data to validate the use of averaged turbulent 
fluctuations that approximate an axisymmetric field. The 
influence of experimental noise and variations in the flow 
on the accuracy of the method is discussed. The limitations 
of the system are demonstrated by applying it to low- and 
high-Reynolds (Re) number jets. The high-Re jets are pro-
duced from a high-pressure fuel injector operating at noz-
zle pressure ratios of 2, 3, and 4.

1 Introduction

The background-oriented schlieren (BOS) technique is a 
non-intrusive optical line of sight flow visualisation tool 
that employs cross-correlation image analysis to investigate 
inhomogeneous fluids. BOS cross-correlates images to con-
vert distortions in a distant background plane to path-inte-
grated displacement values. The displacements are a result 
of density gradients between the observer and background, 
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Higher dimensional problems require multi-camera 
arrangements to obtain a complete and accurate image. The 
local density field is calculated using tomographic algo-
rithms like filtered back-projection tomography (FBPT). 
FBPT is based on the principle of Radon transforms, which 
relate an object’s projection to their cross section. Tradi-
tionally, FBPT has been used with BOS due to its popular-
ity in computed tomography and its applicability to all flow 
geometries (Venkatakrishnan and Meier 2004; Sourgen 
et al. 2012; Goldhahn and Seume 2007).

A derivative of the Radon transform is the Abel trans-
form, which is an alternative method that is restricted to 
axisymmetric flows. Subsequently, only a single camera 
system is required. Abel methods also have the similar 
noise-related issues as well as suffering from a singularity 
at the axis of symmetry. Fourier methods, such as the Fou-
rier–Hankel (FH) method, account for the singularity and 
greatly reduce computation time (Ma et al. 2008). In gen-
eral, the implementation of Abel algorithms is simpler and 
not as computationally expensive as FBPT.

The main criticism of Radon algorithms is that they 
are susceptible to noise. In the case of the FBPT, a filter 
is used to reduce the sensitivity to noise. Venkatakrishnan 
and Meier (2004) and Sourgen et al. (2012) implemented a 
Shepp–Logan filter, but the authors noted that this still led 
to a small amount of blurring. Ma et al. (2008) suggested 
the adaptive Fourier–Hankel (AFH) method as a way of 
accounting for noise and minimising truncation error with-
out a separate filter function. Applications of tomographic 
algorithms to BOS have been successful; however, they 
usually lack a detailed error analysis.

Beginning with a description of the methodology, a 
novel application of the AFH method is proposed. An 
assessment of the uncertainty in the procedure is provided 
by examining a synthetic model that simulates typical 
projected displacements from a cylindrical flow. A low-
Reynolds (Re) number helium jet was imaged to verify 
the method by isolating experimental errors from inver-
sion errors. Mean density measurements across a turbulent 

helium jet were obtained. The density half-radius at nozzle 
pressure ratios (NPR) of 2, 3, and 4 was found to scale in 
agreement with Sautet and Stepowski (1994).

2  Principles of the BOS technique

2.1  Theory

The theory for BOS is well established (Raffel et al. 2000; 
Richard and Raffel 2001; Venkatakrishnan and Meier 2004; 
Goldhahn and Seume 2007) so only a brief summary follows.

A typical set-up consists of a light source, a background 
pattern, a camera, and an object of interest, as shown in 
Fig. 1. A reference image is taken of the background with-
out any disturbances in the field of view, and the refracted 
image is obtained with the density object in place. Features 
in the background appear to move when light rays travel-
ling through the medium are refracted. The displacements 
are proportional to density gradients in the medium (Eq. 3). 
The relationship between refractive index, n, and density, ρ, 
is given by the Gladstone–Dale equation

where the Gladstone–Dale constant is

Figure 2 outlines the procedure for measuring density 
from BOS data. The key steps are:

1. The reference and refracted images are cross-corre-
lated (Raffel et al. 1998) to determine the background 
displacements, �.

2. Deflections, ǫ, are evaluated based on the geometric 
set-up (Eq. 2).

3. For two-dimensional flows, the refractive index field is 
calculated by solving the Poisson equation. The three-
dimensional case requires the devolution of the pro-
jected deflections using tomography.

4. The absolute density is calculated using the Gladstone–
Dale relation (Eq. 1).

Based on the geometry in Fig. 1, the deflections in the x 
and y directions have the same form. The deflection in the y 
direction, ǫy, is approximated by

The background displacements, �(y), are converted to the 
image displacements, �image(y), via a magnification factor, 
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Fig. 1  Optical layout of BOS. Adapted from Raffel et al. (1998)
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M. The deflections are a function of the variations in refrac-
tive index integrated over the width of the object plane, 
�ZD, such that

where n0 is the refractive index in the ambient fluid. Com-
bining Eqs. 2 and 3 reduces the problem to the Poisson equa-
tion, which is an elliptic partial differential equation given by

Equation 4 can be solved to yield the refractive index field 
and consequently the density (Eq. 1). This is typically done 
for two-dimensional flows where there is a priori knowledge 
of �ZD (Elsinga et al. 2004; Vasudeva et al. 2005).

Quasi-two-dimensional flows with an axisymmetric 
geometry must be deconvolved using tomography. Only 
one viewing angle is needed since the same projection is 
seen from every perspective. The Abel inversion is suitable 
for extracting the density (Klinge et al. 2003), but can be 
very sensitive to noise. Subsequently, filtering algorithms 
such as FBPT have been employed to account for this 
(Venkatakrishnan and Meier 2004).

Multi-camera systems are required to reconstruct the 
complete three-dimensional density field (Atcheson et al. 
2007; Ota et al. 2011; Todoroff et al. 2014; Hartmann et al. 
2015), but this is beyond the scope of the paper. The cur-
rent work seeks to extend the quantitative aspects of a sin-
gle camera system.

2.2  Experimental design considerations

The background pattern requires sufficient contrast and 
detail so that cross-correlation algorithms can accu-
rately track the displacements. Since the pattern is syn-
thetically generated, there is significant control over its 
properties such that the background can be populated in 
a number of ways and to suit the experiment. Common 
approaches are to use natural backgrounds that utilise 

(3)ǫy =
1

n0

�ZD/2
∫

−�ZD/2

∂n

∂y
dz

(4)
∂2n

∂2x
+

∂2n

∂2y
= S(x, y)

the surroundings, randomly distributed dots, and wavelet 
noise. However, natural backgrounds are suited to full-
scale testing so will not be discussed further (Hargather 
and Settles 2010).

Randomly distributed dots that are optimised for a nar-
row band of system resolutions have commonly been used. 
The dot parameters are governed by the seeding parameters 
employed in particle image velocimetry (PIV) (Raffel et al. 
1998). Atcheson et al. (2009) demonstrated the advantage 
of replacing the dots with multi-scale wavelet noise. High 
noise content is maintained over a range of spatial fre-
quency, thus improving the reliability of the cross-correla-
tion algorithms. Details on wavelet noise have been pub-
lished by Cook and DeRose (2005).

The camera must be focussed on the background plane 
in order to resolve features in the pattern. Consequently, the 
density object will never be in sharp focus (Fig. 1). Moving 
the object closer to the background while keeping the cam-
era fixed improves the resolution of the density gradients. 
However, for the same deflection, a smaller displacement 
is observed (Eq. 2), thereby reducing the system sensitivity 
(Goldhahn and Seume 2007).

One way to minimise object blur is to increase the 
f-stop, but greater background illumination is needed to 
maintain the same exposure time. An effective arrangement 
is to backlight the system. Other configurations, such as 
forward lighting, are generally reserved for confined envi-
ronments (Reinholtz et al. 2010).

3  The AFH method

The Abel transform is a mathematical tool used for the 
tomographic analysis of spherically and cylindrically sym-
metric objects (Ramm and Katsevich 1996). The concept is 
illustrated in Fig. 3. The forward transform of the radially 
distributed refractive index difference, δ(r), gives the pro-
jected refractive index field, n(y). This is expressed as

(5)n(y) = 2

R0
∫

r

δ(r) r
√

r2 − y2
dr

Fig. 2  Flow chart for calculat-
ing local density fields with 
BOS. Adapted from Jensen 
et al. (2005)
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where

It follows that the inverse is given by

and noting that there is no numerical differentiation of the 
data because ∂n(y)/∂y is proportional to the deflections, 
ǫ(y), via Eq. 3.

Dasch (1992) discretised Eq. 7 such that δ(r) is given 
by a weighted sum of projections. Following the same 
notation for a data set with N samples and data spacing of 
�y = �r = R0/N, Eq. 7 is reduced to

where δ(ri) is the relative refractive index difference at 
every distance ri = i�r and ǫj is the deflection angle at 
yj = j�y with i and j = 0, 1, . . . ,N. The coefficient matrix, 
Dij, is based solely on the mesh so can be pre-computed.

The classic Fourier–Hankel method takes advantage of 
the Abel–Fourier–Hankel cycle of integral transforms (Ma 
et al. 2008; Chehouani and Fagrich 2013) to determine Dij . 
The method takes the Fourier transform of the projected 
data before performing the inverse Hankel transform to 
evaluate the radial distribution. Denoting the Abel, Fourier, 
and Hankel operators as A , F , and H , respectively, the 
inversion is

Approximating the integral transforms, the coefficient 
matrix for the FH method is

(6)δ(r) =
n

n0
− 1
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N
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Dijǫj

(9)δ(r) = H
−1

[

F
[

A
[

ǫ(y)
]]]

where 0 ≤ i ≤ N and J0 is the zero-order Bessel function. 
Equation 10 is the FH method with a smoothing coefficient 
α that is given a value between 0 and 1. The method can 
suffer from large truncation errors since it drops the high-
frequency components in the Fourier transform.

The modification proposed by Ma et al. (2008) reduces 
the truncation error by including the frequencies from 
N + 1 to N/α. Thus, extending the upper limit of the sec-
ond summation, the coefficient matrix for the AFH method 
is

where [N/α] denotes the closest less than or equal to inte-
ger N/α.

Semi-analytical interpolation schemes (Dasch 1992; 
Kolhe and Agrawal 2009) have traditionally been used to 
calculate the coefficients, but perform poorly near the sin-
gularity at the lower limit of the Abel inversion. Noise can 
also propagate through the inversion and introduce artificial 
structures in the final solution. The FH method accounts for 
the singularity, and the AFH improves on this by reducing 
the truncation errors.

4  Error analysis of the AFH method

Ma et al. (2008) explored the accuracy of the AFH method 
by demonstrating smaller inversion errors as a result of the 
insensitivity to noise. Chehouani and Fagrich (2013) used 
simulated Moire strips of a naturally convected flow to 
demonstrate the robustness of the AFH method. An optimal 
range of α was determined to range from 0.1 to 0.2, with 
the lower limit adopted for the present work.

The error analysis by Ma et al. (2008) and Chehouani 
and Fagrich (2013) assessed the performance when 
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Fig. 3  A geometric interpreta-
tion of the Abel inversion illus-
trating the relationship between 
a the radial distribution δ(r), b 
the refractive index field n(y), 
and c the projected displace-
ments �(y). Adapted from Sáinz 
et al. (2006)
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considering data sets contaminated with Gaussian noise. 
The approach taken in this paper was formulated in such 
a way as to model the expected characteristics of measure-
ments from BOS experiments that accounts for small- and 
large-scale structures in the flow.

4.1  Modelling BOS data

Synthetic displacement profiles expected from the projec-
tion of a cylindrical object with a constant density distribu-
tion (Fig. 3c) are given by

where θ is a shape parameter that accounts for the refractive 
properties and variations of the flow geometry. The effects 
are shown in Fig. 4. Noting that � ∼ ǫ, the analytical Abel 
inversion (Eq. 7) for δ(r) is

Inversion errors were calculated relative to Eq. 13. The test 
profiles are symmetric so were generated on an arbitrary 
half domain of 0 to 1 for y/D and r/D.

Global errors introduced by large-scale variations 
expected in the data, such as variations of the flow 

(12)�(y) ∼
∂n(y)

∂y
=

−y

θ3
√
2π

exp

(

−y2

2θ2

)

(13)δ(r) =
1

2πθ2
exp

(

−r2

2θ2

)

geometry, were emulated by varying θ within an upper (θ2) 
and lower (θ1) bound. Thus, we can define θ� as θ2 − θ1 as 
the range over which an unsteady flow may be expected to 
vary. Local errors, which include a combination of smaller 
scale variations and experimental noise, were applied by 
controlling the signal-to-noise ratio (SNR) of the individual 
signals. The parameters used to refer to the two types of 
error analysed are θ� and SNR.

Experimentally, an increase in θ� represents larger shot-
to-shot variations due to turbulent fluctuations in the flow 
field of interest. Background noise contributing to the SNR 
is generally a result of small thermal variations that con-
taminates the data.

Figure 4a illustrates the upper (θ2 = 15) and lower 
(θ1 = 5) bounds imposed on the displacements such that 
θ� = 10. These are represented by the solid lines with the 
remaining test profiles falling in between. The overline 
indicates the average of all profiles and is depicted by the 
dashed line. Noise is added to each curve so that there is an 
SNR of 35. The theoretical radial distributions are shown in 
Fig. 4b.

4.2  Equivalence of means and RMS

The averaged displacements of axisymmetric flows over a 
sufficient number of samples are assumed to approximate 
an axisymmetric field, thus enabling the application of 
the Abel inversion. To verify the validity of this assump-
tion, 1000 noise-free signals (Eq. 12) were generated for 
θ� = 10. A single mean radial distribution, δ(r) and δ(r), 
was reconstructed in two ways:

1. δ(r), the solution that is evaluated by finding the radial 
distribution of the mean displacements, �(y), as shown 
in Fig. 4.

2. δ(r), the mean radial distribution obtained by averag-
ing every δ(r) calculated from the corresponding �(y).

The discrete AFH algorithm (Eq. 9) was used to calcu-
late the radial distributions from the test profiles. No dif-
ference was found between δ(r) and δ(r). The normalised 
root-mean-square (NRMS) error relative to the theoretical 
solution is negligible (Fig. 5). Only one case is shown since 
the means were found to be equivalent.

4.3  Statistical convergence of the error based 
on sample size

The number of samples required to minimise the NRMS 
error of δ(r) was examined for SNRs from 1 to 100. Error 
convergence was defined as the relative change in error 
that was less than 0.001 %. The error criterion was tested 

(a)

(b)

Fig. 4  Example of modelled BOS data with SNR = 35 and θ� = 10



 Exp Fluids (2015) 56:204

1 3

204 Page 6 of 11

over 10 simulations at each test point. The effects of large-
scale variations were considered for a single case with 
θ� = 15.

The average sample size for the error to converge 
quickly drops as the SNR increases from 1 to 50, as shown 
in Fig. 6. Even though the NRMS error has converged for 
low SNRs, Fig. 6 does not give any indication of the abso-
lute accuracy of the solution. The test only provides a guide 
to determine an appropriate number of samples based on an 
expected SNR.

4.4  Effects of small‑ and large‑scale noise

The influence of both small- and large-scale variations on 
the inversion error was examined to establish an uncer-
tainty range for SNRs less than 100 and for θ� < 15. The 
sample size of the mean was varied from 200 to 2000 in 
steps of 50; however, the error distributions followed simi-
lar trends so only the test case for 1000 samples is shown 
(Fig. 7). The vertical variation was effectively constant at 
high SNR so the y-axis is reduced to 0 to 40.

The error peaks at low SNRs and large θ�. This region 
is indicative of a turbulent flow with noisy data and is 
likely to have little to no physical relevance when the SNR 
approaches 0.

The simple error estimate here can be deceptive at low 
SNRs because it does not completely account for artificial 
structures created by the algorithm to satisfy the boundary 

conditions of the Abel inversion. Thus, the errors predicted 
in this section are only applicable when the cross-correla-
tion algorithm is able to resolve the displaced background 
plane.

4.5  Summary

The AFH method accurately calculated the radial distribu-
tion of noise-free test profiles. The simplified model dem-
onstrated the equivalence of the two means, δ(r) and δ(r) , 
suggesting that the average can be performed before or 
after the inversion step. However, for experimental flows, 
and in particular turbulent ones, it is still necessary to cal-
culate the average prior to the inversion because the algo-
rithm relies on a precise definition for the axis of symmetry. 
Therefore, the first definition of the mean radial distribution 
(δ(r)) is used for the rest of the paper.

Two sources of error in the method have been identified. 
The accuracy of the algorithm was shown to improve when 
a higher number of samples were used to calculate the 
mean. The introduction of simulated flow variations (θ�) 
and experimental noise (SNR) demonstrated that the result-
ing reconstruction contained larger errors. An 11 % error is 
returned for θ� < 10.

Combining a simulated error model such as this with 
experimentally observed SNRs and standard devia-
tions can provide an additional uncertainty bound on the 
measurements.

5  Experiments and methodology

The experiments were set up according to Fig. 1 with 
the parameters given in Table 1. The components were 
mounted on an optical table to ensure that they were 
aligned along the same optical axis. A wavelet noise back-
ground pattern was printed on a film transparency and 
backlit by a 28 by 36 array of 532 nm LEDs with a pulse 

Fig. 5  Error of the mean radial distributions calculated using the 
AFH method with SNR = ∞ and θ� = 10

Fig. 6  Number of samples required at SNRs of 1–100 for the rela-
tive NRMS error difference of δ(r) to reach a value less than 0.001 % 
with θ� = 15

Fig. 7  Effect of the SNR and large-scale variations on the NRMS of 
the AFH method. Selected contours have been shown for clarity
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width of 100µs (Willert et al. 2012). A diffuser was used to 
uniformly distribute the light.

Images of a low-Re and turbulent jet were acquired using 
a high-resolution 16-bit PCO 4000 monochrome camera 
with a full CCD sensor size of 4008 by 2764 pixels and a 
pixel size of 9µm. A 200mm Nikon lens was used with an 
f-stop of 22 to maximise the depth of field. The camera was 
operated in single shutter mode with an exposure of 50µs . 
A delay of 25µs accounted for any unexpected delays from 
the signal generator used to synchronise the camera and 
light source. Helium was used for all experiments due to 
its low density compared to air and was monitored via a 
flowmeter. Derived density values were compared with 
the centreline jet exit density measured with BOS for each 
experiment.

The PIVview 2C cross-correlation software was used to 
process the raw data and extract pixel displacements. The 
software has a reported sub-pixel accuracy of 0.05 pixels 
(Willert 2015). A multi-grid cross-correlation algorithm 
(Soria 1998) with an initial interrogation window size of 
128 by 128 pixels and final size of 24 by 24 pixels was used. 
A 75 % overlap was set to oversample the data and ensure 
that there were sufficient data points for the AFH method.

Preliminary tests imaged the nozzle and injector in 
two orthogonal orientations. The mean fields satisfied the 
axisymmetric approximation. Analysing the correlation 
planes of the reference and refracted images showed that 
the SNR ranged from 35 to 75. Thus, 1000 statistically 
independent images were acquired for each test (Fig. 6). 
The same analysis to obtain the SNR may be performed on 
images from different systems since the value depends only 
on the strength of the cross-correlation peak relative to the 
background noise. Large-scale variations were estimated 
by the RMS of the displacements. Distances and densities 
were normalised with the nozzle exit diameter, D, and the 
ambient density, ρ0, respectively.

5.1  Verification of the method

A low-Re jet issuing from a 16.8 contraction ratio noz-
zle (Grandchamp et al. 2012) was imaged up to 1.6D 

downstream to verify the method. Large-scale structures 
upstream of the nozzle were minimised (θ� ≈ 0) by insert-
ing a wire mesh after a flow straightening honeycomb pat-
tern with a cell length and edge-to-edge distance of 20 and 
4mm, respectively (Mehta and Bradshaw 1979). Experi-
mental errors in the deconvolved flow were expected to be 
predominantly associated with experimental noise.

5.2  Fuel injector

The steady-state turbulent flow from a Bosch HDEV 1.2 
high-pressure fuel injector was imaged to examine the scal-
ing characteristics of the jet. The camera was triggered 
200ms after the start of injection into atmospheric air at 
NPRs of 2, 3, and 4. The field of view extended to 40D 
downstream.

6  Results and discussion

6.1  Low‑Re number jet

The mean transverse displacements, �/D, at axial loca-
tions of x/D = 0.1, 0.5, and 1 are shown in Fig. 8a. Addi-
tional peaks observed at x/D = ±0.5 were not included in 
the synthetic model (Eq. 12), but the Abel inversion was 
unaffected since the data remained symmetric. As shown in 

Table 1  Experiment parameters for the low-Re nozzle and HDEV 
1.2 injector

Low-Re nozzle HDEV 1.2 injector

ZB (mm) 625 500

ZD (mm) 139 105

Resolution (µm/pixel) 19.1 13.5

D (mm) 20 0.5

Re 230 6000–9000

ρ0 (kg m−3) 1.22 1.21

(a) (b)

(c) (d)

Fig. 8  Processed BOS data of a low-Re jet. a Mean transverse dis-
placements, b radial density profiles, c reconstructed density distribu-
tion, and d RMS of displacements
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Fig. 8b, there is a top hat profile along the core near the 
nozzle exit, which evolves into a Gaussian farther away, as 
expected for small Re (Table 1). The entire deconvolved 
density field is shown in Fig. 8c. The absolute density is 
shown to demonstrate that the actual density is extracted 
using the proposed method.

The greatest variations are seen in the shear layer at 
x/D = ±0.5, and these continue to grow downstream 
(Fig. 8d). The overall RMS is relatively small. This is 
consistent with the instantaneous displacements shown in 
Fig. 9 where there is little variation until y/D = 0.3. The 
jet has buoyancy-driven instabilities in the shear layer (Cet-
egen 1997).

There is a difference of 4.3 % between the measured 
and the derived densities. The discrepancy is most likely 
due to background and experimental noise. Based on a 
maximum θ� = 4.2× 10−2, which is given by the larg-
est RMS value (Fig. 8d), and an SNR of 58, the predicted 
NRMS error is 5.2 % (see Fig. 7). Therefore, the result is 
within the uncertainty bounds determined by the simulated 
error analysis.

6.2  Fuel injector

6.2.1  Near field

Figure 10 reveals the contrasting flow produced by the 
high-Re jet compared to the low-Re case (Fig. 8). The snap-
shots were taken 1000µs after injection.

Normalised mean density fields of the turbulent jet are 
shown in Fig. 11. The data are non-dimensionalised by the 
difference between the jet centreline and the ambient value, 
ρcl − ρ0. The relative difference between the measured and 
derived densities of helium was found to be 6.0, 7.3, and 
9.0 % for the NPRs of 2, 3, and 4, respectively. The average 
SNR over all tests was 38.

In relation to the low-Re jet, there are larger errors when 
imaging the smaller diameter nozzle. There were approxi-
mately 120 sample points across the nozzle exit for the cal-
ibration, while there were only 11 for the injector resulting 
in a lower spatial resolution. Errors may have been exacer-
bated by the combination of a lower SNR and the increased 
number of larger scale structures due to turbulence, which 

Fig. 9  Instantaneous absolute 
displacements of the low-Re jet

(a) (b) (c)

Fig. 10  Instantaneous absolute 
displacement fields of a turbu-
lent helium jet 1000µs after 
injection

(a) (b) (c)



Exp Fluids (2015) 56:204 

1 3

Page 9 of 11 204

has been shown to contribute to the experimental error 
(Sect. 4).

An increase in the NPR is associated with a reduced 
spreading rate of the plume (Fig. 11). A linear decay of the 
centreline density occurs farther downstream for the higher 
NPRs, as shown in Fig. 12, which suggests a longer poten-
tial core. Panda (2007) observed the same trend in cen-
treline density variation of a heated jet at different Mach 
numbers.

6.2.2  Mean density scaling

Radial density profiles at x/D = 0.5, 5, 12, 20, and 30 for 
the three NPRs have a Gaussian shape (Fig. 13a). The den-
sity half-radius, δρ, scaled according to the linear relation 
given by Sautet and Stepowski (1994):

where the slope corresponds to the growth rate, δ0ρ. The 
half-radius was determined by interpolating the experimen-
tal data. Fitting the data to Eq. 14 results in an excellent 
collapse of the profiles, as shown in Fig. 13b.

(14)
δρ(x)

D
= δ0ρ

(

x − xρ

D

)

The half-radius value increases linearly from 
x/D ≈ 8, 10, and 12 for NPRs of 2, 3, and 4, respectively. 
These locations correspond to the end of potential core in 
Fig. 12 and where the flow is expected to become self-sim-
ilar (Richards and Pitts 1993). The fits for all NPRs fall on 
the same curve with a growth rate of δ0ρ = 0.991 as shown 
in Fig. 14, which agrees with the He/air gas jet measure-
ments by So et al. (1990).

7  Conclusions

The BOS technique is a simple diagnostic tool capable of 
non-intrusively obtaining path-integrated density gradi-
ents. Local mean density measurements are evaluated by 
deconvolving the field with tomographic algorithms, such 
as the AFH method. The resolution is limited by the optical 
geometry and the accuracy of the cross-correlation algo-
rithm. However, the simplicity of the experiment enables a 
wide range of applications for BOS, particularly when tra-
ditional methods are difficult to implement.

The robustness of the AFH method to deconvolve 
axisymmetric BOS measurements was investigated. Mean 
radial distributions were reconstructed from synthetic test 
profiles contaminated with local noise and large-scale 
variations to emulate real data. The equivalence of the 
means δ and δ was shown. The recommended approach 
is to average the data prior to the inversion to ensure an 
axisymmetric input. An error analysis provided a simple 
uncertainty bound on the pairing of BOS with the AFH 
method.

The approach was verified by examining the flow from 
a nozzle designed to have a low Re such that experimen-
tal errors were isolated from inversion errors. The radial 
density profiles exhibited the characteristic top hat shape 

Fig. 11  Mean steady-state 
density fields of a turbulent 
helium jet

(a) (b) (c)

Fig. 12  Centreline mean density variation
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expected near the nozzle exit. The error between the 
derived and measured exit centreline densities was 4.3 %. 
Larger errors of 5.98, 7.3, and 9 % at NPRs of 2, 3, and 4, 
respectively, were calculated in the analysis of a turbulent 
jet from a fuel injector.

Increasing the NPR of the injector led to a decreased 
spread of the plume, while the end of the potential core 
extended farther downstream. The flow obeyed self-simi-
larity laws and scaled beyond the potential core. The radial 
mean density profiles scaled linearly with the density half-
radius, resulting in a growth rate of 0.099. The experimen-
tal data collapsed excellently for all test cases.
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