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fluid mechanics and aerodynamics laboratories. In spite 
of rapid technical advances in PIV hardware such as cam-
eras, lasers, optics, and particle-seeding devices, the cen-
tral problem in image processing remains the same, that is, 
how to extract high-resolution displacement (velocity) vec-
tors from a pair of particle images taken at two different 
moments. Tracking individual particles can be performed in 
low-density particle images (Dracos and Gruen 1998; Maas 
et al. 1993). For high-density particle images, a physically 
intuitive approach is to determine a displacement vector by 
maximizing the correlation peak in the spatial cross-corre-
lation map obtained from two corresponding interrogation 
windows in successive particle images. The cross-correla-
tion between particle images can be directly evaluated via 
the fast Fourier transform (FFT) algorithm according to the 
convolution theorem of the Fourier transform. Therefore, 
the correlation method is a key element in PIV process-
ing. The displacement determined by using such approach 
could be physically interpreted as a spatially averaged dis-
placement of a particle group within the interrogation win-
dow. The methods and algorithms for PIV interrogation 
have been intensively studied, and the performance of vari-
ous research and commercial algorithms has been critically 
evaluated, for example, in the workshops of International 
PIV Challenge (Stanislas et al. 2003, 2005, 2008).

In contrast to the mature and straightforward cross-cor-
relation method (correlation method in short) adopted in 
PIV, the optical flow method is not widely known and used 
in the experimental fluid mechanics community. The global 
variational optical flow method was originally developed 
by computer vision scientists to track the motion of objects 
(e.g., people and cars) in video images (Horn and Schunck 
1981). The optical flow is loosely defined as an apparent 
velocity field in the image plane that is generated by pro-
jection of the moving objects in the three-dimensional (3D) 

Abstract This paper presents direct comparisons between 
the physics-based optical flow and well-established cross-
correlation methods for extraction of velocity fields from 
particle images. The accuracy and limitations of the opti-
cal flow method applied to particle image velocimetry are 
critically evaluated. After a brief review of the optical flow 
method, we discuss in detail the error estimates, relevant 
parameters to the accuracy of optical flow computation, 
and mathematical connection between the optical flow 
and the particle velocity. Quantitative evaluations of both 
the optical flow and correlation methods are made through 
simulations and physical flow measurements.

1 Introduction

Global velocity diagnostics is of fundamental importance 
in the study of fluid mechanics in order to understand the 
physics of complex flows. Particle image velocimetry 
(PIV) is a widely used global velocity measurement tech-
nique. The working principles and applications of PIV 
have been comprehensively described in the books by Raf-
fel et al. (2007) and Adrian and Westerweed (2011). Since 
the early development of PIV (Adrian 1991), significant 
technical improvements have been made in both hardware 
and software, which have enabled PIV application to vari-
ous scientific disciplines. Nowadays, PIV has become a 
standard technique for global velocity measurements in 
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object space. The true physical meaning of the optical flow 
depends on the imaging process of the radiation associ-
ated with a specific physical phenomenon investigated. 
Without dealing with any specific physical process, Horn 
and Schunck (1981) first gave a model equation called the 
brightness constraint equation for the optical flow, which 
has been followed by researchers who have since proposed 
various revised models (Barron et al. 1994; Haussecker and 
Fleet 2001). To determine the optical flow, the brightness 
constraint equation is solved as an inverse problem via the 
variational method to minimize the L2-norm with the first-
order Tikhonov regularization functional. This leads to the 
Euler–Lagrange equations to be solved numerically with 
suitable boundary conditions in the image domain. A high-
resolution velocity field could be extracted from images at 
one vector per pixel. In computer vision, local optimiza-
tion methods based on subdomains like the Lucas–Kanade 
method similar to correlation method are also classified 
into optical flow methods (Baker and Mathews 2004). In 
this paper, the global variational method is specifically 
referred to as the optical method.

To fluid mechanics experimentalists, the optical flow 
method is less intuitive, particularly in terms of the direct 
connection between the optical flow and the fluid velocity. 
However, this approach could be adapted for the determina-
tion of high-resolution velocity fields from various images 
of continuous patterns (like cloud and ocean images in sat-
ellite imagery) particularly in geophysical fluid mechanics. 
Quenot et al. (1998) proposed an optical flow method with 
dynamical programming for PIV images. Ruhnau et al. 
(2005) and Yuan et al. (2007) used the brightness constraint 
equation for PIV images. Corpetti et al. (2002, 2006) pro-
posed the integrated continuity equation in the image plane 
under the assumption that the radiance is proportional to an 
integral of the fluid density across a measurement domain. 
This assumption is valid for light transmittance through a 
fluid with a variable density (Wildes et al. 2000; Héas et al. 
2007). The optical flow method based on the integrated 
continuity equation was applied to PIV images in a mixing 
layer and a wake behind a circular cylinder (Corpetti et al. 
2006), and results were in good agreement with hot-wire 
probe measurements of mean velocity profiles and turbu-
lence quantities. The review article by Heitz et al. (2010) 
provides a comprehensive introduction to the optical flow 
method applied to fluid flow measurements, including the 
discussions on the first-, higher-order and physics-based 
regularization terms for optimization.

To lay a rational foundation for application of the optical 
flow method to fluid flow measurements, the key problem 
is to build the quantitative connection between the optical 
flow and the fluid flow velocity for various flow visualiza-
tions. Based on the projection of the transport equations in 
the 3D object space onto the image plane, Liu and Shen 

(2008) have derived the projected motion equations for 
various flow visualizations including laser-sheet-induced 
fluorescence images, transmittance images of passive sca-
lar transport, schlieren, shadowgraph and transmittance 
images of density-varying flows, transmittance and scatter-
ing images of particulate flows, and laser-sheet-illuminated 
particle images. Further, these equations are recast into the 
physics-based optical flow equation in the image plane, 
where the optical flow is proportional to the light-ray-path-
averaged velocity of fluid (or particles) weighted in a rel-
evant field quantity like dye concentration, fluid density or 
particle concentration. Using the optical flow method, Liu 
et al. (2012) have studied the unique intrinsic flow struc-
tures of Jupiter’s Great Red Spot (GRS) based on high-
resolution velocity fields extracted from the NASA Galileo 
1996 cloud images of the GRS.

The extraction of velocity fields from images by using 
the optical flow method is mathematically treated as an 
inverse problem. This approach is popular in computer 
sciences and applied mathematics, which is not familiar 
to most fluid mechanics experimentalists. It is tempting 
to apply optical flow algorithms directly to images opti-
mized for correlation PIV (in terms of particle-seeding den-
sity, pixel shift, etc.) since PIV has been so widely used in 
major fluid mechanics laboratories in the world. Although 
some encouraging results were obtained by Corpetti et al. 
(2006) in application of the optical flow method to PIV 
measurements in a mixing layer and a wake, it seems puz-
zling that the optical flow algorithms tested in the work-
shops of International PIV Challenge failed to exhibit supe-
rior spatial resolution and accuracy (Stanislas et al. 2008). 
Therefore, at this stage, the applicability of the optical 
flow method to PIV images has not been fully established. 
There are several possible reasons for this difficulty. First, 
in contrast to the correlation method that is essentially an 
integral approach, the optical flow method as a differential 
approach is, in principle, better suited to images of continu-
ous patterns. This is because accurate computations of the 
time derivative and the spatial gradient of the image inten-
sity field are required. From this perspective, images of dis-
crete particles are probably the worst case for the optical 
flow method, since they are basically non-smooth spatial 
random noise distributions. The optical flow method works 
well on PIV images only when certain constraints are satis-
fied. In addition, there is lack of sufficient understanding 
of the relevance of the optical flow to the fluid velocity or 
the physical meaning of the optical flow. These problems 
should be addressed through simulations based on the 
physics-based optical flow equation derived from the rel-
evant governing equation for a specific flow visualization 
technique (PIV in this case).

This work is a quantitative comparative study between 
the optical flow and cross-correlation methods applied 
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to PIV images through simulations and physical meas-
urements. The working principles of the physics-based 
optical flow method are recapitulated first, including the 
optical flow equation, mathematical definition and physi-
cal meaning of the optical flow, variational formulation, 
error analysis, and selection of the relevant parameters in 
optical flow computation. Then, an expression for error 
estimation is given, which depends on the four param-
eters: particle displacement, particle velocity gradient, 
particle image density, and particle image diameter. The 
mathematical connection between the optical flow and the 
particle velocity in PIV is discussed. Quantitative evalua-
tions of the optical flow method and the well-established 
correlation method (LaVision DaVis 7.2) are made in the 
parametric space through simulations of measurements of 
an Oseen vortex pair in uniform flow. Further compari-
sons are made in physical PIV measurements in a normal 
impinging air jet.

2  Basic equations for optical flow method

2.1  Physics‑based optical flow equation

Flow visualization techniques rely on tracers (such as par-
ticles and dyes) or on the change of certain physical prop-
erties of fluid (such as the density) to capture flow struc-
tures. Digital images of flow visualization are obtained 
by using sensors that detect radiation with a certain wave-
length bandwidth from a fluid medium in a flow. The per-
spective projection from a fluid medium onto an image is 
illustrated in Fig. 1. The orthogonal row vectors (m1, m2, 
m3) in the rotational matrix in the collinearity conditions 

constitute a special object space coordinate frame located 
at the perspective center associated with a camera/lens 
system. The vectors m1 and m2 are the directional cosine 
vectors parallel to the x1- and x2-axis in the image coordi-
nate system, respectively, while m3 is normal to the image 
plane. The object coordinates X = (X1,X2,X3) are denoted 
as the projections of the object space position vector from 
the perspective center in this frame. As shown in Fig. 1, 
the visualized flow domain is confined by two control sur-
faces X3 = Γ1(X1,X2) and X3 = Γ2(X1,X2) that could be 
virtual or solid. In many cases, the planar control surfaces 
X3 = Γ1 = const. and X3 = Γ2 = const. are used.

Liu and Shen (2008) have derived the projected motion 
equations for typical flow visualizations including laser 
sheet visualization of particles in flows (PIV). The pro-
jected motion equations for these different flow visualiza-
tions have a generic form of the transport equation, which 
can be expressed in the image coordinates by using the 
perspective projection transformation between the object 
space coordinates X = (X1,X2,X3) and the image coor-
dinates x = (x1, x2). Therefore, the physics-based optical 
flow equation in the image plane is given by

where u = (u1, u2) is the velocity in the image plane referred 
to as the optical flow, g is the normalized image intensity 
that is proportional to the radiance received by a camera, 
∇ = ∂/∂ xβ is the spatial gradient, and ∇2 = ∂2/∂ xβ∂ xβ is 
the Laplace operator. The right-hand-side term in Eq. (1) is 
defined as

where D is the diffusion coefficient, c is a coefficient for fluo-
rescence, scalar absorption, or particle scattering/absorption, 
and B = −n · ∇ψ |

Γ2
Γ1

−∇12 · (ψ |Γ2
∇12Γ2 + ψ |Γ1

∇12Γ1) is 
a boundary term that is related to a field quantity ψ and its 
derivatives coupled with the derivatives of the control sur-
faces confining the illumination domain. Depending on the 
flow visualization techniques, the field quantity ψ could be 
the scalar (e.g., dye) concentration in flows, fluid density in 
density-varying flows, or particle number per unit total vol-
ume for particulate flows. For PIV images, ψ represents the 
particle density in the fluid under investigation. The third 
term in the right-hand side of Eq. (2) represents the accu-
mulation effect of the quantity ψ in the volume across the 
control surfaces.

The optical flow is mathematically given by

where λ is a scaling factor in the projection transforma-
tion. The optical flow is proportional to the path-averaged 

(1)
∂g

∂ t
+∇ · (gu) = f (x1, x2, g),

(2)f (x1, x2, g) = �
2D∇2g+ DcB+ cn · (ψU)|

Γ2
Γ1
,

(3)u = (u1, u2) = ��U12�ψ ,

Fig. 1  Projection from fluid flow onto the image plane
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velocity weighted with the field quantity ψ related to a vis-
ualizing medium, which is defined as

where U12 = (U1,U2) are the projected components onto 
the coordinate plane (X1,X2) of the fluid or particle veloc-
ity U = (U1,U2,U3) in the object space frame (m1, m2, 
m3) (see Fig. 1). The physical meaning of the optical flow is 
clearly given in Eq. (3). In the special case where g∇ · u = 0 
and f = 0, Eq. (1) is reduced to the Horn–Schunck brightness 
constraint equation ∂ g/∂ t + u · ∇g = 0 (Horn and Schunck 
1981). In general, the optical flow is not divergence-free, i.e., 
∇ · u �= 0.

2.2  Variational solution

To determine the optical flow, a variational formulation 
with a smoothness constraint is typically used (Horn and 
Schunck 1981), which in fact is the first-order form of the 
Tikhonov’s formulation for ill-posed problems (Tikhonov 
and Arsenin 1977). Given g and f, we define a functional

where α is the Lagrange multiplier and Ω is an image 
domain. By minimizing the functional, i.e., J(u) → min, 
we obtain the Euler–Lagrange equation

The standard finite difference method is used to solve 
Eq. (6) with the Neumann condition ∂u/∂n = 0 on the 
image domain boundary ∂Ω for the optical flow (Liu and 
Shen 2008). The solution of the Horn and Schunck’s equa-
tion can be used as an initial approximation for Eq. (6) for 
faster convergence. The above-variational formulation is 
based on the L2-norm of Eq. (1) with the first-order Tik-
honov constraint functional. To preserve the discontinuity 
in velocity fields, the variational formulation with the L1-
norm has been proposed by Aubert and Kornprobst (1999) 
and Aubert et al. (1999). A mathematical analysis of the 
variational solution of Eq. (1) in the weaker conditions 
based on the L1-norm and an iterative numerical algorithm 
are given by Wang et al. (2015). Although the first-order 
Tikhonov constraint functional is physically plausible, it 
is not derived from the first principles. A recent effort has 
been made by incorporating certain physical mechanisms 
in turbulent flows into the constraints in optical flow com-
putations (Cassisa et al. 2011; Zille et al. 2014; Chen et al. 
2015).

(4)�U12�ψ =

∫ Γ2

Γ1
ψU12 dX3

∫ Γ2

Γ1
ψ dX3

,

(5)

J(u) =

∫

Ω

[

∂g/∂ t +∇ · (gu)− f
]2
dx1dx2

+ α

∫

Ω

(

|∇u1|
2 + |∇u2|

2
)

dx1dx2,

(6)g∇[∂g/∂t +∇ · (gu)− f ] + α∇2
u = 0.

2.3  Selection of parameters in optical flow computation

The optical flow algorithm used in this work has the 
Horn–Schunck estimator for an initial solution (Horn and 
Schunck 1981) and Liu–Shen estimator for a refined solu-
tion of Eq. (1) (Liu and Shen 2008; Wang et al. 2015). The 
main parameters are the Lagrange multipliers selected in 
the Horn–Schunck and Liu–Shen estimators. Before opti-
cal flow computation, pre-processing of images is some-
times required to remove the random noise and reduce the 
possible systematic error associated with the illumination 
intensity change. The relevant parameters in pre-processing 
and optical flow computation should be suitably selected. 
A Gaussian filter is usually applied to images to remove 
the random noise and make the particle images more con-
tinuous for suitable optical flow computation. The standard 
deviation (std) of a Gaussian filter is selected depending on 
the specific application (for example, the std of a Gaussian 
filter is 4–6 pixels for images of 480 × 520 pixels).

In optical flow computation, it is assumed that the illu-
mination light intensity for flow visualization remains con-
stant. This assumption is valid in the well-controlled labo-
ratory conditions, and for example, the laser sheet intensity 
in PIV is usually repeatable in normal testing conditions. 
However, when an illumination intensity field changes in 
a time interval between two successively acquired images, 
it is necessary to equalize (or normalize) the overall 
intensity of the images and correct the local illumination 
intensity change. For example, in multiple-spectral imag-
ing of Jupiter’s atmosphere structures by spacecraft, the 
illumination intensity field provided by the Sun could be 
locally and non-uniformly changed during image acquisi-
tion between a relatively long period (in hours) due to the 
relative motion between the Sun, Jupiter, and spacecraft. In 
this case, correction for this illumination intensity change 
is required before applying the optical flow method to the 
images. A simple illumination intensity correction scheme 
is described in Sect. 4.3, which is also based on applica-
tion of a Gaussian filter. The selection of the std (or size) 
of a Gaussian filter is important. When the size of a filter is 
too large, the local variation associated with the illumina-
tion intensity change in images cannot be corrected. On the 
other hand, when the filter size is too small, the apparent 
motion of features in the two images would be artificially 
reduced after the procedure is applied. The selection of the 
filter size is a trial-and-error process in a specific meas-
urement, and simulations on a synthetic velocity field are 
used to determine the suitable size. In an example given in 
Sect. 4.3, the 30-pixel std of a Gaussian filter is used for 
correction of a non-uniform illumination intensity change.

When the particle displacements are large (for exam-
ple more than 10 pixels), the error would be large as 
indicated by the error analysis in Sect. 3.1. In this case, a 
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coarse-to-fine iterative scheme can be used (Heitz et al. 
2008). First, the original images are suitably downsam-
pled by using the wavelet transform so that the displace-
ments in pixels are small enough (1–5 pixels). A coarse-
grained velocity field is obtained by applying the optical 
flow algorithm to the downsampled images. The resulting 
coarse-grained velocity field is then used to generate a 
synthetic shifted image with the same spatial resolution as 
the original image #1 (i.e., the first one in the two succes-
sive images) by using an image-shifting (image-warping) 
algorithm with an embedded spatial interpolation scheme. 
This algorithm uses a translation transformation for large 
displacements and the discretized optical flow equation 
for sub-pixel correction. Next, the velocity difference field 
between the synthetically shifted image and the original 
image #2 is determined by using the optical flow algorithm, 
and it is added on the initial velocity field for correction or 
improvement. Thus, a refined velocity field is successively 
recovered by iterations to achieve a better accuracy.

There is no rigorous theory for determining the 
Lagrange multiplier in the variational formulation of the 
optical flow equation. The Lagrange multiplier acts like a 
diffusion coefficient in the corresponding Euler–Lagrange 
equations. Therefore, a larger Lagrange multiplier tends 
to smooth out finer flow structures. In general, the small-
est Lagrange multiplier that still leads to a well-posed solu-
tion is selected. However, within a considerable range of 
the Lagrange multipliers, the solution is not significantly 
sensitive to its selection. Simulations based on a synthetic 
velocity field for a specific measurement are usually car-
ried out to determine the Lagrange multiplier by using an 
optimization scheme.

3  Error analysis

3.1  Error propagation

The variational formulation and the corresponding Euler–
Lagrange equations allow a systematic error analysis of 
optical flow computation (Liu and Shen 2008). In a sensitiv-
ity analysis, the image intensity and optical flow are decom-
posed into a basic solution and an error, i.e., g = go +�g 
and u = uo +�u, where go and uo satisfy exactly Eq. (6), 
�u is the resulting error in optical flow computation and �g 
is a variation or difference in the image intensity measure-
ment. By substituting g = go +�g and u = uo +�u into 
Eq. (6) and neglecting higher-order terms, an error propa-
gation equation can be obtained, where the elemental error 
sources are �(∂g/∂t), �(∇g), �(∇ · u) and �g.

To understand the error limitation of the optical flow 
method, an ideal case is considered where the elemental errors 
�(∇g), �(∇ · u) and �g vanish, and the optical flow error 

�u is mainly produced by �(∂g/∂t). For the first-order time 
difference, an estimate is given by �(∂g/∂t) ∼= −gtt� t/2, 
where gtt = ∂2g/∂t2 and � t is a time interval between two 
consecutive images. In this case, an estimate for the error of 
the optical flow is given by

where a characteristic intensity gradient magnitude ||∇g||char 
is used for normalization, which can be suitably defined 
depending on the application. Specifically, the characteristic 
norm || · ||char is defined as a L2-norm in a given domain. The 
term �∇g�−1

char�tgtt that represents an elemental error in the 
time differentiation is particularly interesting. Since � t can-
not be zero and ||∇g||char cannot be infinitely large, the prod-
uct �∇g�−1

char�t must be finite, i.e.,

where δ is a small positive constant. Hence, according to 
Eq. (8), a finite optical flow error �u always exists, which 
imposes an ultimate limit in optical flow computation. In 
general, a smaller time interval and a larger intensity gradient 
would lead to a smaller error in optical flow computation.

In addition to the above consideration of the error propaga-
tion, a general constraint is related to the intrinsic error of the 
finite difference approximation u(t, x) = �x/�t + R(∆t, x) 
in numerical computations, where R(�t, x ≈ 0.5(du/dt)�t 
is the remainder or error in velocity. Using an approximation 
||du/dt||char ≈ ||∇u||char||u||char, we have an estimate

where ||�x||char is the characteristic displacement of flow 
structures in the image plane. The time interval is propor-
tional to the displacement by �t ∼ ||�x||char/||u||char.

Combining the errors given by Eqs. (8) and (9) and 
dropping the subscript “char” for simplicity of expres-
sion, we have an estimate for the total error of optical flow 
computation

where c1 and c2 are coefficients to be determined. According 
to Eq. (10), the main parameters related to the error of the 
optical flow method are the displacement ||�x||, the image 
intensity gradient ||∇g||, the velocity gradient ||∇u||, and 
the velocity magnitude ||u||. Equation (10) indicates that the 
error is proportional to ||�x||, and small displacements are 
generally required for a good accuracy in optical flow com-
putation. The error in optical flow computation is a function 
of location depending on ||∇g|| and ||∇u||. The error would 

(7)

g∇
[

−�∇g�−1
char

�tgtt/2+ �∇g�−1
char

∇g · (|∆x||u)

]

+ α�∇g�−1
char

∇2(�u) = 0,

(8)�t�∇g�−1
char = δ,

(9)

||R||char ≈ 0.5�t ||u||char||∇u||char ≈ 0.5||�x||char||∇u||char,

(10)ε = ||�x||

√

c1

||∇g||2||u||2
+ c2||∇u||2,
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be larger in the regions where ||∇u|| is larger and/or ||∇g|| is 
smaller.

3.2  Relevant parameters for particle images

In typical planar PIV measurements, a thin laser sheet 
is used to illuminate particles seeded into the flow, and 
the light scattered by these particles is perpendicularly 
recorded by a camera. Particles illuminated by a laser sheet 
are confined between the virtual control surfaces Γ1 and Γ2 
as illustrated in Fig. 1. In this case, the optical flow obtained 
from particle images is u = ��U12�ψ, where the light-ray-
path-averaged velocity is defined in Eq. (4) based on the 
density (ψ) of particles in the fluid. Thus, the mathematical 
definition and physical meaning of the optical flow in PIV 
are clearly given. Further, elucidated in Sect. 3.2, the par-
ticle velocity extracted by the interrogation-window-based 
correlation method in PIV is equivalent to the light-ray-
path-averaged velocity weighted by the density of particles. 
In this case, the right-hand-side term in Eq. (1) is given by 
f = Cn · (ψU)|

Γ2
Γ1

 where C is the scattering cross section, 
which represents the contribution from particles that move 
across the laser sheet boundary surfaces and accumulate 
within the laser sheet. The particle accumulation (the out-
plane loss/gain of particles) in a laser sheet has been long 
recognized as an error source in planar PIV, and its effect 
on the determination of the velocity is explicitly shown as a 
source term in Eq. (1).

The optical flow method requires that the time deriva-
tive ∂g/∂t and the spatial gradient ∇g be calculated, which 
is more accurately accomplished for images of continuous 
patterns. An image of uniformly distributed discrete parti-
cles has a non-smooth intensity distribution, which poses 
a challenge to application of the optical flow method, par-
ticularly when the displacements are so large that particles 
in image #1 are not connected to those in image #2. It is 
highly desirable to discuss the constraints on the optical 
flow method applied to PIV images. From a theoretical 
viewpoint, a PIV image can be reconstructed by the per-
spective projection of the scattering radiations from laser-
illuminated particles in the 3D object space onto the image 
plane. The mathematical description of this process is a 
convolution integral of the scattering emission through the 
Green’s function of an optical system (Raffel et al. 2007; 
Adrian and Westerweed 2011). The intensity distribution of 
an image of M discrete particles can be ideally described 
by the linear superposition of many particles, i.e.,

where the intensity of the ith particle is modeled by a 
Gaussian distribution

(11)g =

M
∑

i=1

gi,

In Eq. (12), the coordinates xp(i) = (x1,p( i), x2,p( i)) give the 
centroid location of the ith particle (which is a function of 
time), the standard deviation σi defines its size in the image, 
and Ii is its intensity coefficient. The time derivative ∂g/∂t 
is given by

where up(i) = dxp(i)/dt is the particle velocity in the image 
plane. When σi → 0, gi approaches to the Dirac-delta 
function, i.e., gi → Ii δ(x− xp(i)), and thus the intensity 
distribution of a particle image becomes very spiky and 
non-smooth.

For application of the optical flow method to PIV 
images, the main difficulty is associated with the non-
smooth nature of the intensity distribution g of particle 
images such that optical flow computation is sensitive to 
the uncertainty in calculating the time derivative ∂g/∂t. As 
a constraint, a plausible assumption is that the non-smooth-
ness of the ∂g/∂t field is not worse than that of g. Math-
ematically speaking, the norm of ∂g/∂t that represents its 
bound is on the same order as that of g. Based on this argu-
ment, when the image domain Ω is decomposed into the 
subdomains Ωi(i = 1, 2, 3, . . . ,N) where the ith particle is 
contained, a heuristic constraint is proposed, i.e.,

where b is a positive number, � t is a time interval between 
two successive images. In Eq. (14), the L2-norm on the sub-
domain Ωi around the ith particle is defined as

where H(Ωi) is a window function given by the Heaviside 
function [H(Ωi) = 1 for (x1, x2) ∈ Ωi and H(Ωi) = 0 for 
(x1, x2) /∈ Ωi]. Substituting the finite difference form of 
Eq. (13) into Eq. (14) and using the Cauchy–Schwarz ine-
quality, we have an equivalent condition

where ||�xp(i)||Ωi
 is the characteristic displacement of the 

particle in Ωi, dp(i) = 2σi is the mean image diameter of the 
particles in Ωi, and b is the upper bound. The value of b is 
not fixed, but rather depends on the specific flow studied 
and the accuracy required. As a rule of thumb, the upper 
bound b is O(1), which will be estimated through simula-
tions. In general, Eq. (16) is also valid for images of con-
tinuous patterns, where dp(i) should be interpreted as the 

(12)gi =
Ii

2πσ 2
i

exp

[

−
(x1 − x1,p(i))

2 + (x2 − x2,p(i))
2

2σ 2
i

]

.

(13)
∂g

∂t
=

M
∑

i=1

∂gi

∂t
=

M
∑

i=1

gi

σ 2
i

(x− xp(i)) · up(i),

(14)||∂gi/∂t||Ωi
� t

/

||gi||Ωi
≤ b,

(15)||gi||Ωi
=

(
∫

Ωi

g2i H(Ωi)dx1dx2

)1/2

,

(16)||�xp(i)||Ωi

/

dp(i) ≤ b,
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characteristic length of distinct structures in the image 
plane.

The finite difference approximation of the particle veloc-
ity is an essential part in PIV. Therefore, similar to Eq. (9) 
for the optical flow, an estimate of the error in the finite dif-
ference approximation of the particle velocity is

Thus, another constrain for the displacement is

where h is a positive constant. Equations (16) and (18) are 
two constraints on the displacement of particles, which are 
derived from the different requirements. Equation (16) is 
related to the time derivative ∂g/∂t in optical flow com-
putation for images of discrete particles, while Eq. (18) is 
associated with the finite difference approximation of the 
particle velocity.

For low-density particle images, the velocity vectors in 
the void regions could be formally extracted at one vec-
tor per pixel in optical flow computation. This pseudo-
high-resolution is a result of an embedded interpolation 
process in solving the global optimization problem in 
the whole image domain for the optical flow. Although 
the analytical details of this implicit interpolation are 
unknown, when it is assumed to be equivalent to a gen-
eral mth-order interpolation (Hildebrand 1974), its error 
could be estimated by

where 
〈

rp
〉

 is the mean inter-particle distance, �m is the 
mth-order difference operator, and Np is the particle image 
density. In Eq. (19), an estimate 

〈

rp
〉

∼ N
1/2
p  in the image 

plane is used according to 2D particle statistics.
The generic error estimate Eq. (10) for the optical flow 

method can be extended by including the effects of the 
particle image diameter and the particle image density. 
To simplify the notations, we drop the subscripts “Ω(i)” 
and “(i)” in Eqs. (14)–(19). It is noted that the effect of 
the particle image diameter is related to the effect of the 
image intensity gradient, i.e., ||∇g|| ∼ d−1

p , where dp is 
the mean particle image diameter. Therefore, by combin-
ing Eqs. (8), (16), (18), and (19), an estimate for the total 
error of the optical flow method applied to PIV images is 
given by

(17)
||R||Ωi

≈ 0.5�t||up(i)||Ωi
||∇up(i)||Ωi

≈ 0.5||�xp(i)||Ωi
||∇up(i)||Ωi

.

(18)||�xp(i)||Ωi
||∇up(i)||Ωi

≤ h,

(19)Em ∼
〈

rp
〉m∥

∥�m
xp(i)

∥

∥

Ωi
∼

∥

∥�m
xp(i)

∥

∥

Ωi

/

Nm/2
p ,

(20)

ε = ||�xp||

√

√

√

√

c1d2p
∥

∥up

∥

∥

2
+ c2

∥

∥∇up

∥

∥

2
+

c3

d2p
+

c4

Nm
p

∥

∥�m xp

∥

∥

2

∥

∥�xp

∥

∥

2
,

where c1, c2, c3, and c5 are coefficients to be determined. 
According to Eq. (20), the main parameters are the parti-
cle displacement ||�xp||, the particle image diameter dp, 
the particle velocity gradient ||∇up||, and the particle image 
density Np. In general, the particle displacement ||�xp|| 
should be small in optical flow computation using parti-
cle images, particularly in regions of large velocity gradi-
ents. The particle image diameter dp could have the opti-
mal value for optical flow computation since the terms of 
∼ d2p and ∼ d−2

p  in Eq. (20) have the opposite trends as dp 
increases. The particle image density Np should be suitably 
large. However, in the limiting case where Np → ∞, par-
ticle images would become uniform and the image inten-
sity gradient becomes very small. In this case, accurate 
extraction of the optical flow is not possible. Therefore, 
there would be the optimal value of Np, and this mechanism 
could be incorporated into Eq. (20). Although the above 
error estimate is given from the perspective of the optical 
flow, these parameters are also important for the correlation 
method in PIV (Timmins et al. 2012).

Without loss of generality, for the convenience of appli-
cation, the particle displacement ||�xp|| is replaced by 
the maximum particle displacement max(||xp|), and the 
particle velocity gradient ||∇up|| is replaced by the aver-
aged magnitude of the particle velocity gradient |∇up|.  
To decrease the maximum displacement max(|�up|) and 
increase the mean particle image diameter dp in pixels, suit-
able downsampling and filtering of images could be used 
as pre-processing under an assumption that the pre-pro-
cessing does not alter the motion information contained in 
images. For moderately large displacements (for example 
more than 10 pixels for images of 480 × 520 pixels), the 
coarse-to-fine iterative scheme described in Sect. 2.3 could 
be used to recover a high-resolution field and improve the 
accuracy. However, when the displacements in images are 
too large (for example more than 20 pixels), the optical 
flow method may fail to extract a velocity field at the begin-
ning. In fact, most test images used in the workshops of the 
International PIV Challenge has such large displacements 
that the above constraints could not be satisfied, and so it 
is not surprising that the optical flow algorithms did not 
provide superior results over established correlation meth-
ods. The constraint given by Eq. (20) should be consid-
ered when applying the optical flow method to PIV images 
optimized for the correlation algorithms. Generally, suit-
ably small displacements between two successive images 
are more favorable to optical flow computation. When the 
particle density is low, particles are small, and/or displace-
ments are relatively large in images, a correlation method 
could be incorporated into the coarse-to-fine scheme to 
overcome the multi-resolution limitations (Heitz et al.  
2008).
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3.3  Relationship between optical flow and particle 
velocity

For application of the optical flow method to PIV images, 
it is necessary to explore the mathematical connection 
between the optical flow and the particle velocity in the 
image plane. Substitution of Eq. (11) into Eq. (1) yields

where

where ηi = σ 2
i /max

(

σ 2
i

)

 represents the relative or normal-
ized cross-sectional area of the ith particle.

For simplicity, the following unconstrained variational 
problem is considered, i.e.,

Furthermore, we consider a limiting case where 
max

(

σ 2
i

)

→ 0 while ηi remains constant. In this case, when 
the image domain Ω is decomposed into N subdomains (or 
PIV interrogation windows) 

(

Ω =
⋃N

k Ωk

)

, by using the 
Cauchy–Schwarz inequality, the variational problem can be 
equivalently expressed as

where the special L2-norm is defined as

and H(Ωk) is the Heaviside function. A mathematically 
trivial but physically meaningful solution for Eq. (25) is

Equation (27) indicates that the particle velocity equals 
the optical flow in terms of the L2-norm defined by Eq. (26) 
in the subdomains (i.e., interrogation windows). Although 
the theoretical connection between the particle velocity 
and the optical flow in PIV has been elucidated, quantita-
tive comparisons between the optical flow and correlation 

(21)
M
∑

i=1

Gi − F = 0,

(22)Gi =
gi

ηi
(x− xp(i)) · (up(i) − u),

(23)F = max
(

σ 2
i

)

(

M
∑

i=1

gi∇ · u− f

)

,

(24)J(u) =

∫

Ω

(

M
∑

i=1

Gi − F

)2

dx1dx2 → min.

(25)J(u) =

N
∑

k=1

∥

∥up(i) − u
∥

∥

2

Ωk

→ min,

(26)||up(i) − u||Ωk
=

(

∫

Ωk

H(Ωk)

M
∑

i=1

G2
i dx1dx2

)1/2

,

(27)
∥

∥up(i) − u
∥

∥

2

Ωk

= 0 (k = 1, 2, 3, . . . ,N)

methods have to be done based on simulations and physical 
flow measurements.

4  Simulations

4.1  Typical case

In order to evaluate the performance of the optical flow 
and correlation methods, simulations are conducted on 
particle images in a synthetic flow—an Oseen vortex pair 
in uniform flow. A sample particle image with the size of 
500 × 500 pixels and the 8-bit dynamic range is generated, 
where 10,000 particles with a Gaussian intensity distribu-
tion with the standard deviation of σ = 2 pixels are uni-
formly distributed. This image is further smoothed out by 
using a Gaussian filter with the 2-pixel standard devia-
tion to provide a quasi-continuous intensity field. Figure 2 
shows the generated particle image that is used for simu-
lations, where the mean characteristic image diameter of 
particles is dp = 4 pixels and the particle image density is 
0.04 1/pixel2. This particle image density corresponds to 
about 40 particles in a 32 × 32 pixel2 interrogation win-
dow. Particle images with different densities are also gener-
ated to investigate the effect of the particle image density. 
It is found that the error of the correlation method basically 
remains unchanged in a range of 0.015–0.08 1/pixel2 for 
this flow (see Fig. 9). Thus, it is reasonable to use the par-
ticle image with 10,000 particles as a typical case for com-
paring the optical flow and correlation methods. Careful 
inspection of the zoomed-in view indicates that this particle 
image is sufficiently smooth for optical flow computation.

A synthetic velocity field, generated by superposing an 
Oseen vortex pair on a uniform flow, is used as a canoni-
cal flow. Two Oseen vortices are placed at (m/3, n/2) and 
(2m/3, n/2) in an image, respectively, where m (500) 

Fig. 2  Sample particle image (500 pixels by 500 pixels) for simula-
tions, where 10,000 particles are randomly distributed
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and n (500) are the numbers of rows and columns of the 
image. The circumferential velocity of an Oseen vortex 
is given by uθ = (Γ/2πr)[1− exp(−r2/r20)], where the 
vortex strengths are Γ = ±7000 (pixel)2/s and the vortex 
core radius is r0 = 15 pixels. The uniform flow velocity is 
10 pixels/s. The second image is generated by deforming the 
original synthetic particle image based on the given velocity 
field after a time step �t. This processing is made by apply-
ing an image-shifting (image-warping) algorithm that uses 
a translation transformation for large displacements and the 
discretized optical flow equation for sub-pixel correction. 
This image-shifting (image-warping) algorithm faithfully 
describes the motion of image patterns (e.g., particle images) 
for a given velocity field since the physics-based optical flow 
equation is derived from the governing transport equations 
for flow visualizations. It is emphasized that optical flow 
computation to extract a velocity field from the synthetic 
images is independent of the image-shifting (image-warping) 
generating process. In other words, optical flow computation 
and generation of synthetic images by using this algorithm is 
not a circular process. The time step �t is used to control the 
maximum displacement in synthetic particle images.

In optical flow computation, the Lagrange multiplier in 
the Horn–Schunck estimator is set at 50 for an initial velocity 
field. As pointed out in Sect. 2.1, the classical Horn–Schunck 
estimator assumes that the optical flow is divergence-free, 
which is not physically true since the optical flow as the light-
path-averaged velocity generally does not satisfy ∇ · u = 0 
even for 2D laser visualization in PIV. Nevertheless, the Horn–
Schunck estimator provides a good initial solution for refine-
ment by the Liu–Shen estimator based on Eq. (1) derived from 
the relevant governing equations for various flow visualiza-
tions. The Lagrange multiplier in the Liu–Shen estimator is 
fixed at 5000 for a refined velocity field, and it does not sig-
nificantly affect the velocity profile in a range of 1000–20,000 
except the peak velocity near the vortex cores in this flow. 
Therefore, in simulations and measurements, the Lagrange 
multipliers are fixed at (50, 5000) in the Horn–Schunck esti-
mator and the Liu–Shen estimator, respectively, unless stated 
otherwise. In the coarse-to-fine iterative scheme, images are 
initially downsampled by a factor of 2 to obtain a coarse-
grained velocity field. Then, a refined velocity field with full 
image resolution is obtained in iterations. The correlation 
method used for comparison is embedded in LaVision’s DaVis 
(7.2) software package. This FFT-based correlation algorithm 
is chosen because it is the most widely used commercial PIV 
software and its capability has been examined in various appli-
cations (Stanislas et al. 2003, 2005, 2008). It is noted that the 
parameters in the correlation software are not fully optimized 
such that the following comparisons provide a useful reference 
rather than a general and complete conclusion.

As previously justified, a pair of images with 10,000 par-
ticles is processed as a typical case, where the maximum 

displacement max (|�xp|) is 2.6 pixels, and max(|�xp|)
/

dp 
is 0.65. Figure 3 shows a pair of particle images down-
sampled by 2 and filtered with a Gaussian filter with the 
2-pixel standard deviation for a coarse-grained velocity 
field. The displacements in these images are reduced by 2. 
It is observed that not only the size of individual particles is 
increased by filtering, but also some clusters of particles are 

Fig. 3  Particle images downsampled by a factor of 2 and Gaussian-
filtered (the 2-pixel standard deviation) for the initial optical flow 
computation in the coarse-to-fine scheme, a Image #1, and b Image 
#2
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diffused into larger blobs in high-density particle images. 
As a result, the size of distinct structures in the images is 
increased. Next, a refined velocity field is recovered by the 
first iteration in the coarse-to-fine scheme.

Figure 4 shows the velocity vectors extracted from the 
particle images. The optical flow method gives 500 × 500 
vectors, and the correlation method with the two passes 
(64 × 64–16 × 16 and 50 % window overlap) gives 62 × 62 
vectors. Figure 5 shows the corresponding streamlines and 
vorticity fields. The overall flow fields extracted by both 

methods are consistent except that the optical flow method 
yields the results with much higher spatial resolution. 
Figure 6 shows direct comparisons between the x-velocity 
and y-velocity profiles obtained by both methods and the 
true profiles (the truth) at five x-locations in an Oseen vortex 
pair in uniform flow. The results from both methods com-
pared well with the true distribution except near the vortex 
cores where the velocity reaches the maximum and its gra-
dient is very large. According to the error estimates given 
by Eqs. (9) and (17), the intrinsic error associated with the 
finite difference approximation in both methods is large 
there. The error from the correlation method in those regions 
is larger than that from the optical flow method, which is 
evidenced by the distributions of the local root-mean-square 
(RMS) error in Fig. 7. This is not surprising since the cross-
correlation computation in interrogation windows tends 
to smooth out the velocity in regions where the velocity 
changes drastically in its magnitude and direction.

Fig. 4  Velocity vectors of an Oseen vortex pair in uniform flow 
extracted from the particle images by using a the optical flow method, 
and b the correlation method (0.04 1/pixel2 seeding particle image 
density)

Fig. 5  Streamlines and vorticity fields of an Oseen vortex pair in uni-
form flow extracted from the particle images by using a the optical 
flow method, and b the correlation method
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4.2  Effects of relevant parameters on accuracy

As our previous analysis indicates, particle displacement, 
particle velocity gradient, particle image density, and par-
ticle image diameter are the significant error parameters in 
the optical flow and the correlation methods. The synthetic 
particle images with different displacements and veloc-
ity gradients are generated by changing the time step in 
the flow of an Oseen vortex pair in uniform flow. The total 
RMS error in the whole image (m× n pixels) is evaluated 
by integrating the error distributions, i.e.,

(28)

RMSError = m−1n−1
m
∑

i=1

n
∑

j=1

[

(

ux(i, j)− ux,exa(i, j)
)2

+
(

uy(i, j)− uy,exa(i, j)
)2
]1/2

.

The RMS error is first calculated as a function of the 
maximum displacement in images. As shown in Fig. 8a, 
for the images with 10,000 particles, the total RMS error 
in both the optical flow and correlation methods increases 
approximately proportionally with the maximum displace-
ment max(|�xp|). When max(|�xp|)

/

dp < 1.5, the opti-
cal flow method gives more accurate results than the cor-
relation method, and the relative error is less than 2 %. 
The total RMS error of the optical flow method with the 
Lagrange multipliers (50, 5000) exceeds that of the cor-
relation method when max(|�xp|) is larger than about 
4–5 pixels. It is observed that for large max(|�xp|)

/

dp 
the optical flow method yields the results with the sig-
nificant random fluctuation. This behavior is intrinsically 
associated with the non-smooth nature of particle images 

Fig. 6  Comparisons of a the x-velocity and b y-velocity profiles at 
five x-locations in an Oseen vortex pair in uniform flow

Fig. 7  RMS error distributions for a the optical flow method, and b 
the correlation method
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according to the previous analysis. This random fluctua-
tion could be reduced by adjusting the Lagrange multipli-
ers. As indicated in Fig. 8a, when larger Lagrange multipli-
ers (200, 20,000) are used, the optical flow method yields 
smaller random fluctuations. Figure 8b shows the RMS 
error as a function of the velocity gradient, which is essen-
tially the same as that in Fig. 8a since the velocity gradient 

is directly proportional to the displacement in this case. In 
optical flow computations in Figs. 8, 9, 10 and 11 except in 
one case, the Lagrange multipliers (50, 5000) are used for 
the Horn–Schunck estimator and the Liu–Shen estimator, 
respectively. In the coarse-to-fine scheme, the images are 
initially downsampled by 2 and then the original resolution 
is recovered by the spatial interpolation in the image-shift-
ing (image-warping) scheme in the second iteration.

Particle image density is another relevant parameter 
that affects the accuracy of extracted velocity fields. To 

Fig. 8  Total RMS error as a function of a the maximum displace-
ment and b the velocity gradient for an Oseen vortex pair in uniform 
flow. In optical flow computations in Figs. 8, 9, 10 and 11 except in 
one case, the Lagrange multipliers (50, 5000) are used for the Horn–
Schunck estimator and the Liu–Shen estimator, respectively. In the 
coarse-to-fine scheme, the images are initially downsampled by 2 and 
then the original resolution is recovered in the second iteration

Fig. 9  Total RMS error as a function of the particle image density for 
an Oseen vortex pair in uniform flow

Fig. 10  Total RMS error as a function of the particle image diameter 
for an Oseen vortex pair in uniform flow



Exp Fluids (2015) 56:166 

1 3

Page 13 of 23 166

investigate the effect of particle image density, images 
(500 pixels by 500 pixels) with 500, 2000, 4000, 7000, 
10,000, 12,000, 16,000, and 20,000 particles are generated, 
which correspond to particle densities of 0.002, 0.008, 
0.016, 0.028, 0.04, 0.048, 0.064, and 0.08 1/pixel2. The 
velocity fields are extracted by using the optical flow and 
correlation methods from synthetic images of an Oseen 
vortex pair in uniform flow with the maximum displace-
ment of 2.6 pixels. The total RMS error is shown in Fig. 9 
as a function of the particle image density. For the opti-
cal flow method, there is a shallow valley in the particle 
image density of 0.015–0.04 1/pixel2, where the total RMS 

error reaches the minimum. This range approximately cor-
responds to 15–40 particles in a 32 × 32 pixel2 window 
which is also more suitable for the correlation method. As 
the particle image density increases, the total RMS error of 
the correlation method decreases when the particle image 
density is less than 0.015 1/pixel2 and then remains largely 
unchanged in a range of 0.015–0.08 1/pixel2. Generally, the 
statistical robustness of calculating the cross-correlation 
between particle pairs is enhanced when the particle image 
density is high while individual particles remain distinct. 
However, when particle image density is very high, the 
accuracy of cross-correlation computation decreases. The 

Fig. 11  Total RMS angular error as a function of the four parameters: a particle displacement, b particle velocity gradient, c particle image den-
sity, and d particle image diameter for an Oseen vortex pair in uniform flow
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vectors in the void regions in particle images are formally 
obtained as a result of the spatial interpolation embedded in 
optical flow computation. In this case, a conservative esti-
mate of the spatial resolution is that the number of reliable 
velocity vectors extracted by using the optical flow method 
equals the number of pixels contained in all the particles.

Figure 10 shows the RMS error as a function of the 
particle image diameter. As indicated in Eq. (20), the 
error in optical flow computation deceases as the parti-
cle image diameter increases for dp ≤ 4 pixels, increas-
ing thereafter due to the elevated error associated with 
the decay of the image intensity gradient. Thus, there is a 
shallow valley near the particle image diameter of 4 pixel 
(max(|�xp|)

/

dp = 0.62), where the RMS error of the 
optical flow method reaches the minimum. Interestingly, 
the error in the correlation method has the similar depend-
ency on the particle image diameter (Raffel et al. 2007). 
Figure 11 shows the total RMS angular error as a func-
tion of the four parameters: particle displacement, particle 
velocity gradient, particle image density, and particle image 
diameter for an Oseen vortex pair in uniform flow. The 
total RMS angular error in both optical flow and correla-
tion methods is around 3° in wide ranges of the parameters. 
The largest angular error (about 6°) appears near the vortex 
cores where the velocity direction is changed drastically.

4.3  Effect of illumination intensity change

The basic assumption in optical flow computation is that 
the illumination intensity field is time-independent. When 
a laser illumination field in PIV measurements is changed 
between two consecutive shots, the error in optical flow 
computation could be significant, which is mainly contrib-
uted by the elemental error �(∂g/∂t) in the error propaga-
tion equation. A simple illumination intensity correction 
scheme is used to reduce the effect of the changing illumi-
nation even if it cannot be totally eliminated. The illumina-
tion intensity change is decomposed into the overall inten-
sity shift and local illumination intensity change. First, the 
overall illumination intensity change in the whole images is 
corrected simply by shifting the averaged intensity change. 
Next, to correct the local illumination intensity change, a 
Gaussian filter with a suitable standard deviation is applied 
to two images to obtain two sufficiently filtered (smoothed) 
images. A difference field between the two filtered images, 
which is proportional to a change in the illumination inten-
sity, is then used to compensate the image intensity varia-
tion caused by the local illumination intensity change. This 
is accomplished by adding the difference field to the origi-
nal image to be corrected. A pair of images (g1 and g2) is 
considered, where g2 is affected by the local illumination 
intensity change. Mathematically, the local illumination 
intensity change is estimated by δg = g1 ∗ Gσ − g2 ∗ Gσ , 

where * denotes the convolution operator and Gσ is the 
Gaussian kernel with the standard deviation σ. Then, the 
illumination-corrected second image is ⌢

g2 = g2 + δg. 
Clearly, the standard deviation σ should be suitably selected 
by a trial-and-error approach depending on the characteris-
tic length scale of the local illumination intensity change. 
When σ is too small, ⌢g2 ≈ g1 so that the optical flow could 
not be extracted correctly. On the other hand, when σ is too 
large, ⌢g2 ≈ g2 so that the local illumination change could 
not be corrected sufficiently.

To simulate the effect of the local illumination intensity 
change and demonstrate the correction procedure, a 2D sinusoi-
dal distribution � I(x, y) = 1+ Asin(2πx/�x)sin(2πy/�y) 
is used to simulate a complex local illumination intensity 
change, where A is the amplitude, and �x and �y are the wave-
lengths. Figure 12 shows the local illumination intensity 
change field. The second image affected by the local illumina-
tion intensity change is generated by multiplying � I(x, y) to 
the original second image. Figure 13a shows the second par-
ticle image that has the visible sinusoidal patterns of the local 
illumination intensity change with A = 0.5. The illumination 
intensity correction scheme with σ = 30 pixels is applied to 
this image to obtain the illumination-corrected image shown 
in Fig. 13b. Although the illumination intensity patterns are 
largely eliminated, the weak remainder of the patterns is still 
visible. To further refine the illumination intensity correction 
procedure, a more sophisticated scheme based on a certain 
optimization principle could be developed. This simulated 
case represents an extreme situation, and in practice the local 
illumination intensity change is not such large and complex.

To show the effect of the local illumination intensity 
change on extraction of a velocity field, the optical flow and 

Fig. 12  Illumination intensity change field in simulation
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correlation methods are applied to a pair of the images with-
out correcting the illumination intensity change. Figure 14 
shows the x-velocity and y-velocity profiles at five x-loca-
tions in an Oseen vortex pair in uniform flow. As expected, 
the optical flow method as a differential approach is more 
sensitive to the local illumination intensity change than the 
correlation method that is an integral approach. Therefore, 
the illumination intensity correction is necessary for opti-
cal flow computation. Figure 15 shows the improved results 
after the second image is processed by using the simple 
illumination intensity correction scheme. Figure 16 shows 

the total RMS error as a function of the illumination inten-
sity change amplitude A for an Oseen vortex pair in uni-
form flow. The accuracy of optical flow computation is sig-
nificantly improved after the effect of the local illumination 
intensity change is corrected. In contrast, the improvement is 
relatively small for the correlation method.

5  Experiments and discussions

5.1  Setup

To compare the optical flow and correlation methods 
based on experimental particle images, PIV measure-
ments were conducted in an air jet normally impinging on 
a black-coated wall from a contoured circular nozzle with 

Fig. 13  a Particle image affected by the illumination intensity 
change for A = 0.5, and b particle image after correcting the illumi-
nation intensity change

Fig. 14  Effects of the illumination intensity change on a the x-veloc-
ity and b y-velocity profiles at five x-locations in an Oseen vortex pair 
in uniform flow
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a diameter of D = 9 mm [a DISA nozzle (type 55d45)]. 
Figure 17 shows the experimental setup. The flow was 
seeded by water droplets generated from the TSI atom-
izer (the mean diameter of the particles in the flow is about 
68 μm). The jet velocity at the exit was 4.5 m/s. The noz-
zle-to-surface distance is h = 38 mm, and the distance-to-
diameter ratio is h/D = 4.2. The Reynolds number based on 
the diameter is Re = 2600. A Nd:YAG Big Sky Laser sys-
tem with 50 mJ pulses was used for particle illumination. 
The time interval between two pulses was 20 µs. A Phantom 
v9.1 camera with a zoom lens was used to capture particle 
images with a field of view of 37 × 27 mm2. The impinge-
ment region and wall-jet region were measured separately. 
The sample particle images are shown in Fig. 18. The mean 
diameter of particles in the images is 3 pixels and the maxi-
mum displacement is max(|�xp|) = 5.2 pixels.

5.2  Accuracy evaluation of snapshot field

Before processing PIV images acquired in the experiments, 
the accuracy of both the methods is evaluated in a typical 
simulated case. First, a velocity field is extracted from a 
pair of experimental particle images with a time interval of 
20 μs by using the optical flow method. Then, this veloc-
ity field is smoothed out by using a Gaussian filter with 
the 2-pixel standard deviation, and it is used as the base-
line velocity field (the truth) for comparison to generate the 
synthetic particle image pair. The first original experimen-
tal PIV image (see Fig. 18a for the impingement region or 

Fig. 15  Results after correction for the illumination intensity change: 
a the x-velocity and b y-velocity profiles at five x-locations in an 
Oseen vortex pair in uniform flow

Fig. 16  Total RMS error as a function of the illumination intensity 
change amplitude for an Oseen vortex pair in uniform flow

Fig. 17  Impinging jet setup
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Fig. 18b for the wall-jet region) is used as the first synthetic 
particle image, and the second synthetic particle image is 
generated by using the image-shifting (image-warping) 
algorithm based on the baseline velocity field. This pair 
of the synthetic particle images serves as a test case for 
direct comparisons between the optical flow and correla-
tion methods. It is noted again that although the baseline 
velocity is obtained by using the optical flow method from 
a pair of experimental images, the generation of the second 
synthetic image using the image-shifting (image-warping) 
scheme is an independent process that is not in favor of 
either the optical flow method or correlation method. In 
fact, the baseline velocity field could be generated using 
any feasible method such as a theoretical solution and a 
CFD code. Here, the optical flow method is used for gener-
ating the baseline velocity field from experimental images 
purely because it can provide a high-resolution field.

Figure 19 shows the snapshot velocity vector and vor-
ticity fields in the impingement region of the impinging 
jet extracted from the synthetic particle image pair. Both 
the optical flow and correlation methods reveal large vor-
tices generated in the shear layer of the free jet and wall 
jet due to the Kelvin–Helmholtz instability, and induced 
secondary vortices (secondary separations) in bound-
ary layer near the wall. However, the optical flow method 
yields the velocity field with much higher spatial resolu-
tion, revealing more details of the flow structures. Quan-
titative comparisons with the true distributions are given 

in Fig. 20 in the x-velocity and y-velocity profiles at five 
y-locations in the impingement region of the impinging 
jet. Both methods compare well with the true profiles in 
this region. Figure 21 shows the snapshot velocity vectors 
and vorticity fields in the wall-jet region, which visualize 
large vortices and induced secondary vortices extracted by 
both methods. Figure 22 shows quantitative comparisons 
in the x-velocity and y-velocity profiles at five x-locations 
in the wall-jet region. The error of the correlation method 
is noticeable particularly near the wall in some regions 
(x = 900–1200 pixels) where complex interactions between 
vortices and boundary layer take place. This error could 
be due to interrogation windows cutting through the wall 
boundary (no special treatment is applied to deal with 
this problem). The total RMS errors in the whole domain 
for the optical flow and correlation methods are 0.11 and 
0.15 pixels/unit time, respectively.

5.3  Ensemble‑averaged fields

A sequence of 400 particle image pairs acquired in the 
impingement region is processed by using the optical flow 
and correlation methods. Figure 23 shows the ensemble-
averaged velocity vector and vorticity fields. The overall flow 

Fig. 18  Typical particle images: a impingement region, and b wall-
jet region

Fig. 19  Snapshot velocity vector and vorticity fields in the impinge-
ment region of the impinging jet by applying a the optical flow 
method and b the correlation method to the synthetic particle images
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structures including free shear layers and boundary layers 
can be extracted by using both methods. Figure 24 shows the 
ensemble-averaged profiles of the x-velocity and y-velocity 
components at five y-locations in the impingement region of 
the impinging jet. The results extracted by using both meth-
ods are in good agreement at these locations. Since the truth 
is not known, the RMS difference in the whole field between 
the two methods is used as an alternative measure. The 
RMS difference of velocity in the whole field is 0.053 pix-
els/unit time. Then, the velocity fluctuations u′x = ux − �ux� 
and u′y = uy −

〈

uy
〉

 are calculated, where 〈〉 is the ensem-
ble averaging operator. Further, the turbulent kinetic energy 
kT =

〈

u′2x
〉

+

〈

u′2y

〉

 and Reynolds stress τT = −

〈

u′xu
′
y

〉

 are 
calculated. These quantities are not converted to the physical 
units since comparisons are more direct in the image plane. 
Figure 25 shows the fields of the turbulent kinetic energy in 
the impingement region of the impinging jet. The overall dis-
tributions obtained by both methods are similar, indicating 

Fig. 20  Comparisons of a the x-velocity and b y-velocity profiles at 
five y-locations in Fig. 19

Fig. 21  Snapshot velocity vector and vorticity fields in the wall-jet 
region of the impinging jet by applying a the optical flow method and 
b the correlation method to the synthetic particle images

Fig. 22  Comparisons of a the x-velocity and b y-velocity profiles at 
five x-locations in Fig. 21
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the high turbulent energy in the wall jet. The RMS differ-
ence of kT is 0.1 (pixels/unit time)2 in the whole field and 
0.03 (pixels/unit time)2 in the quiescent region outside of 
the jet. In Figs. 23 and 25, the free shear layers of the jet 
estimated by the correlation method seem visually thinner 
than those given by the optical flow method. For the sharp 
edges in flow visualizations shown in Fig. 18a, the correla-
tion method tends to underestimate the velocity there since 
there are fewer particles in interrogation windows across the 
edges. This subtle effect can be carefully observed in the 
velocity profiles near the jet exit in Fig. 24b.

As shown in Fig. 26, the profiles of kT at several loca-
tions in the free jet indicate some differences particularly 
in the potential core and the region near the free jet shear 
layer. Figure 27 shows the fields of the Reynolds stress 
in the impingement region of the impinging jet. The pro-
files of the Reynolds stress at five y-locations are shown 
in Fig. 28. The results given by both methods are in good 
agreement, and the RMS difference of τT is 0.0043 (pixels/
unit time)2. The Reynolds stress obtained by using both 
methods is very small in the potential core and the region 
outside of the jet. This is physically reasonable. Figure 29 
shows the distributions of the ensemble-averaged velocity, 

turbulent kinetic energy, and Reynolds stress along the cen-
terline of the impinging jet. The turbulent kinetic energy 
yielded by using the correlation method in the potential 
core is lower. The Reynolds stress given by both methods 
in the potential core is around zero, which is reasonable 
from a physical viewpoint.

Similarly, a sequence of 284 particle image pairs acquired 
in the wall-jet region is processed. Figure 30 shows the 
ensemble-averaged velocity vector and vorticity fields in 
the wall-jet region. Figure 31 shows the ensemble-aver-
aged profiles of the x-velocity and y-velocity components 
at five x-locations in the wall-jet region. The RMS differ-
ence of velocity in the whole field is 0.044 pixels/unit time. 
Figures 32 and 33 show the fields of the turbulent kinetic 
energy and its profiles at several x-locations in the wall-
jet region, respectively. The total RMS error of kT in the 
whole field is 0.1 (pixels/unit time)2. It is found in Fig. 33 
that a large difference in kT given by the optical flow and 

Fig. 23  Ensemble-averaged velocity vector and vorticity fields in the 
impingement region of the impinging jet by applying a the optical 
flow method and b the correlation method to the experimental particle 
images

Fig. 24  Ensemble-averaged profiles of a the x-velocity and b 
y-velocity components at five y-locations in Fig. 23
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Fig. 25  Fields of the turbulent kinetic energy in the impingement 
region of the impinging jet by applying a the optical flow method and 
b the correlation method to the experimental particle images

Fig. 26  Profiles of the turbulent kinetic energy at five y-locations in 
Fig. 25

Fig. 27  Fields of the Reynolds stress in the impingement region of 
the impinging jet by applying a the optical flow method and b the 
correlation method to the experimental particle images

Fig. 28  Profiles of the Reynolds stress at five y-locations in Fig. 27
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correlation methods is found near the free jet shear layer, but 
it decreases as the x-location moves away from the free jet. 
The cause of this phenomenon is unknown. There is the peak 
value of the turbulent kinetic energy in the wall jet at the 
location of r/D = 2, where r is the radial distance from the 
impingement point and D is the nozzle diameter. The peak 
value of kT has been observed previously, which corresponds 
to the local maximum in the heat transfer and droplet deposi-
tion distributions (Liu and Sullivan 1996; Liu et al. 2010). 
The fields of the Reynolds stress in the wall-jet region are 

shown in Fig. 34, and the profiles of τT at five x-locations are 
shown in Fig. 35. The results given by both methods are in 
good agreement, and the RMS difference of τT is 0.034 (pix-
els/unit time)2. The peak of τT is located at about r/D = 1.8.

6  Conclusions

The accuracy of the optical flow method applied to PIV 
images depends on the four parameters: particle displace-
ment, particle velocity gradient, particle image density, and 
particle image diameter. The expression of error estimation 
is given, which is applicable to not only the optical flow 
method but also the correlation method. The root-mean-
square (RMS) errors are evaluated in the parametric space 
through simulations based on a synthetic flow—an Oseen 
vortex pair in uniform flow. The errors in both methods are 
approximately proportional to the particle displacement and 

Fig. 29  Distributions of the flow quantities along the centerline of 
the impinging jet

Fig. 30  Ensemble-averaged velocity vector and vorticity fields in 
the wall-jet region of the impinging jet by applying a the optical flow 
method and b the correlation method to the experimental particle 
images

Fig. 31  Ensemble-averaged profiles of a the x-velocity and b 
y-velocity components at five x-locations in Fig. 30
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particle velocity gradient. When the particle image density 
is low and the particle image diameter is small, the errors 
in both methods are relatively large. As the particle image 
density and particle image diameter increase, the errors 
are generally decreased first and then slightly increased, 

and the optimal values for these parameters can be found. 
Simulations indicate that the optical flow method is able to 
extract velocity fields with much higher spatial resolution 
and improved accuracy from PIV images when the relevant 
parameters are suitably selected. Furthermore, the illumina-
tion intensity change between sequential images would sig-
nificantly affect the accuracy of optical flow computation 
if this effect is not corrected. A simple scheme for correct-
ing the local illumination intensity change is proposed and 

Fig. 32  Fields of the turbulent kinetic energy in the wall-jet region 
of the impinging jet by applying a the optical flow method and b the 
correlation method to the experimental particle images

Fig. 33  Profiles of the turbulent kinetic energy at five x-locations in 
Fig. 32

Fig. 34  Fields of the Reynolds stress in the wall-jet region of the 
impinging jet by applying a the optical flow method and b the cor-
relation method to the experimental particle images

Fig. 35  Profiles of the Reynolds stress at five x-locations in Fig. 34
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tested. The optical flow and correlation methods are further 
evaluated in PIV measurements in a normal impinging air 
jet. The snapshot and ensemble-averaged velocity fields in 
the impingement and wall-jet regions are obtained, and the 
statistical quantities, such as the turbulent kinetic energy, 
Reynolds stress, and kinetic energy spectrum, are calcu-
lated. It is found that the results given by both methods 
are generally in good agreement. However, there are some 
noticeable differences in the turbulent kinetic energy near 
the free jet shear layer.
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