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Abstract This paper describes the development of a

shear plate sensor capable of directly measuring the local

mean bed shear stress in small-scale and large-scale labo-

ratory flumes. The sensor is capable of measuring bed shear

stress in the range �200 Pa with an accuracy up to �1 %.

Its size, 43 mm in the flow direction, is designed to be

small enough to give spatially local measurements, and its

bandwidth, 75 Hz, is high enough to resolve time-varying

forcing. Typically, shear plate sensors are restricted to use

in zero pressure gradient flows because secondary forces on

the edge of the shear plate caused by pressure gradients can

introduce large errors. However, by analysis of the pressure

distribution at the edges of the shear plate in mild pressure

gradients, we introduce a new methodology for correcting

for the pressure gradient force. The developed sensor

includes pressure tappings to measure the pressure gradient

in the flow, and the methodology for correction is applied

to obtain accurate measurements of bed shear stress under

solitary waves in a small-scale wave flume. The sensor is

also validated by measurements in a turbulent flat plate

boundary layer in open channel flow.

1 Introduction

For environmental flows, the bed shear stress is an

important quantity, but measuring it accurately continues

to pose a challenge. We are motivated by the flows in the

nearshore region: the surf and the swash zone, where

incident waves propagate over a sloping bottom into

shallower water and break, creating a swash and a moving

shoreline. The flow near the bed, where the bed shear

stress, has direct consequences for sediment transport, in

such environments is not very well understood. Such flows

are characterised by their shallow depths, unsteadiness,

boundary layer flow reversals and air entrainment from

wave breaking. Thus, it is a challenging environment to

make measurements in.

Methods for measurement of bed friction or wall shear

stress have been widely discussed in the literature, see for

example, Hanratty and Campbell (1996). Broadly, they can

be classified into direct methods and indirect methods

(Haritonidis 1989). Indirect methods include pressure dif-

ference methods (e.g. the Preston tube) and correlation

methods that use mass or heat transfer as a proxy for the

velocity gradient at the wall. Sumer et al. (2011) recently

used hot film sensors to measure the bed shear stress under

plunging waves. However, the direction of the shear stress

was not measured by hot films and so additional velocity

measurements very close to the bed were also required.

The calibration of hot films also requires assumptions

about the nature of the flow very close to the boundary and

so an in situ calibration is needed. For recent developments

in hot film sensors, as well as other indirect methods, see

Fernholz et al. (1996). Cowen et al. (2003) showed that it is

possible to obtain estimates of the bed friction in the

nearshore region from measurements of the velocity field

using particle image velocimetry (PIV). This is done with
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the assumption of the existence of a logarithmic layer in

the turbulent boundary layer on a smooth bed. Cox et al.

(1996) obtained estimates for the bed friction in the same

way for a rough bed.

Direct measurement devices, referred to as shear plate

sensors herein, measure the force exerted by the bed shear

stress on a small element of the wall that is separated from

the rest of the boundary by a small gap. The principal

advantage of shear plate sensors is that no assumptions

about the boundary layer flow are needed since the force is

measured directly. Additionally, the difficulties of near-

shore flows mentioned above (shallow depths, presence of

air bubbles, flow reversals, etc.) are handled more easily by

shear plate sensors. They also distinguish whether the shear

stress was in the positive streamwise direction, or negative.

There is a compromise in the design between the size of the

sensor and the desire to measure forces accurately: smaller

sensors provide more local measurements, but produce

smaller forces that need to be measured. For coastal and

hydraulic engineering applications, the most common

configuration has been the use of an eddy-current prox-

imity probe, which is able to measure small deflections

with high accuracy, combined with simple mechanisms

that provide stiffness against the force of the fluid. Such a

configuration was employed by Simons et al. (1992, 1994)

to make measurements of bed shear stress in wave-current

interactions, by Boers (2005) to measure the bed shear

stress in the surf zone, by Mirfenderesk and Young (2003)

to measure bed shear stress under surface gravity waves,

and recently by Barnes et al. (2009) and Seelam et al.

(2011) to measure bed shear stress in a bore driven swash

and under solitary waves, respectively. Other methods of

transducing the force have also been used. Riedel and

Kamphuis (1973) measured the bed shear stress in oscil-

latory flow using strain gauges to measure the shear plate

deflection, whereas Rankin and Hires (2000) used a linear

variable differential transformer to measure the shear plate

deflection. You and Yin (2007) also directly measured the

bed shear stress under surface gravity waves, but their

sensor used a Wheatstone half bridge circuit to generate an

output voltage proportional to the horizontal force on the

shear plate. A review of past sensors can be found in Ko-

litawong et al. (2010). Generally, the most severe limita-

tion for shear plate sensors is that pressure gradients in the

flow introduce large errors in measurement of the wall

shear stress via an extra force exerted on the edge, or lip, of

the shear plate. Their applicability has therefore been

limited to zero pressure gradient flows or very mild pres-

sure gradients where this error is negligible. This issue is

re-addressed in this paper to extend the applicability of

shear plate sensors to flows with pressure gradients.

The layout of the paper is as follows. In Sect. 2, we

describe the shear plate sensor design and calibration. In

Sect. 3, we discuss the error introduced by secondary for-

ces that reduce the utility of shear plate sensors. We

address the issue of pressure gradients and propose a new

methodology to compensate for this extra force. In Sect. 4,

we present validation experiments conducted to show the

results of bed shear stress measurements in turbulent flat

plate boundary layer flow and under transient long waves.

We end with the conclusions in Sect. 5.

2 Shear plate sensor design and calibration

2.1 Design

The design schematic for the shear plate sensor is shown in

Fig. 1. The principle of transduction is that the shear plate

is connected to four links that provide resistance to shear

plate deflections from fluid forces, and these forces are

inferred from measurements of the deflection. We are

motivated by the study of the nearshore region in small-

scale and large-scale laboratory wave flumes. The bed

shear stress in such flows can be O 100ð Þ Pa even at mod-

erate Reynolds numbers (Barnes et al. 2009; Sumer et al.

2011). The flow is primarily 2D, varying in the x (cross-

shore) direction and z (vertical) direction, but with negli-

gible variation in the spanwise (long-shore) direction of the

flume. To obtain a local measurement of the bed shear

stress, the length of the shear plate in the cross-shore

direction needs to be much less than O 1ð Þ m, the typical

length scale of waves in laboratory flumes, and the

deflection of the shear plate needs to be as small as possible

to cause minimal disturbance to the flow, but to be large

enough to be measured accurately. The typical compro-

mises in the design of shear plate sensors are discussed in

Hanratty and Campbell (1996), Haritonidis (1989), Winter

(1979).

Fig. 1 Schematic side-view sketch of the shear plate sensor. Flow is

in the x-direction. 1 eddy-current proximity sensor, 2 target plate, 3

cylindrical links, 4 base plate, 5 shear plate, 6 external pressure

tappings, 7 chamber pressure tappings, 8 gap, 9 acrylic housing
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For the current design, the brass (alloy 260) shear plate

is 43.0 mm long, 136.0 mm wide and 0.8 mm thick. It is

rigidly attached to 4 cylindrical brass (also alloy 260) links

of diameter 1.6 mm and length 62.2 mm. The bottom ends

of the cylindrical links are rigidly clamped to an aluminium

base plate of thickness 6.4 mm. Such a configuration cre-

ates a parallel linkage mechanism, which provides stiffness

to the shear plate deflections in the horizontal direction and

support in the vertical direction. This type of mechanism

also minimises the tilting of the shear plate from small

deflections in the horizontal direction. The mechanism is

installed into an acrylic housing via bolts through the

aluminium base plate such that the top surface of the shear

plate (its active area) is flush with the top surface of the

acrylic housing. There exists a small gap of 1 mm along

the perimeter of the shear plate between the shear plate and

the housing to allow for small deflections. The acrylic

housing can in turn be installed into laboratory flumes with

the top surface flush with the flume bottom. When installed

into our laboratory flume, in situ measurements of the

vertical alignment of the active area of the shear plate with

the bottom of the flume with the use of a vertical test dial

indicator revealed that the misalignment around the

perimeter of the shear plate was smaller than 0.2 mm.

Additionally, there are two pairs of pressure tappings to

enable measurement of pressure gradients above the shear

plate (external) and underneath the shear plate (chamber).

The external pressure tappings are of diameter 6.4 mm,

located 95.4 mm apart equidistant from the centreline of

the shear plate. The chamber pressure tappings are of

diameter 1.2 mm located 45.0 mm apart on the side walls

of the acrylic housing. The centre of the chamber pressure

tappings is 1.8 mm below the active area of the shear plate.

The deflection of the shear plate in the horizontal direction

is detected by an eddy-current proximity probe (Lion

Precision ECL-202, probe U8), which measures the dis-

tance to a small vertical target plate rigidly attached to the

bottom face of the shear plate. The eddy-current proximity

probe has a range of 2 mm with a resolution of 0.001 mm.

A photograph of the shear plate sensor is shown in Fig. 2.

2.2 Calibration

To convert the displacement of the shear plate into a force,

it is necessary to know the stiffness of the parallel linkage

mechanism. The stiffness was measured by applying

known forces and recording displacements. The first

method used weights and a pulley system and the second

method used a spring force meter. Figure 3 shows the data

from a typical stiffness measurement. Combining the data

from the repeated measurements of the stiffness gave a

value of 9,800 N/m with a 95 % confidence interval of

�100 N=m. The measured stiffness value using the two

different methods several times over the course of the

duration of the experiments remained constant to within

2 % of its original value. This measured stiffness can be

compared to the expected stiffness from such a mechanism

using simple beam structural mechanics since the deflec-

tions are small compared to the length of the links. The

links will deflect as clamped guided beams maintaining a

right angle to the shear plate as well as to the base plate. A

clamped guided beam is equivalent to two cantilevered

beams of half the length each and so a clamped guided

beam has a stiffness four times in magnitude to that of a

cantilevered beam of the same dimensions. Using the

Young’s Modulus for brass as 110 GPa and dimensions of

the links, the expected stiffness of the four links acting in

parallel is calculated as 9,900 N/m. The predicted value

and the measured value agree to within the uncertainty

levels giving confidence in the response of the mechanism.

Fig. 2 Photograph of the shear plate sensor
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Fig. 3 Typical measurement of stiffness. Negative forces and

displacements refer to the opposite direction
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In the presence of unsteady loading, the dynamic

response also becomes important. The frequency of oscil-

lation of the shear plate in water puts an upper bound on

the frequencies of forcing for which the instrument can

make reliable measurements. The dynamic response was

studied by modelling the system as a linear, second-order

lumped parameter system of a mass, spring and dashpot.

The equation of motion for this system [e.g. see den Hartog

(1956)] is given by

€v
x2

n

þ 2c
_v

xn

þ v ¼ F

k
; ð1Þ

where F is the total force on the shear plate in the

x-direction and v measures the deflection in the x-direction.

The natural frequency of oscillation is given by

xn ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

, where m is the mass of the shear plate, k is

the spring constant. The damping ratio is given by

c ¼ k=ð2
ffiffiffiffiffiffi

km
p
Þ, where k is the dashpot constant, and the

damped natural frequency is given by xd ¼ xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2
p

.

The undamped natural frequency was estimated at 79 Hz

using the measured stiffness and mass. The damped natural

frequency was measured directly by measuring the impulse

response in air and in water. The shear plate was given a

small impulse by hand with a hammer and left to oscillate

until the oscillations died out. The results are shown in

Fig. 4, which plots the spectrum of the impulse response

with the location of the peak indicating the damped natural

frequency. The damped natural frequencies for air and

water were found to be 69 and 54 Hz, respectively. Using

this information, calculating the harmonic response of the

mechanism revealed that the bandwidth (the upper limit on

the frequency that the sensor can measure, or more spe-

cifically, the frequency where the output falls to -3 dB) of

the shear plate sensor in water was 75 Hz. This is high

enough to be able to resolve typical time scales of forcing

in laboratory flumes (e.g. period of surface gravity waves).

The shear plate sensor has been designed so that the size

of its active area is small compared to typical length scales

of the flow (e.g. typical laboratory flume dimensions,

wavelength of free surface gravity waves). Thus, the shear

plate sensor provides essentially local measurements of the

shear stress. In laminar flow, this is usually a true local bed

shear stress (unless there are strong spatial gradients in bed

shear stress, e.g. near a separation point), whereas in the

presence of turbulence, scales of motion much smaller than

the streamwise length of the shear plate are averaged out.

The use of an eddy-current proximity probe that is able

to measure small deflections with high accuracy, combined

with a simple parallel linkage mechanism, which provides

stiffness that does not require in situ calibration and

minimises shear plate rotations, thus provides a powerful,

inexpensive and robust way to measure the bed shear stress

directly in laboratory flumes. The range of the shear stress

sensor, given by the maximum force measurable divided by

the active area of the shear plate, is �200 Pa. The accuracy

of the shear plate sensor due to the combined uncertainty in

the shear plate displacement and the stiffness of the parallel

linkage mechanism is calculated [e.g. see Taylor (1997)] to

be �1 %. However, the true accuracy of the shear plate

sensor is more likely to depend on the errors introduced by

secondary forces on the shear plate. These are discussed in

the following section.

3 Secondary forces for shear plate sensors

3.1 Analysis of pressure gradient force

Flows in laboratory flumes in the presence of surface

gravity waves have time-varying streamwise pressure

gradients. This may result in a significant secondary force

on the edge of the shear plate. As illustrated in Fig. 5, the

existence of a streamwise pressure gradient caused by the

tilting of the free surface creates, for example, a higher

pressure on the upstream edge of the plate compared to the

downstream edge. Frei and Thomann (1980), making

measurements in wind tunnels, provided a solution to the

problem of pressure gradient forces by filling the gap and

chamber with a fluid. However, this introduces additional

surface tension forces and the applicability of such a

technique in water flows may be limited. For the case

where the chamber and gaps are open to the fluid flow, the

ratio of the pressure gradient force to the shear force on the

shear plate is estimated by the expression
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s
; ð2Þ
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Reflected portion of the spectrum not plotted

1767 Page 4 of 13 Exp Fluids (2014) 55:1767

123



where lpt is the thickness of the shear plate as shown in

Fig. 5, a ¼ � 1
q

oP
ox

�

�

�

�

�

�
is the magnitude of the kinematic

pressure gradient (or alternatively, the free stream accel-

eration), and us ¼
ffiffiffi

sb

q

q

is the friction velocity of the flow.

For
alpt

u2
s
� 1, the effect of the pressure gradient force on the

shear stress measurement is likely negligible. In many

applications, especially under surface gravity waves, the

pressure gradient force could be of the same order of

magnitude as the force of the shear stress and needs to be

accounted for from the total force on the shear plate.

However, as pointed out by Riedel and Kamphuis (1973),

Brown and Joubert (1969) and others, the constriction of

the gaps forces the pressure gradient in the chamber to

decay from its value in the external flow. Thus, it is

insufficient to measure just the external pressure gradient to

correct for the pressure gradient force; it is also necessary

to know the rate of decay of the pressure gradient in the

gaps. To account for this decay, we introduce an effective

pressure gradient that acts on the shear plate: let fPG denote

the effective fraction of the external flow pressure gradient

that acts on the edge of the shear plate. If the value of fPG is

known and the external flow pressure gradient is also

known, the shear stress can be calculated by

sb ¼
1

Aplate

F � fPG

oP

ox
Vplate

� �

; ð3Þ

where Vplate is the volume of the shear plate and Aplate is the

active area of the shear plate. Equation 3 is also valid for

time-varying quantities for frequencies within the band-

width of the sensor.

The concept of an effective fraction of the external flow

pressure gradient has been introduced by others, e.g. Riedel

and Kamphuis (1973), Allen (1977) and Seelam et al.

(2011). The usual method to estimate the value of fPG is to

measure the pressure gradient at some vertical distance

below the active area of the shear plate and assume a linear

decay of the pressure gradient in the vertical direction from

the active area of the shear plate to the measurement

location. Alternatively, it is common to assume fPG ¼ 0:5

by the following reasoning: the pressure gradient decays

linearly from the external value at the active area of the

shear plate to a value of zero at the bottom surface of the

shear plate with the fluid in the chamber at a pressure that

is the mean of the pressure above the upstream and

downstream gaps (e.g. see Acharya et al. 1985; Allen 1977;

Brown and Joubert 1969; Coles 1953; Winter 1979).

However, the most likely scenario is that fPG has a value

between 0:5 and 1.

We conduct a simplified analysis for the flow in the

chamber of the shear plate sensor to estimate the value of

fPG. The following assumptions are made: (1) deflections of

the shear plate are ignored since they are small and do not

have a large effect on the flow; (2) only the two-dimen-

sional flow field is considered since typical laboratory

flows have very little spanwise variation; (3) the pressure

gradient is constant over the area of the shear plate; (4) the

pressure just above the gaps is not modified by the flow

perturbations due to the gaps, i.e. the flow in the chamber is

essentially forced by the external flow without the external

flow being significantly altered. Thus, the boundary con-

ditions to the flow in the chamber are known and it is

implied that the flow velocities in the chamber are small, an

assumption required for the shear plate to report accurate

values of the total shear force anyway. To proceed, we

introduce the following dimensionless quantities for the

flow in the chamber:

~u ¼ u

Uch

; ~t ¼ t

T
; ~r ¼ lgr; ~P ¼ P

qalg
; ð4Þ

where Uch is the velocity scale in the chamber, T is a

relevant timescale of the external flow, lg is the size of the

gap as defined in Fig. 5, a ¼ � 1
q

oP
ox

�

�

�

�

�

�
is the magnitude of

the kinematic pressure gradient in the external flow. The

pressure gradients in the chamber scale with the external

flow pressure gradient since it is this external pressure

gradient that drives the flow in the chamber. The dimen-

sionless momentum equation is then given by

l2g

mT

o~u

o~t
þ Uchlg

m
~u � ~r~u ¼

al2
g

mUch

~r~Pþr2 ~u: ð5Þ

With the intention of linearising the equation, and under

the assumption that the velocities in the chamber are small

due to viscous forces in the chamber flow and mild pres-

sure gradients in the external flow, we may derive the

Fig. 5 Schematic of shear plate sensor showing different forces on

the shear plate
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chamber velocity scale by requiring that the viscous term

be of the same order as the pressure gradient term. This

gives

Uch ¼ O
al2g

m

 !

: ð6Þ

The above is consistent with the intuition for the scale of

the chamber velocity, i.e. Uch ¼ Uch a; lg; m
� �

. Using this

chamber velocity scale, we may evaluate the importance of

the non-linear term in Eq. 5 by the magnitude of its coef-

ficient, the chamber flow Reynolds number

Rech ¼
al3

g

m2
: ð7Þ

If Rech � 1, we may neglect the non-linear advective

acceleration and greatly simplify the problem of calculat-

ing fPG, since taking the divergence of the remaining terms

in Eq. 5 and invoking continuity reveals that the pressure in

the chamber follows Laplace’s equation

~r2 ~P ¼ 0: ð8Þ

The boundary conditions are the Dirichlet boundary con-

ditions above the gaps prescribed by the external pressure

gradient and Neumann boundary conditions at the walls

such that the wall normal pressure gradient is zero, implying

that the pressure gradient in the chamber simply scales with

the external pressure gradient and its decay depends only on

the sensor geometry. The Neumann boundary condition

follows directly from the kinematic no-flux boundary con-

dition for velocity. To calculate fPG, an aribitrary pressure

gradient is imposed above the plate by imposing different

pressures above the upstream and downstream gaps. The

pressure field in the chamber is then obtained via a

numerical solution to Eq. 8. From this solution, the vertical

variation of the pressure gradient over the thickness of the

plate can be calculated. The value of fPG is just the average

pressure gradient that the plate feels divided by the pressure

gradient imposed above the plate. This process for calcu-

lating fPG is convenient since its value only needs to be

calculated once for a given sensor geometry. Figure 6

shows the numerical solution to Eq. 8 for the shear plate

sensor using a second-order accurate finite difference

scheme. A pressure difference of 1 is imposed with the a

pressure of 1 above the left gap and a pressure of 0 above

the right gap. Using grid refinement studies to ensure there

is convergence of the solution, it was found that fPG ¼ 0:8

for the shear plate sensor to 1 significant figure.

To investigate how fPG varies with the geometry of the

sensor, we postulate that

fPG ¼ fPG

lpt

lg
;

lg

lpl

� �

; ð9Þ

where the variations of lh are considered unimportant and

have been ignored because they do not significantly alter

the solution as long as lh is of the same order of magnitude

as lpl. Figure 7 shows the variation of fPG with the shear

plate thickness to gap size ratio
lpt

lg
and gap size to shear

plate length ratio
lg
lpl

. Figure 7 shows similar trends to those

observed by Acharya et al. (1985) who studied the varia-

tion of fPG experimentally: fPG tends to decrease towards a

value of 0:5 as the thickness to gap size ratio is increased.

Increasing the gap size to shear plate length ratio, while

holding the shear plate thickness to gap size ratio constant,

also reduces the value of fPG.
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3.2 Misalignment forces and intrusiveness

Misalignment of the shear plate relative to the rest of the

bed can add extra forces to the shear plate. Small protru-

sions, recessions and shear plate rotations can create

complex flow patterns that add extra forces as is obvious

from considerations of streamlines in these cases. Such

extra forces can be large, but it is not generally possible to

account for them. Allen (1977, 1980) and Kolitawong et al.

(2010) provide further discussion on this matter. The

developed shear plate sensor was constructed to minimise

these errors by the use of a parallel linkage mechanism that

minimises shear plate tilting and by careful construction so

that the active area of the shear plate is flush with the

surrounding boundary.

There may also be secondary forces on the shear plate

due to non-zero chamber velocities and the exchange of

momentum between the external flow and the chamber, as

also pointed out by Brown and Joubert (1969). The

accompanying velocity perturbations may also disturb the

near wall flow and change the shear stress being measured.

Intuitively, we may expect that the intrusion due to the

gaps will be small if the gap size is of the order of the

viscous lengthscale, or equivalently, that the Reynolds

number based on the gap size and friction velocity is O 1ð Þ.
This Reynolds number is defined as

lgþ ¼
uslg

m
: ð10Þ

However, using experimental evidence of turbulent

boundary layers over gaps, Dhawan (1953) provides a rule

of thumb that in fact, the gradient of the velocity profile is

unaltered by the presence of the gaps up to lgþ\100. Flow

visualisations with coloured dye were used to check whe-

ther the shear plate sensor suffers from large chamber

velocities and is thus intrusive to the external flow. No

significant perturbations were observed.

4 Validation

The validation experiments presented in this section cover

only a fraction of the range of bed shear stress that the

shear plate sensor is capable of measuring. Given that the

shear plate sensor was designed for flow environments that

are not well understood and challenge other measurement

techniques, it was not possible to generate a flow in which

high bed shear stress values measured by the shear plate

sensor could be verified by other methods. However, the

accuracy of the shear plate sensor is fully validated by the

following experiments since they test the sensor at low

values of bed shear stress, where it is most prone to errors.

4.1 Turbulent flat plate boundary layer

Unidirectional flow was established in an 8 m long open

channel flume with glass side walls and acrylic bed in the

DeFrees Hydraulics Laboratory at Cornell University.

Simultaneous measurements of the bed shear stress were

made with the shear plate sensor and from the velocity data

obtained using particle image velocimetry (PIV). The setup

of the experiment is shown in Fig. 8. The shear plate sensor

and the PIV field of view (FOV) coincided in the stream-

wise direction but were at different spanwise locations,

allowing for a direct comparison of the shear stress. Both

the shear plate sensor and the PIV FOV were sufficiently

far from the side walls to be unaffected by the side wall

boundary layer. Also at the same streamwise location, but

separate spanwise location was an acoustic doppler velo-

cimeter (ADV, Nortek Vectrino with plus firmware), which

was used to monitor the mean velocity of the flow.

The FOV was illuminated by a dual-head Spectra

Physics Nd:YAG laser operating at 10 Hz for each head,

allowing for 10 Hz velocity data. The laser beams were

expanded into a vertical light sheet using a cylindrical lens.

The FOV measured 4� 3 cm with 4 cm in the horizontal

to match the shear plate length of 4.3 cm. The images were

taken with a 1,600 9 1,200 14-bit camera (Vision

Research, Phantom v9.1) fitted with a Nikon 105 mm

f/2.8D AF Micro-Nikkor lens. Images were taken for 200 s,

at 20 Hz yielding 4,000 images and the time between

images Dtð Þ ranged from 0.7 to 0.4 ms. Image pairs were

analysed using dynamic sub-window PIV method outlined

in Cowen and Monismith (1997) after removing the

background image from each image pair. Sub-pixel peak

location was obtained with the use of the spectral shifting

technique given in Liao and Cowen (2005), which has been

shown to reduce peak-locking and improve accuracy. The
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Fig. 7 Variation of fPG with geometric ratios of the shear plate sensor

from solution to Eq. 8. lh=lpl ¼ 1 for all cases
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final pass of the image analysis was done with 32 9 32

pixels sub-windows with 50 % overlap giving a velocity

vector array of 97� 71 x� zð Þ for every image pair. The

PIV algorithm produces around 90 % valid vectors; the

number of valid vectors suffered slightly due to small

differences in illumination intensity between images in an

image pair due to the difficulty of achieving identical

power from both laser heads.

The PIV velocity data were decomposed into mean

quantities and fluctuating quantities using the Reynolds

decomposition

q ¼ qh i þ q0; ð11Þ

where q is a quantity of interest, qh i is its ensemble mean

and q0 is its instantaneous turbulent fluctuation. For this

flow, the ensemble mean is the mean of the quantity in time

and the x-direction. The mean horizontal velocity profiles

u zð Þh i were thus computed from 194,000 data points at

each vertical elevation. Using the mean velocity profile, the

momentum thickness of the flow is given by Pope (2000)

h ¼
Z

1

0

uh i
U0

1� uh i
U0

� �

dz; ð12Þ

from which the momentum thickness Reynolds number,

Reh ¼ U0h
m , was calculated. The mean horizontal velocity

profile scaled by the friction velocity, us ¼
ffiffiffiffiffiffiffiffiffiffi

sb=q
p

, gives

the well-known law of the wall

uþ ¼
1

j
ln zþð Þ þ C; ð13Þ

where uþ ¼ u=us; zþ ¼ usz=m; j ¼ 0:41 and C ¼ 5:5

(Pope 2000).

Using the PIV velocity measurements, the friction

velocity was found in two ways: (1) by least squares fit of

the mean velocity profile to the law of the wall with the

friction velocity, which gives us;1; (2) linear extrapolation

of the Reynolds stress profile from z=h [ 0:075 to z ¼ 0,

which gives us;2. Figure 9 shows the mean horizontal

velocity profiles normalised with us;1. The law of the wall

is also plotted in Fig. 9 for comparison and shows good

agreement with the data. The data also show good agree-

ment with the direct numerical simulation (DNS) dataset of

Spalart (1988), which was done at Reh ¼ 1; 410. Figure 10

shows the profiles of the Reynolds stress normalised with

us;2.

The deflection of the shear plate was recorded simulta-

neously with the PIV data at 50 Hz. To obtain the deflec-

tion, the mean position of the shear plate after the flow was

stopped and the fluid returned to rest was subtracted from

the mean position of the shear plate during the flow. The

measured deflection was converted to force using the

stiffness, and this force was divided by the active area of

the shear plate to obtain a mean shear stress. The results are

summarised in Table 1. Values for sb;1 and sb;2 refer to the

shear stress estimates from PIV measurements, corre-

sponding to us;1 and us;2, respectively, and values for sb;SPS

refer to the direct measurements of shear stress using the

shear plate sensor. Table 1 also gives estimates of the 95 %

confidence intervals on all measurements of the shear

stress. Following Moffat (1988), the uncertainty in the

measurements was split into bias error and random error.

For sb;SPS, the estimated 95 % confidence intervals were

calculated by a root-sum-square combination of the 1 %

bias error found in the calibration and the random error,

which was found by applying the bootstrap technique

(Efron and Tibshirani 1993) on the mean of the deflection

of the shear plate. The combined error is reported to 1

Fig. 8 Experimental setup for turbulent flat plate boundary layer

experiments. The shear plate sensor, ADV and PIV field of view are

co-located in the streamwise direction but separated in the spanwise

direction
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Fig. 9 Normalised horizontal mean velocity profiles: PIV experi-

mental data (open symbols). Law of the wall (dashed line); Spalart

(1988) DNS data (solid line). Law of the wall calculated using j ¼
0:41 and C ¼ 5:5
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significant figure. For the PIV results, the major bias error

resulting from peak-locking effects is difficult to estimate

quantitatively, but qualitatively, probability density func-

tions of the measured velocities can show the peak-locking

effect (Liao and Cowen 2005). These were examined and

showed there was little peak-locking, consistent with the

use of the spectral shifting technique for finding sub-pixel

peak location. However, the are several sources of random

error in determining the particle displacement, e.g. camera

thermal noise [see Raffel (2007) for a comprehensive list]

as well as sources of uncertainty in determination of us;1

and us;2, e.g. uncertainty in the coefficients of linear

regression. The total random error was found by applying

the bootstrap technique on the entire process of finding us;1

and us;2 from the raw velocity vectors. The uncertainty

from PIV data in us;1 and us;2 was propagated to sb;1 and

sb;2 [e.g. see Taylor (1997)]. The results, with vertical error

bars representing the estimated 95 % confidence intervals,

are plotted in Fig. 11.

For these experiments, the streamwise pressure gradi-

ents are negligible and there is no need to include a cor-

rection term in the calculation of shear stress. Flow

visualisation with coloured dye injected into the chamber

showed very little flow motion in the chamber and through

the gaps. This is in accordance with the prediction of Eq. 6

since the streamwise pressure gradients in these experi-

ments are negligible. Comparison between the direct

measurement of shear stress by the shear plate sensor and

the indirect measurement of shear stress with the use of

PIV velocity data are generally good. With the exception of

U2 and U5, the shear plate sensor data agree to within

10 % of the values of shear stress obtained from the PIV

velocity data. Some of the discrepancy with the shear plate

sensor data may be explained by the fact that for the low

values of shear stress in these experiments, the shear plate

sensor is more susceptible to additional errors such as small

shifts in the zero position of the shear plate caused by

vibration noise of the variable frequency pumps used to

drive the flow in the channel.

4.2 Boundary layer under solitary waves

In water of constant depth and in the absence of viscosity,

the solitary wave is an elevation wave of permanent form

propagating at a constant celerity. The wave is fully

characterised by the still water depth that it travels in, h,

and the maximum elevation of the free surface above the

still water depth, i.e. its height, H. The normalised wave

height is expressed as � ¼ H=h, which is typically a small

parameter. Grimshaw (1971) provides a solution to the

solitary wave that is accurate up to second order, i.e. up to

O �2ð Þ, which will be used to compare to experimental data.

In the presence of viscosity, there exists thin boundary

layers at the bed and at the free surface that introduce

damping to the solitary wave as it propagates (Liu et al.

2007). The bottom boundary layer of the solitary wave has

been previously studied by Keulegan (1948), and Liu and

Orfila (2004) have developed a general theory for the

bottom boundary layer of transient long waves. Liu et al.

(2007) applied the analysis of Liu and Orfila (2004) spe-

cifically to solitary waves and experimentally examined the

laminar boundary layer under three solitary waves of dif-

ferent heights. Here we repeat two of those cases to com-

pare the direct bed shear stress measurements from the

−<u’v’>/(u
τ,2

)2

z/
h

0 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 1
0

0.05

0.1

0.15

0.2

0.25

Fig. 10 Normalised Reynolds stress profiles: PIV experimental data

(open symbols, same as Fig. 9)

Table 1 Summary of results for

turbulent flat plate boundary

layer experiments

U0

(m/s)

Reh us;1 (cm/s)

± 95 % CI

us;2 (cm/s)

± 95 % CI
sb;1 (N/m2)

± 95 % CI

sb;2 (N/m2)

± 95 % CI

sb;SPS (N/m2)

± 95 % CI

U1 0.33 910 1.72 ± v0.01 1.72 ± 0.01 0.296 ± 0.003 0.296 ± 0.003 0.28 ± 0.01

U2 0.40 1,120 1.97 ± 0.01 2.11 ± 0.01 0.388 ± 0.004 0.445 ± 0.004 0.49 ± 0.01

U3 0.45 1,240 2.19 ± 0.01 2.32 ± .01 0.480 ± 0.004 0.538 ± 0.005 0.52 ± 0.01

U4 0.51 1,410 2.42 ± 0.01 2.60 ± 0.01 0.586 ± 0.005 0.676 ± 005 0.64 ± 0.01

U5 0.56 1,540 2.65 ± 0.01 2.81 ± 0.01 0.702 ± 0.005 0.790 ± 0.006 0.87 ± 0.01

U6 0.62 1,620 3.11 ± 0.01 3.03 ± 0.01 0.967 ± 0.006 0.918 ± 0.006 1.00 ± 0.01
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shear plate sensor to indirect bed shear measurements from

velocity field data using PIV in the boundary layer. We

also compare the bed shear stress measurements to the

linear boundary layer theory as presented by Liu et al.

(2007).

The solitary waves were generated in a 15-m wave

flume equipped with a piston-type wave-maker of stroke of

1.2 m in the DeFrees Hydraulics Laboratory at Cornell

University. Table 2 summarises the characteristics of the

solitary waves generated in these experiments, including

their effective wavelengths, L0, and their effective periods,

T0. The trajectory of the wave-maker to generate a solitary

wave was computed using the method provided in Goring

(1978) with the wavelength cut-off corresponding to where

the free surface displacement is at 1 % of the wave height.

The setup of the experiment is shown in Fig. 12. The still

water depth was kept at 10.0 cm, and shear plate sensor

was mounted with the active area flush with the rest of the

bed of the flume. The centre of the shear plate was at a

distance of 7.1 m from the wave-maker in its retracted

position. There was a 1:10 slope installed at the other end

of the flume, but the toe of the slope was sufficiently far

from the shear plate so that wave reflections did not con-

taminate the data. An acoustic wave gauge (Banner Engi-

neering, S18U; resolution �0.5 mm) was positioned

directly above the centre of the shear plate sensor to record

the free surface elevation. Two differential pressure gauges

(Omega Engineering, PX26; resolution �7.5 Pa) were used

to record the pressure difference between the external

pressure tappings and the chamber pressure tappings (see

Fig. 1). To increase the signal-to-noise ratio of the shear

plate sensor for the low values of shear stress in these

experiments, the results shown are the ensemble average of

40 repetitions of each wave. Measurements of the free

surface elevation confirmed that the repetitions were

aligned in phase and highly repeatable. An additional

repetition of each wave was done where an ADV was also

installed to measure the water velocity 2 cm above the bed,

which is outside the boundary layer for both wave cases. It

was operated at 40 Hz with a sampling volume of diameter

6 mm and height 7 mm.

Figure 13 shows measurements of free surface elevation

for the solitary wave of H ¼ 0:83 cm and Fig. 14 shows

ADV measurements of the water velocity 2 cm above the

bed. Both show very good agreement with Grimshaw’s

theoretical solution. The measurements for the solitary

wave of H ¼ 2:00 cm show similarly good agreement.

It is noted that the wavelengths of the waves are much

larger than the streamwise length of the shear plate sensor,

and thus, the value of the streamwise pressure gradient can

be assumed constant over the shear plate. Measurements of

the external pressure difference are converted to a pressure

gradient by dividing by the distance separating the external

pressure tappings. Figure 15 shows that the pressure gra-

dient measured in this way for the solitary wave of H ¼
0:83 cm compares very well to the solution to pressure

given by Grimshaw (1971) theory. There is similar good

agreement for the solitary wave of H ¼ 2:00 cm.

As noted previously, for surface gravity waves, the

streamwise pressure gradients will act as a secondary force

on the shear plate. To characterise the importance of this

force and the influence streamwise pressure gradients have

on the flow in the chamber, an order of magnitude scale of

the pressure gradient under a solitary wave is derived as

asw ¼ 1
q

qgH
L0=2

� 	

, which is the average steepness of the wave

assuming the pressure is hydrostatic (a valid assumption for

�� 1). The ratio of the pressure gradient force to the shear

force on the shear plate, Eq. 2, is estimated using asw

together with the an order of magnitude scale for the bed

shear stress (converted to units of velocity) obtained from

the linear boundary layer solution of Liu et al. (2007). asw

is also used to calculate the chamber flow Reynolds num-

ber as defined in Eq. 7. These quantities are presented in

Table 2. It can be seen that the pressure gradient force is of

the same order of magnitude as the shear force. Addi-

tionally, Rech � O 1ð Þ implying that the linearisation of the

chamber flow is not justified and the pressure gradient is
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Fig. 11 Bed shear stress measurements for turbulent flat plate

boundary layer experiments. Shear stress data from us;1 (squares);

shear stress data from us;2 (triangles); shear plate sensor measure-

ments (circles). Vertical bars represent 95 % confidence intervals

Table 2 Characteristics of solitary waves generated

h (cm) H (cm) � L0 (m) T0 (s) Rech
aSW lpt

u2
s

W1 10.0 0.83 0.083 2.57 2.49 60 0.6

W2 10.0 2.00 0.200 1.62 1.50 240 1.0
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large enough to drive some flow in the chamber. None-

theless, we proceed to use a constant value of fPG in Eq. 3

to account for the streamwise pressure gradients and

calculate the shear stress. Figure 16 shows the measure-

ments of shear stress from: (1) shear plate sensor using

fPG ¼ 0:8 in Eq. 3; (2) PIV velocity measurements in the

boundary layer from Liu et al. (2007) and Park (2009).

Both sets of measurements are compared to the shear stress

obtained from the linearised solution to the boundary layer

flow equations in Liu and Orfila (2004) and Liu et al.

(2007).

Measurements from the shear plate sensor show good

agreement with the data of Park (2009) and the linearised

boundary layer solution of Liu et al. (2007) even though

the magnitude of the pressure gradient force is comparable

to the shear force,
alpt

u2
s
¼ O 1ð Þ, and the flow is outside the

validity of a constant value of fPG. The most notable dis-

crepancy is in the case of the solitary wave of H ¼ 2:00 cm

where the shear plate sensor fails to capture the negative

portion of the shear stress that occurs behind the wave crest

as a result of the adverse pressure gradient on the boundary

layer. Measurements of pressure difference in the chamber,

plotted in Fig. 17, during this time show that the pressure

on the downstream chamber wall was higher than the

pressure on the upstream chamber wall. The resolution of

Fig. 12 Setup of experiments for solitary wave boundary layer
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Fig. 13 Measurements of free surface elevation of W1: H ¼ 0:83 cm.

Wave gauge data (circles); Grimshaw (1971) solution (solid line)
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Fig. 14 Measurements of water velocity 2 cm above the bed of W1:

H ¼ 0:83 cm. u is the water velocity in direction of wave propagation

and w is the water velocity in the vertical direction. ADV data

(circles); Grimshaw (1971) solution (solid line)
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Fig. 15 Measurements of streamwise pressure gradient of W1: H ¼
0:83 cm. Measurements (circles); Grimshaw (1971) solution (solid

line)
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the pressure difference measurements has been improved

to �1.2 Pa from ensemble averaging of 40 repetitions of

the wave. For the majority of the wave period, the pressure

gradient in the chamber was still too small to measure.

However, for a very short time under the wave crest and

just behind it, the measured pressure difference may be

indicative of flow velocity in the chamber in the same

direction as the external flow. This suggests that the

chamber flow was important only during a short period of

time and that during that period the measurements of the

shear stress may be affected by secondary flows. This is in

accordance with the high value of the chamber flow Rey-

nolds number, which predicted that there may be flow in

the chamber that is not negligible. Thus, the negative part

of the shear stress may not have been captured because the

shear plate sensor suffered from local secondary flows

during that phase of the flow.

5 Conclusions

Accuracy of shear plate sensors suffer primarily due to the

secondary forces on the shear plate; in particular, the force

of streamwise pressure gradients acting on the edges of the

shear plate. This force has been carefully examined, and a

new methodology for its correction is presented: the

effective fraction of the streamwise pressure gradient that

acts on the shear plate, fPG, can be calculated a priori and

independently of the flow by the solution to Laplace’s

equation for the pressure field in the chamber so long as the

chamber flow Reynolds number, Rech ¼
al3g
m2 , is small.

A shear plate sensor has been designed, built and vali-

dated in an open channel flow experiments. The sensor is

capable of measuring shear stresses in the range �200 Pa

with a bandwidth of 75 Hz. The accuracy of the sensor is

�1 %, but in practice, it depends primarily on the impor-

tance of secondary forces on the shear plate and the

accuracy with which their values are known. For the

developed shear plate sensor, fPG ¼ 0:8, which is valid for

pressure gradients up to a ¼ O 10�3ð Þ. This can be still be a

constraint under surface gravity waves, especially in small-

scale flumes where the magnitude of the shear stress is very

low and the error due to pressure gradient forces is large.

Nonetheless, the shear plate sensor has been shown to be

able to measure the bed shear stress in the laminar

boundary layer under solitary waves in a small-scale lab-

oratory wave flume.
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Fig. 16 Measurements of bed shear stress from shear plate sensor. Left H ¼ 0:83 cm; Right H ¼ 2:00 cm. Shear plate sensor data (circles); PIV

velocity field data from Liu et al. (2007) and Park (2009) (crosses); linearised boundary layer flow solution from Liu et al. (2007) (solid line)
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The design of the shear plate sensor makes it an espe-

cially suitable sensor to measure the bed shear stress in the

nearshore region of a large-scale flume. Such a flow

environment presents severe difficulties for indirect meth-

ods to measure the bed shear stress due to the shallow flow

depth often containing air bubbles, transient flow that that

covers a large range of shear stress values (that can also

change direction), and lack of optical access. The shear

plate sensor, however, can make good measurements in

these conditions since the pressure gradients are relative

mild and the magnitudes of bed shear stresses are high.

This makes it a powerful tool to study the flow processes in

the nearshore region.
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