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Abstract A novel multi-frame particle image velocime-

try (PIV) method, able to evaluate a fluid trajectory by

means of an ensemble-averaged cross-correlation, is

introduced. The method integrates the advantages of the

state-of-art time-resolved PIV (TR-PIV) methods to further

enhance both robustness and dynamic range. The fluid

trajectory follows a polynomial model with a prescribed

order. A set of polynomial coefficients, which maximizes

the ensemble-averaged cross-correlation value across the

frames, is regarded as the most appropriate solution. To

achieve a convergence of the trajectory in terms of poly-

nomial coefficients, an ensemble-averaged cross-correla-

tion map is constructed by sampling cross-correlation

values near the predictor trajectory with respect to an

imposed change of each polynomial coefficient. A relation

between the given change and corresponding cross-corre-

lation maps, which could be calculated from the ordinary

cross-correlation, is derived. A disagreement between

computational domain and corresponding physical domain

is compensated by introducing the Jacobian matrix based

on the image deformation scheme in accordance with the

trajectory. An increased cost of the convergence calcula-

tion, associated with the nonlinearity of the fluid trajectory,

is moderated by means of a V-cycle iteration. To validate

enhancements of the present method, quantitative

comparisons with the state-of-arts TR-PIV methods, e.g.,

the adaptive temporal interval, the multi-frame pyramid

correlation and the fluid trajectory correlation, were carried

out by using synthetically generated particle image

sequences. The performances of the tested methods are

discussed in algorithmic terms. A high-rate TR-PIV

experiment of a flow over an airfoil demonstrates the

effectiveness of the present method. It is shown that the

present method is capable of reducing random errors in

both velocity and material acceleration while suppressing

spurious temporal fluctuations due to measurement noise.

List of symbols

a Set of polynomial coefficients, a

= {a1, …, aP}

ak kth-order polynomial coefficient

Da Set of corrections vectors for a, Da

= {Da1, …, DaP}

Dak Corrections vectors for ak

Cn(U(x, n)) Cross-correlation value between two time

steps 0 and n along a trajectory

Cens Ensemble-averaged cross-correlation value

cn Contribution of a temporal interval n to bias

error

Du/Dt Material acceleration

In(x) Particle image plane at a time step n

In
U(x,n) Deformed particle image by U(x, n)

J(U(x, n)) Jacobian matrix of a deformed image scheme

by U(x, n)

M Number of images

Nc Number of averaged cross-correlation maps

n Normalized times step, n = t/Dt

nopt Optimal separation

P Polynomial order of a modeled trajectory
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R(Da) Cross-correlation map for an entire

correction of a

Rk(Dak) Cross-correlation map for an individual

correction of ak

Rn
U(x,n)(Dx) Cross-correlation map between I0 and In

U(x,n)

Ds Scale of sampling step for a discrete

construction of Rk(Dak)

Dscri Criterion for a scale of sampling step

T Normalized maximum temporal interval

Dt Temporal separation between two

subsequent recordings

u Velocity

u Exact horizontal displacement

W Interrogation window

w Window size

x Position in a particle image plane

xp Position of fluid parcel

Dx Coordinate of a computed cross-correlation

map

Dxphy Physical vector which corresponds to Dx

b, r Bias and random errors

b1, r1 Basis error profiles from numerical

assessment

bn, rn Analytic errors from two-frame cross-

correlation with an imposed interval n, n [ 1

bFTC, rFTC Analytic errors of the FTC method

b?, r? Error profiles based on forward deformation

scheme

dx, dy Grid spacings in horizontal and vertical

directions

c Scale factor of V-cycle iteration

U(x, n) Relative fluid trajectory to x

C0 Regulated trajectory field

C0�dx;C
0
�dy Regulated trajectories at neighboring grid

points

e Signed random error

1 Introduction

In recent years, time-resolved particle image velocimetry

(TR-PIV) has emerged from an interest in unsteady and

turbulent flows that need to be examined in the time or

frequency domain. To fulfill the temporal requirement, a

high-speed imaging system which generally consists of

CMOS cameras in combination with a diode-pumped

Nd:YLF laser or continuous-wave laser system is essential

to most time-resolved cases (Hain and Kähler 2007).

Images recorded by CMOS sensors have low quality and

less resolution due to the low sensitivity and high noise

level compared to CCD sensors (Litwiller 2001). The

weaker illumination due to the high laser repetition further

compounds the problem. Therefore, the subsequent ana-

lysis inevitably suffers from lower image quality (Hain

et al. 2007; Stanislas et al. 2005). Multiple image

sequences, on the other hand, are capable of offering var-

ious sets of meaningful cross-correlations, and thereby,

there exists a possibility of making up for the loss due to

the low image quality. Furthermore, time-related properties

can be revealed in concert with the chronologic particle

images.

One of the significant discussions in TR-PIV in the lit-

erature concerns the improvement of measurement accu-

racy for the purpose of providing instantaneous data for the

analysis of unsteady pressure gradient (Liu and Katz 2006;

Kurtulus et al. 2007; Haigermoser 2009; Charonko et al.

2010; Violato et al. 2011; van Oudheusden 2013). Since

the measurement uncertainty attendant upon the low image

quality could be compensated by using multiple images,

several practical procedures have been established by the

previous studies as follows:

Concept 1 Optimal temporal separation.

Concept 2 Averaged cross-correlation.

Concept 3 Lagrangian fluid trajectory.

The selection of a proper temporal interval between

consecutive recordings, Dt, is required to design PIV

experiments in terms of the dynamic range (Boillot and

Prasad 1996; Adrian 1997). In turbulent flows, there is an

appropriate range of Dt that guarantees relatively low

random fluctuations compared to the measurement uncer-

tainty with the acceptable out-of-plane loss (Poelma et al.

2006; Adrian and Westerweel 2010). However, the uni-

versal selection of Dt regarding the maximum displacement

intensifies the unreliability at extremely small displacement

regions such as viscous sublayers and turbulent streaks

(Hain and Kähler 2007). To rectify this problem with

multi-frame PIV, the locally adaptive selection of optimal

interval, Dtopt = nopt Dt, has been applied (Pereira et al.

2004; Druon et al. 2006; Hain and Kähler 2007; Persoons

and O’Donovan 2010). Hain and Kähler (2007) have

offered practical guidelines to select nopt by taking into

account both peak quality and flow acceleration. Recently,

the guidelines have been further refined by Sciacchitano

et al. (2012), based on the ensemble-averaged cross-

correlation.

A reduction in random error by averaging data has been

applied to PIV in the way of averaging cross-correlation

maps (Delnoij et al. 1999; Meinhart et al. 2000; Billy et al.

2004; Scarano et al. 2010). Samarage et al. (2012) have

suggested that the hybrid averaging method that utilizes

both cross-correlation maps and peak positions. Since the

optimized temporal interval could be regarded as a valid

temporal range for averaging under a nonstationary flow
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condition, Sciacchitano et al. (2012) have proposed the

multi-frame pyramid correlation by introducing the

ensemble-averaged cross-correlation together with the ho-

mothetic transform while also extending the averaging

concept into multiple temporal separations, i.e., n = 1 …
nopt.

A prescribed function as the Lagrangian fluid trajectory

has been implemented in multi-frame particle tracking

velocimetry (PTV) during the past two decades (Malik

et al. 1993; Guezennec et al. 1994; Li et al. 2008; Cierpka

et al. 2013). Recently, the trajectory of fluid parcels in an

interrogation window has been accounted for by the fluid

trajectory correlation (FTC) method (Lynch and Scarano

2013), which obtains a fluid trajectory from cross-correla-

tion peaks by means of a least-square fit. The FTC method

is able to extend the temporal interval significantly until the

deformed particle image collapses under very high defor-

mation at a considerably long temporal interval.

As van Oudheusden (2013) reviews, the ways of using

multi-frame particle image sequences can be classified

according to how a material acceleration term is evaluated

(Violato et al. 2011; de Kat and van Oudheusden 2012).

The Navier–Stokes equation under incompressible flow

conditions is given as a relation between the pressure

gradient and the velocity information:

rp ¼ �q
Du

Dt
þ lr2u:

where the material acceleration Du/Dt is expressed by the

Eulerian and the Lagrangian perspectives, respectively:

Du

Dt
¼

ou

ot
þ ðu � rÞu ðEulerian perspectiveÞ

duðxpðtÞ; tÞ
dt

¼ d2xpðtÞ
dt2

ðLagrangian perspectiveÞ

8
><

>:
;

where u is the velocity and xp is the position of the fluid

parcel. Figure 1 schematically illustrates both perspectives

on a multi-frame image sequence. In the Eulerian per-

spective, Du/Dt should be obtained from local and con-

vective accelerations with respect to a stationary reference

frame (i.e., each interrogation grid point) due to its time

invariant nature. On the contrary, Du/Dt could be obtained

by taking the second derivative of the trajectory function,

xp(t), in the Lagrangian perspective.

To date, an integration of the optimal temporal sep-

aration and the averaged cross-correlation, consistent in

the Eulerian perspective, has been accomplished by the

multi-frame pyramid correlation method (Sciacchitano

et al. 2012). Here, the ensemble-averaged cross-correla-

tion map from different temporal intervals shows great

performances in terms of both random and bias errors,

but these improvements are limited due to curved and

accelerated flow motions, e.g., the multi-frame pyramid

correlation is identical to the two-frame correlation when

the optimal interval, nopt, is selected as one due to strong

flow acceleration or curved flow motion. As a method to

overcome this limitation, an integration of the Lagrang-

ian fluid trajectory onto the averaged cross-correlation

might be an alternative approach. Although it is

impractical due to the inconsistency in the perspectives,

several clues to conjugate both perspectives are already

contained in the previous studies. These will be descri-

bed at the beginning of Sect. 2.

The present study proposes a novel TR-PIV method,

namely the fluid trajectory evaluation based on an

ensemble-averaged cross-correlation (FTEE), capable of

obtaining the most appropriate fluid trajectory based on

the ensemble-averaged cross-correlation. Therefore, the

solution of the present method is a Lagrangian trajectory,

which implies both velocity and material acceleration.

The procedure of the present method was induced from

relations among the curved trajectory, cross-correlation

maps and corresponding physical meanings. Thereby, the

practical averaging method along the modeled trajectory

has been introduced. To analyze improvements of the

present method in terms of algorithmic features, the

state-of-the-art TR-PIV methods were also tested by

means of synthetic image sequences, and the corre-

sponding improvements were discussed. A high-rate PIV

experiment for a flow around an airfoil was conducted in

order to assess the spatial and temporal performances of

the methods.

Fig. 1 Perspectives on the multi-frame PIV. a Eulerian. b Lagrang-

ian. Blue lines indicate obtained velocity and trajectory, while red

coded regions show probability distributions of real trajectories
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2 Algorithm

The present study started from an investigation of the

previous methods to integrate the ideas from different

perspectives. As with the FTC, the principal basis of the

present method (FTEE) was the trajectory evaluation

because of its self-consistent feature, e.g., velocity, accel-

eration and coextensive temporal ranges over an entire

image plane. The FTC obtains a fluid trajectory from peak

locations of cross-correlation maps by means of a least-

square fit, as shown in Fig. 2b. In addition, the FTC has

proposed the rotating corrector that compensates the dis-

parity between the computational peak and its actual

position, and thus, the method eliminates the oscillation in

the iterative correction. By expanding this idea from a

correlation peak point into a planar or volumetric map, the

cross-correlation map, transformed in accordance with the

physical domain, could be regarded as a probability dis-

tribution of the fluid trajectory as demonstrated in Fig. 2c.

It means that the cross-correlation values surrounding the

peak points and the ensemble-averaged cross-correlation

along the trajectory, slightly aside from the peaks, are made

available. Thus, the present study relies on the assumption

that the ensemble-averaged cross-correlation value along

the trajectory has the maximum value when the trajectory

is the most appropriate.

2.1 Ensemble-averaged cross-correlation value

along a trajectory

In the present method, an odd number, M = 2T ? 1 with

the positive integer T, of successive images was employed

to evaluate the fluid trajectory with respect to the central

time step based on a following polynomial model:

xpðx; nÞ ¼ xþ Cðx; nÞ; where Cðx; nÞ ¼
XP

q¼1

aqðxÞnq;

ð1Þ

where n = t/Dt is the normalized time step, Dt is the

temporal interval between two subsequent recordings, and

xp(x, n) is the position of fluid parcel defined for all time

steps from n = -T to ?T, notably xp(x, 0) = x. U(x, n) is

the relative fluid trajectory to x while P is the polynomial

order and aq is the qth-order polynomial coefficient. Note

that x is the position vector in the particle image plane at

n = 0. The cross-correlation value between two time steps

0 and n along the trajectory, Cn(U(x, n)), can be expressed

as following:

Cn Cðx; nÞð Þ ¼
Z

W0

I0ðxÞIn xþ Cðx; nÞð Þdx

where n ¼ �T. . .T ; ð2Þ

where In(x) is the particle image plane at the time step n,

and W0 is the interrogation window with respect to I0(x).

Note that a mean intensity of the interrogation window was

subtracted from the image intensities in order to obtain a

normalized cross-correlation. Finally, the ensemble-aver-

aged cross-correlation value, Cens, is defined as:

CensðaðxÞÞ ¼
1

2T

Xn¼þT

n¼�T

Cn C x; nð Þð Þ; ð3Þ

where a(x) is the set of polynomial coefficients, and

C0(U(x, 0)) is neglected as 0 for a meaningful averaging.

Then, the set of polynomial coefficients which maximizes

Cens can be regarded as the most appropriate solution.

2.2 Strategies for achieving an efficient convergence

Even though Eq. 3 is a simple expression, the construction

of the ensemble-averaged map for the correction signifi-

cantly augments the computational cost because all of

the polynomial coefficients must be considered

simultaneously:

R Dað Þ ¼ Cens aðxÞ þ Dað Þ

¼ 1

2T

Xn¼þT

n¼�T

Z

W0

I0ðxÞIn xþ C x; nð Þ þ
XP

q¼1

Daqnq

 !

dx

ð4Þ

where R(Da) denotes the ensemble-averaged map defined

by Da, the set of polynomial coefficients for the correc-

tion, i.e., Da = {Da1, …, DaP}. This implies that the

coefficients are coupled to each other; therefore, the

cross-correlation map should be defined in the entire

dimension of Da. To economize on the computational

Fig. 2 Relations between a trajectory and cross-correlation maps.

a Image sequence, b FTC, c present method (FTEE). Interrogation

windows are presented as black squares, while R0,n is assumed as 1D

cross-correlation map between two time steps 0 and n. Peaks of R0,n

are plotted as times symbol marks, while R0,n is shown as gray-scaled

map
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cost, the present method has adopted the V-cycle con-

vergence method (Braess and Hackbusch 1983) and the

homothetic transform of cross-correlation map (Sciac-

chitano et al. 2012).

The coefficient correction based on the V-cycle was

applied in order to correct each coefficient individually. To

take into account the relation between the coefficients, each

coefficient was sequentially considered by following a low–

high–low order, e.g., 1 ? 2 ? � � � ? P ? P - 1 ?
� � � ? 1. Equation 4 can then be uncoupled into

Rk Dakð Þ ¼ 1

2T

Xn¼þT

n¼�T

Z

W0

I0ðxÞIn xþ C x; nð Þ þ Daknk
� �

dx;

ð5Þ

where Dak is the correction vector of the kth-order poly-

nomial coefficient. Then, the problem can be simplified,

e.g., from one 6D map to three 2D maps in the case of 2D

PIV with P = 3. In contrast to the explicit methods such as

the least-square fit, the present method makes a gradual

convergence into the appropriate solution.

The homothetic transform of the cross-correlation map

is capable of providing Rk(Dak) by utilizing one cross-

correlation map, i.e., R1(Da1). As the coupled map is no

longer necessary owing to the V-cycle correction, the

ensemble-averaged cross-correlation maps about the whole

polynomial coefficients can be constructed by a single

cross-correlation calculation and subsequent homothetic

transforms. This will be further discussed in Sects. 2.4 and

2.5.

2.3 Integration with the image deformation

The images were deformed iteratively (Huang et al. 1993;

Jambunathan et al. 1995; Scarano and Riethmuller 2000)

according to the trajectories, U(x, n), by:

IC x;nð Þ
n ðxÞ ¼ In xþ C x; nð Þð Þ; ð6Þ

where In
U(x,n) denotes the deformed image by U(x, n). Then,

the cross-correlation map between the reference image I0

and the deformed image In
U(x,n) is computed by:

RC x;nð Þ
n Dxð Þ ¼

Z

W0

I0ðxÞIC x;nð Þ
n xþ Dxð Þ dx; ð7Þ

where Dx is the coordinate of the computed cross-corre-

lation map, and therefore, Rn
U(x,n) is obtained with respect to

the discrete pixel coordinate Dx. Equation 7, after the

substitution of Eq. 6 and the application of Taylor expan-

sion under the assumption that ||Dx|| is sufficiently smaller

than the window size, becomes.

RCðx;nÞ
n Dxð Þ ¼

Z

W0

I0ðxÞIn xþ Dxþ C xþ Dx; nð Þð Þ dx

¼
Z

W0

I0ðxÞIn xþ C x; nð Þ þ J C x; nð Þð ÞDxð Þ dx;

ð8Þ

where J denotes the Jacobian matrix of the deformed image

scheme (Mayer 2002; Miozzi 2004; Kitzhofer et al. 2011;

Jeon and Sung 2011). The physical vector Dxphy, which

corresponds to Dx, is introduced to Eq. 2 so that.

Cn C x; nð Þ þ Dxphy

� �
¼ RC x;nð Þ

n Dxð Þ
where Dxphy ¼ J C x; nð Þð ÞDx: ð9Þ

This is schematically represented in Fig. 3, where the

physical locations of the original and deformed particle

image schemes are illustrated in Fig. 3a while the vectors

in computational and physical domains are demonstrated in

Fig. 3b, c, respectively. Equation 9 relates the coordinate

transformation of the cross-correlation map between the

computational domain (RHS) and the physical domain

(LHS). Therefore, the individual correction of each poly-

nomial coefficient is now feasible by utilizing the con-

ventional PIV image deformation approach.

Fig. 3 a Deformed particle image scheme in accordance with

trajectories. b, c Coordinate transform between a computation domain

(black) and a physical domain (red). Blue and red particles indicate

particles in I0 and In, respectively. Solid green line represents a

trajectory, which passes through an interrogating grid point at t = 0,

while dashed green lines show neighboring trajectories
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2.4 Corrections of polynomial coefficients

As mentioned earlier, the correction of trajectory was

conducted in each polynomial coefficient independently by

means of the V-cycle. For the given change of Dak, Eq. 9

can be rewritten as:

Cn C x; nð Þ þ Daknk
� �

¼ RC x;nð Þ
n J C x; nð Þð Þ�1Daknk

� �
:

ð10Þ

Recalling Eq. 5, the correction of the kth-order poly-

nomial coefficient can be then performed by:

Rk Dakð Þ ¼ 1

2T

Xn¼þT

n¼�T

RC x;nð Þ
n J C x; nð Þð Þ�1Daknk

� �
: ð11Þ

Note that Eq. 11 is identical to the homothetic trans-

formation introduced by the pyramid correlation method

(Sciacchitano et al. 2012) under the condition of

J = I. The cross-correlation value for the given change of

Dak was interpolated from the pixelated cross-correlation

map, Rn
U(x,n), by applying the bicubic interpolation scheme

(Astarita and Cardone 2005; Sciacchitano et al. 2012). The

cross-correlation map of Rk(Dak) was then constructed by

changing Dak stepwise from the origin to neighboring

points.

Figure 4 demonstrates the procedure of the coefficient

correction, Eq. 11. The squares indicate the cross-correla-

tion maps, which are transformed in accordance with the

physical plane while their color gradients inside the squares

represent cross-correlation values. Errors in the x-direction

only are represented, whose values are exaggerated in order

to clearly show the procedure. The homothetic transform of

each cross-correlation map is shown in Fig. 4c, while

Fig. 4b, c shows how the cross-correlation values are

ensemble-averaged in order to correct the first-order

polynomial coefficient. This homothetic relation can also

be expanded into higher-order polynomial coefficients.

2.5 Practical procedures

When dealing with a curved trajectory, attention should be

paid to stability in order to trigger the V-cycle correction.

The present method starts from the shortest trajectory and

extends it by adopting the pseudo-tracking procedure

(Jensen et al. 2003; Liu and Katz 2006) at both tails. In

extending the trajectory, the polynomial order should be

less than M in order to avoid under-determination of the

system, e.g., the polynomial order should be one or two

when M = 3.

After each pseudo-extension of the trajectory is com-

pleted, it is delivered into the iterative correction proce-

dure. Each correction procedure consists of one image

deformation and multiple V-cycle iterations. Once the

particle image sequence is deformed with respect to the

current trajectory, the V-cycle corrections are performed

iteratively by decreasing the scale of the sampling step Ds,

while Rk(Dak) is discretely sampled. To match the scale of

Ds as one pixel at the trajectory edges, Ds is initially set as

1/Tk pixels and decreased by a factor c, where 0.5 B c\ 1,

when one V-cycle correction is over. In the present

method, c = 0.5 was used. The V-cycle correction termi-

nates when Ds is smaller than the prescribed criterion Dscri.

Until the expansion is completed, the accuracy of the tra-

jectory is not a critical matter if the approximate trajectory

is known. Thus, the number of iterations, equal to the

number of image deformations, at the extension stage could

be reduced to\5, and the convergence criterion Dscri could

be set as a large value such as 0.1 pixels. At the final stage

of the complete trajectory evaluation, the iteration number

and Dscri should be newly set, e.g., 15 and Dscri \ 10-4.

Fig. 4 Demonstration of

coefficient correction.

a Transformed cross-correlation

maps (squares) based on

estimated trajectory (black), b,

c correction of horizontal

velocity Du. Dashed red lines

denote averaging processes
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The Jacobian matrices are set prior to the image defor-

mation at the beginning of each iterative correction pro-

cedure. Since the image deformation generally needs the

predictor correction in the interest of stable convergence

(Nogueira et al. 1999; Lecuona et al. 2002; Schrijer and

Scarano 2008), the trajectory is regulated by using the

neighboring trajectories. The Jacobian matrix at each grid

point is then evaluated based on the regulated trajectory by

referring neighboring grid points in the central difference

scheme (Raffel et al. 1998). In the case of a 2D system,

J can be expressed as:

J C0 x; nð Þð Þ ¼

2dxþ C0þdx � C0�dx

2dx

C0þdx � C0�dx

2dy
C0þdy � C0�dy

2dx

2dyþ C0þdy � C0�dy

2dy

2

6
6
4

3

7
7
5;

ð12Þ

wherein C0 denotes the regulated trajectory field, while dx

and dy denote the grid spacings in horizontal and vertical

directions, and C0�dx;C
0
�dy are corresponding neighboring

trajectories.

3 Numerical assessment

3.1 Synthetic image sequences and computational

parameters

Two image sequences including translation and rotation

were synthetically generated for quantitative evaluations,

following Adrian (1984), Raffel et al. (1998) and Lecordier

and Westerweel (2004). The image sequence with uniform

horizontal displacements u from 0 to 2 pixels was prepared

in order to compare the present algorithm with others, that

is, two-frame cross-correlation with an imposed interval

(Hain and Kähler 2007), sliding averaging method (Mein-

hart et al. 2000; Scarano et al. 2010), pyramid correlation

method (Sciacchitano et al. 2012) and FTC (Lynch and

Scarano 2013). Note that the iterative image deformation

(Scarano and Riethmuller 2000) was applied in every test

case. Figure 5 presents computational characteristics of

each algorithm. The image sequence with rigid rotation

from 0� to 90� was also generated using 5� steps. In the

case of the rigid rotation, only the FTC and the present

method (FTEE) were tested due to the limitations on the

optimal time separation under the curved flow motion. The

particles were randomly distributed over an image plane of

1,024 9 1,024 (translation) and 300 9 300 (rotation) pix-

els, respectively, with a uniform seeding density of 0.1

particles/pixel. The particle diameter was uniformly set as

1.414 pixels. The final interrogation window was set as

15 9 15 pixels with 75 % overlap (4 9 4 pixels spacing)

with Gaussian weighting (Astarita 2007). The interpolation

scheme for the image deformation, the sinc interpolation

scheme (Scarano and Riethmuller 2000), with 8 9 8 pixel

kernel was applied. The material accelerations of the

methods in the Eulerian perspectives and the trajectory-

based methods with P = 1 were computed by referring

neighboring velocities with a backward temporal scheme.

All TR-PIV methods mentioned in the present study along

with the synthetic image generator were coded in C??

using the SLIP library of Institut PPRIME and XLIM

(Tremblais et al. 2010).

3.2 Effects of the temporal interval and the averaged

cross-correlation

The effect of the normalized temporal interval n is pre-

sented in Fig. 6a. Here, the bias error b and the random

error r are defined for evaluation as:

bðuÞ ¼ uh i � u

rðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Ndata

XNdata

i¼1

uh i � uið Þ2
v
u
u
t where uh i ¼ 1

Ndata

XNdata

i¼1

ui;

ð13Þ

where ui and u are the measured and exact horizontal

displacements, respectively, while Ndata indicates the

number of measured points. Since the results have homo-

thetic relation with respect to 1/n, the analytic errors with

the imposed temporal interval n, bn and rn, were intro-

duced as:

bnðuÞ ¼
1

n
b1ðnuÞ where b1ðuÞ ¼ b1ðuþ 2Þ ð14aÞ

and

rnðuÞ ¼
1

n
r1ðnuÞ where r1ðuÞ ¼ r1ðuþ 1Þ; ð14bÞ

Fig. 5 Tested algorithms. Square boxes indicate single images, and

images used in each analysis are filled with gray while arcs mean

cross-correlations
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where the result when n = 1 is regarded as the basis error

profiles through b1 and r1. Note that the period of b1 is two

pixels due to the symmetric image deformation scheme.

Figure 6b provides the effect of the averaged cross-

correlation where Nc denotes the number of averaged

cross-correlation maps. Since the temporal interval of each

cross-correlation is identical, the bias errors show similar

profiles with slightly increased magnitudes. As shown in

Fig. 7, approximately 10 % increased bias errors were

obtained with respect to the case of single cross-correla-

tion. By sacrificing small amounts of bias error, the aver-

aged cross-correlation achieved significantly reduced

random errors. In cases of small u and Nc, the trend of the

random error looks similar to Fig. 6a regardless of the

approach, i.e., increasing n or Nc. But this trend disappears

for larger u and Nc, and the general feature of averaging is

shown. This could be explained in terms of a shared image

pattern and its averaging effect. The averaging of cross-

correlation maps was performed at the stationary grid

point, and thus, each cross-correlation map shared specific

portion of image pattern with the adjacent maps, e.g., (1 -

u/w)/w, where w is the window size. The consecutive cross-

correlations were highly coherent due to large amount of

the sharing portion, and thereby, effects of one biased

image pattern could affect two cross-correlation maps with

opposite directions. Therefore, the biased cross-correlation

maps could be compensated by each other. It is the reason

why the random errors have local minimums at u = 1/Nc.

As u or Nc increased, the coherency between each cross-

correlation disappeared and the averaging effect was

strengthened.

3.3 Multi-frame pyramid correlation

The bias and random errors of the multi-frame pyramid

correlation are shown in Fig. 8. Note that T, in the pyramid

correlation, represents the normalized maximum temporal

interval, i.e., T = M - 1. The overall trends follow the

two-frame cross-correlation under the same T, i.e.,

bT(u) and rT(u) from Eq. 14a, but they show improved

results. Since the cross-correlation maps from different

temporal intervals are ensemble-averaged, a contribution of

each temporal interval on the resulting bias error, cn, could

be quantified by using the following formula:

Fig. 6 a Results of two-frame

correlation with an imposed

interval n while analytic errors

refer the Eqs. 14a and 14b.

b Results of sliding averaging

with respect to a number of

averaged cross-correlation

maps, Nc, while solid black lines

are identical to b1(u) and r1(u)

Fig. 7 Increment in bias error Db due to the averaged cross-

correlation. Db is calculated from: Db = sgn(b1) � (bNc
� b1)
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bPYR;TðuÞ �
XT

n¼1

cnbnðuÞ ¼
XT

n¼1

cn

1

n
b1 nuð Þ

� �

;

where
XT

n¼1

cn ¼ 1:

ð15Þ

where bPYR denotes the bias error of the pyramid correla-

tion method. The contribution coefficients, cn, were eval-

uated in the least-square manner by sampling b1(u) from

every 0.05 pixel displacement. Figure 9 shows the plots of

normalized contribution coefficients cn/cT, which show the

specific trend irrespective of T. It means that the minor

temporal intervals, i.e., 1 to T - 1, can affect the final

result with specific portions. Since the combination of

oscillating profiles from various frequencies is able to

reduce overall magnitude, the mean fluctuations |b|avg and

ravg, averaged between u = 0 and 2 pixels, rapidly

decrease as T increases in comparison with the cases of

single cross-correlation as shown in Fig. 10. In contrast,

the pixel-locking effect is intensified in comparison with bT

due to the influences of the minor temporal intervals, i.e.,

b1–bT-1. In the perspective of the random error, the pyr-

amid correlation method also shows an improved perfor-

mance. However, how the ensemble-averaged cross-

correlation from different time separations reduces the

random error is still unknown, and further analysis is

necessary in order to reveal the theoretical mechanism.

Fig. 8 Results of the multi-

frame pyramid correlation in

comparison with the two-frame

correlation

Fig. 9 Normalized contribution coefficients cn/cT with respect to n/

T for the multi-frame pyramid correlation
Fig. 10 Reductions in averaged errors of the multi-frame pyramid

correlation as a temporal interval T increases (blue); black symbols

represent the results from the two-frame analysis, while dashed lines

indicate analytic estimates
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3.4 Trajectory-based methods, FTC and FTEE

The FTC and the present method (fluid trajectory evalua-

tion based on an ensemble-averaged cross-correlation—

FTEE) acquire the trajectories by the use of an identical set

of cross-correlation maps. The only difference between

FTC and FTEE is the method used to acquire the trajectory,

i.e., the least-square fitting and the ensemble-averaged

cross-correlation. This implies that the bias error profiles of

both methods should be identical but not the random error

profiles. Although both methods are able to reduce the

random error, the mechanisms influencing the random error

seem to be dissimilar. For the FTC method, the randomness

of each cross-correlation map may affect the cross-corre-

lation peaks and the subsequent least-square fit. This means

that the influence of relatively large errors is significant. In

contrast, the FTEE method is capable of excluding the

relatively large errors. This is the underlying principle of

the FTEE method, and thereby, a reduced random error is

expected compared to the FTC.

Since the FTC utilizes the least-square fitting, the bias

error profile, bFTC, can be analytically obtained from the

following:

bþ1 �Tuð Þ
..
.

bþ1 Tuð Þ

2

6
4

3

7
5 ¼

�T � � � �Tð ÞP

..

. ..
.

T � � � TP

2

6
4

3

7
5

bFTC;T uð Þ
..
.

bFTC;T aPð Þ

2

6
4

3

7
5;

ð16Þ

where T represents the normalized maximum temporal

intervals of cross-correlations, i.e., T = (M - 1)/2. b? and

r? denote the error profiles based on the forward defor-

mation scheme and have also homothetic relations similar

to Eqs. 14a and 14b.

bþn ðuÞ ¼
1

n
bþn ðnuÞ where bþ1 ðuÞ ¼ bþ1 ðuþ 1Þ ð17aÞ

and

rþn ðuÞ ¼
1

n
rþ1 ðnuÞ; where rþ1 ðuÞ ¼ rþ1 ðuþ 1Þ: ð17bÞ

Note that the period of b1
? is now one pixel because of

the forward deformation scheme. Then, the solutions for

P = 1, 2, 3 and 4 are derived as:

bFTC;T ;P¼1or2ðuÞ ¼
PT

n¼1 nbþ1 ðnuÞ
PT

n¼1 n2
ð18aÞ

and

bFTC; T ;P¼3or4ðuÞ

¼
PT

n¼1 n4 �
PT

n¼1 n3bþ1 ðnuÞ �
PT

n¼1 n6 �
PT

n¼1 nbþ1 ðnuÞ
PT

n¼1 n4 �
PT

n¼1 n4 �
PT

n¼1 n6 �
PT

n¼1 n2
:

ð18bÞ

Due to the orthogonality, the analytic solutions of one

and two are the same, and likewise for three and four.

Comparisons between the FTC, the FTEE and the analyt-

ical profiles are shown in Figs. 11 and 12 with good

agreement. Here, the basis profile, b1
?(u), was sampled

from every 0.05 pixel displacement with the forward image

deformation scheme in order to obtain the analytical pro-

files, bFTC(u).

As with the bias error, the random error of the FTC can

also be obtained analytically by the use of the basis profile

r1
?(u). In order to take into account a direction of the pixel-

locking effect, a signed profile en
?(u) was introduced:

eþn ðuÞ ¼ sgn bþn ðuÞ
� �

� rþT ðuÞ: ð19Þ

In addition, the coherency between r-n
? and r?n

? , dis-

cussed in the Sect. 3.2, should be also considered. Since the

simplest case, when T = 1 and P = 1 or 2, was obtained

from two cross-correlation maps whose image patterns are

identical, the signed random error rFTC,T=1,P=1or2 could be

assumed as:

eþFTC; T¼ 1;P¼1or2ðuÞ ¼
1

2
eþ1 ð2uÞ: ð20Þ

By assuming that the coherent relation can be applied to

the cases of n C 2 and the contribution of each signed

random error profile en
?(u) is identical to the contribution of

each bias error profile bn
?(u), the random error profiles read

as:

rFTC; T ;P¼1or2ðuÞ ¼
PT

n¼1 neþ1 ð2nuÞ
2
PT

n¼1 n2

	
	
	
	
	

	
	
	
	
	

ð21aÞ

and

rFTC; T ;P¼3or4ðuÞ

¼
PT

n¼1 n4 �
PT

n¼1 n3eþ1 ð2nuÞ �
PT

n¼1 n6 �
PT

n¼1 neþ1 ð2nuÞ
2
PT

n¼1 n4 �
PT

n¼1 n4 �
PT

n¼1 n6 �
PT

n¼1 n2
� �

	
	
	
	
	

	
	
	
	
	
:

ð21bÞ

Figure 11 supports these assumptions in deriving the

analytic random error profile of the FTC with good

agreement.

The random errors of the FTEE method were about

55 % of the errors of the FTC method under the same

conditions of T and P, as shown in Fig. 12, and thereby,

this shows that the ensemble-averaged cross-correlation is

capable of achieving about 45 % additional random error

reduction in comparison with the least-square fitting. The

random errors of the FTC and the FTEE methods about the

translating and rotating motion are compared in Fig. 13 in

terms of the maximum temporal interval. The minimum

reductions of random errors about the velocity and the

material acceleration are observed as 45 and 46 % for the
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Fig. 11 Result of the FTC in

comparison with errors

analytically obtained by

Eqs. 18a and 21a

Fig. 12 Result of the present method (FTEE) in comparison with the result of the FTC; for clear comparisons, the random errors of the FTC are

scaled by 55 % of the originals
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translation and 46 and 43 % for the rotation, respectively.

The random errors of velocity r(u) about P = X and

X ? 1, where X is an odd integer, show identical results

due to the orthogonality. On the other hand, the random

errors of material acceleration r(Du/Dt) about P = X ? 1

and X ? 2 show identical results due to the differentiation

of the trajectory function. The reductions in random errors

are observed as a steady ratio, about 45 % of the FTC

errors, irrespective of T, P and the flow motions. Therefore,

the FTEE method could be universally effective in multi-

frame PIV analysis.

4 Experimental assessment

A high-rate measurement of the flow around a NACA0015

airfoil of chord 80 mm with an angle of attack of 30�,

slightly oscillating from 28� to 32�, at Re = 105 has been

carried out in order to investigate the validity of the

numerical assessments. The image sequence was obtained

at a framerate of 1,500 Hz with 1,024 9 1,024 pixels

resolution. The final interrogation windows were set to

31 9 31 pixels with 75 % overlapping (8 9 8 pixels

spacing). Figure 14 shows instantaneous velocity contours

with contour lines to emphasize the random noise. The

multi-frame PIV methods show improved results in com-

parison with the two-frame correlation shown in Fig. 14a.

In the case of the pyramid correlation method, the veloci-

ties in the small nopt region were not improved due to the

limitation on the number of ensemble-averaged maps

(Fig. 14a4). Here, nopt was evaluated by referring the

guidelines of the pyramid correlation method. Since the

FTC and the FTEE methods account for curved fluid

motions with accelerations, the overall velocities show

improved results (Fig. 14b, c). Because the third-order

polynomial coefficient could affect the velocity, the results

from polynomial orders P = 2 and 3 show significant

differences. As the number of images M increases, both

FTC and FTEE present improved results. Compared to the

FTC method, the FTEE method shows improved results

with regressed random noise. Figure 14c4 shows contours

similar to Fig. 14c3 even though the polynomial order

increases.

The effect of the random noise is clearly shown in

Fig. 15 in the perspective of instantaneous material

acceleration. Note that the error correction process by

means of the median filter (Westerweel and Scarano

2005) was applied to the velocity and other polynomial

coefficients. Figure 15a4 shows the streamlines while

two rotating flow motions exist behind the leading and

trailing edges. Since the FTC and the FTEE methods

obtain the material acceleration directly while the Eule-

rian perspective-based methods refer the previous time

step, they show more reliable results. The major flow

rotation, starting from the trailing edge, is clearly

observed with centripetal material accelerations, and the

small rotation after the leading edge is also visible. Due

to the second-order polynomial coefficient, a half of

material acceleration is not closely related to the both

first- and third-order polynomials, and the results from

different polynomial orders P = 2 and 3 had the same

random noise levels (Fig. 15b, c).

Figure 16 provides the time histories of the horizontal

velocity and the vertical material acceleration. The velocities

were sampled at two grid points, indicated as A and B in the

sketch encapsulated in Fig. 16b, and the material accelera-

tion was sampled at grid point A only. The methods follow a

common trend overtime, while the FTEE has lower

Fig. 13 Comparisons of

random errors between the fluid

trajectory correlation (dashed

blue lines, FTC) and the present

(solid red lines, FTEE)
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fluctuating amplitude. As the angle of attack increases until

t = 30 ms, the horizontal velocity at the point A is acceler-

ated. Meanwhile, a strong rotating flow motion is generated,

thereby the vertical material acceleration has positive value.

As the angle of attack decreases from t = 30 ms, the velocity

is saturated for 10 ms while the rotating flow motion is still

observed at the point A until t = 40 ms. After t = 40 ms,

meaningful material acceleration is not observed because the

center of rotating flow is also moved upward with respect to

the location of trailing edge.

5 Conclusion

A novel multi-frame PIV algorithm has been proposed by

introducing the FTEE. The technique was designed to

obtain ensemble-averaged cross-correlation maps along

Lagrangian trajectories. Therefore, the measurement

robustness and accuracy have been improved while con-

sidering the curved and accelerated fluid motion. The

practical procedure has been introduced by deriving the

relation between the trajectory and the corresponding

Fig. 14 Instantaneous contours of velocity fields; contour lines are plotted every 0.2 pixels velocity magnitude

Exp Fluids (2014) 55:1766 Page 13 of 16 1766

123



cross-correlation maps in order to both economize on the

calculation cost and pursue the simple implementation into

the ordinary PIV method. To achieve this, the nonlinearity

in obtaining the solution was minimized by introducing the

gradual convergence method by means of the V-cycle

iteration. The ensemble-averaged cross-correlation map for

correcting each polynomial coefficient was constructed by

means of the homothetic transformation in relation to the

Jacobian matrix regarding the deformed image scheme.

To validate the present approach and prove its

applicability, the state-of-the-art TR-PIV methods, the

adaptive temporal interval, the multi-frame pyramid

correlation and the FTC were tested and compared. The

reason why each method is capable of reducing the

errors has been discussed in terms of algorithmic fea-

tures such as temporal interval, averaged cross-correla-

tion and least-square fitting. The analytic bias error

profile of each method was evaluated by taking into

account the contributions of various temporal intervals

in a good agreement with the numerical assessment. The

random error profiles were also investigated theoreti-

cally under several assumptions, but further approaches

Fig. 15 Instantaneous contours and vectors of material acceleration; vectors are plotted at intervals of three grid steps (i.e., 24 pixels). a4
Instantaneous streamlines are evaluated from the velocity field from the FTEE when M = 9 and P = 2
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in dealing with the averaged cross-correlation might be

essential in order to clarify the real mechanism. The

present approach achieved steady reductions in the

random errors, about 45 %, in both the translating and

rotating fluid motion compared to the FTC. Not only the

instantaneous velocity and material acceleration fields

but also their time histories from high-rate PIV exper-

iment supported the effectiveness of the present

approach.

As with the FTC method, the most important feature

of the present method (FTEE) was the material accel-

eration that is obtained with respect to the particle

image sequence by means of the modeled trajectory.

Both methods kept the framework of iterative image

deformation PIV in order to achieve the convergence

over the entire particle image. Therefore, the methods

were able to exclude a possibility of sudden temporal

change while computing the material acceleration in

comparison with the methods based on the Eulerian

perspective. Furthermore, since the present method has

adopted the ensemble-averaged cross-correlation, one

could expect greater reduction in random error com-

pared to the FTC. In conclusion, the FTEE method was

able to provide reliable displacement and material

acceleration with reduced random noise levels for

application of subsequent post-processes, such as eval-

uations of instantaneous pressure fields and fluid

dynamic loads.
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