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Abstract We present an implementation of super-large-

scale particle image velocimetry (SLPIV) to characterize

spatially the turbulent atmospheric boundary layer using

natural snowfall as flow tracers. The SLPIV technique

achieves a measurement area of *22 m 9 52 m, up to

56 m above the ground, with a spatial resolution of

*0.34 m. The traceability of snow particles is estimated

based on their settling velocity obtained from the wall-

normal component of SLPIV velocity measurements. The

results are validated using coincident measurements from

sonic anemometers on a meteorological tower situated in

close proximity to the SLPIV sampling area. A contrast of

the mean velocity and the streamwise Reynolds stress

component obtained from the two techniques shows less

than 3 and 12 % difference, respectively. Additionally, the

turbulent energy spectra measured by SLPIV show a sim-

ilar inertial subrange and trends when compared to those

measured by the sonic anemometers.

1 Introduction

Laboratory studies of near-surface phenomena occurring in

the atmospheric boundary layer (ABL) are severely con-

strained by the enormous differences in Reynolds number

associated with the limited range of spatial scales achiev-

able in wind tunnel experiments, and the inability to

reproduce the complexities of real-life atmospheric flows.

These limitations effectively reduce the relevance of

research outcomes to full-scale applications, adversely

affecting the study of a wide range of atmospheric fluid

mechanics problems, such as pollutant transport above

metropolitan areas and the response of civil infrastructure

to unsteady forces. Endeavors to furnish detailed flow

information are particularly important for the wind energy

industry where the size of modern utility-scale wind tur-

bines commonly exceeds 100 m, occupying a significant

portion of the ABL. The poor understanding of the aero-

dynamics around utility-scale turbines and multi-turbine

wind power plants drives premature component failure

(Musial et al. 2007) and contributes to suboptimal opera-

tion at the plant scale with average-rated power losses of

10–20 % (Barthelmie et al. 2009).

The current standard experimental techniques for the

assessment of ABL or related atmospheric fluid mechanics

problems include single-point measurement methods such

as cup and sonic anemometers, and large-scale flow field

profilers using reflected light (LiDAR) or sonic waves

(SODAR), among others. For example, arrays of sonic

anemometers (Hutchins et al. 2012) and hotwire ane-

mometers (Metzger et al. 2007) were utilized to study

coherent structures in turbulent boundary layers at very

high Reynolds numbers. Nacelle wind measurements,

along with meteorological tower data, have been used by

Vanderwende and Lundquist (2012) to quantify the effects
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of atmospheric stability regimes in the boundary layer on

turbine power generation. Aitken et al. (2012) examined

the ability of LiDAR technology to provide profile mea-

surements of wind speed, direction, and turbulence inten-

sity when impacted by weather conditions such as aerosol

backscatter, turbulence, humidity, and precipitation. Bar-

thelmie et al. (2006) focused on the characterization of

single turbine wake through the use of SODAR. Similarly,

the deployment of two SODARs and a lunar scintillometer

allowed for the measurement and evaluation of atmo-

spheric turbulence in mountains by Hickson et al. (2010).

Nevertheless, despite providing highly informative flow

characterization as shown by many research applications,

none of these standard techniques yield a whole-field

measurement with sufficient spatial and temporal resolu-

tions to quantify the significant unsteady flow structures

that are ubiquitous in the ABL. These structures include,

for example, large-scale energetic flow structures in the

ABL resulting from various ground covers, as well as a

variety of vortical structures in the wake of a turbine, such

as blade tip, hub and tower vortices.

Particle image velocimetry (PIV), based on tracking the

displacement of tracers in an illuminated flow field, is the

most popular non-intrusive measurement technique capable

of obtaining planar velocity distributions with the spatio-

temporal resolution required to study flow–structure inter-

actions (Adrian 2005). This technique in particular offers

valuable and complementary opportunities to advance the

characterization of atmospheric fluid mechanics problems.

For example, Nakiboğlu et al. (2009) applied the PIV

technique in a scaled laboratory setting to measure the

velocity field during a study of stack gas dispersion in the

ABL, utilizing a field of view (FOV) of approximately

0.3 9 0.4 m2 that encompassed the majority of the artifi-

cially generated ABL. In comparison, field implementation

of PIV to clarify the small-scale spatial structure of the

turbulence at the edge of a corn canopy by Van Hout et al.

(2007) employed a 0.18 9 0.18 m2 FOV, where the height

of the FOV ranged from just below the canopy edge to

0.77 m above, detailing only a fraction of the boundary

layer in the process. In another turbulent ABL field

experiment, Morris et al. (2007) conducted PIV over an

FOV of 0.5 9 1.0 m2 located at ground level to examine

Reynolds number dependence of the structure and statistics

of wall-layer turbulence. Thus far, these and other imple-

mentations of PIV have not achieved an FOV larger than a

few square meters or, when applied within the ABL at full-

scale, extended their measurement area beyond the near-

ground region, within the lowest 1 % of the boundary

layer. In addition, this scale is at least one order of mag-

nitude smaller than what is required for this imaging

technique to make an impact in quantifying ABL velocity

field or flow–structure interactions for full-scale

applications. Achieving the necessary FOV size requires

the solution to many technical challenges that include the

high demand for illumination intensity, the generation of a

super-large-scale light sheet, and the potentially intrusive

effects of a seeding apparatus (Whale et al. 2000). The

main obstacle for large-scale PIV measurements in an

outdoor non-laboratory environment is the requirement to

seed the flow field uniformly and persistently with tracers

in an environmentally benign, economic, and non-intrusive

fashion. A wide variety of artificially generated flow tracers

have been used in large-scale PIV measurement of gas

flows, e.g., oil droplets (Adrian et al. 2000), smoke/fog

(Van Hout et al. 2007; Morris et al. 2007), and helium-

filled soap bubbles (Bosbach et al. 2009). However, for

PIV measurement of a super-large FOV ([100 m2), it is

almost impossible to implement any of these artificial

seeding methods.

To overcome this obstacle, we introduce in the current

paper a super-large-scale PIV (SLPIV) technique utilizing

natural snowfall and its implementation for characterizing

turbulent flows in the ABL at the University of Minnesota

Eolos Wind Energy Research Field Station in Rosemount,

MN. A detailed description of the major considerations in

the seeding mechanism using natural snowfall, experiment

setup, deployment procedure, and PIV process are pre-

sented in Sect. 2. In Sect. 3, we display data from pre-

liminary validation of this technique through a comparison

of the mean velocity profile, Reynolds stresses, and energy

spectra to point measurement data from an instrumented

meteorological tower in immediate proximity to the sam-

pling area of the SLPIV measurements.

2 Experimental setup and analysis

2.1 Tracer particle selection

As mentioned above, it is almost impossible to use any

of the artificial seeding methods to achieve PIV mea-

surements in a field of *100 m2 scale. Therefore, we

have to rely on some natural phenomena to provide

long-lasting environmentally benign seeding particles.

The natural snowfall, endowed by the unique geographic

location of our field site at Minnesota, is utilized as the

seeding mechanism in our current research. This

approach has the following advantages: (1) natural

snowfall involves no economic or environmental cost;

(2) it covers a significantly larger region than the entire

field station and can thus ensure uniform and persistent

particle seeding in our sampling area; (3) snowflakes

have strong light scattering capability (especially side

scattering) owing to their multifacet crystal structure,

which lowers the illumination power required for particle
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imaging; (4) using natural snowfall does not involve

additional seeding apparatuses (jets, aerial platforms,

towers or other structures) to artificially introduce tracers

into the sampling area, which can perturb the original

flow field.

However, the inertial and gravitational effects of

snowflakes impose limitations on their traceability. Lib-

brecht (2005) discusses how the morphology and density

of snow particles can vary substantially according to

factors such as relative humidity and temperature. For

PIV seeding, it is preferable that the snow particles yield

a large surface area and well-defined dendrite structures

for strong light scattering yet remain porous and light

weight for good traceability. Since snowflakes are gen-

erally formed by a number of ice crystals weakly inter-

connected, the densities of porous snow particles can be

more than an order of magnitude smaller than that of the

ice. Measurements of fresh snow during snowfalls typi-

cally report a mean density in the range of 50–100 kg/m3

(e.g., Kaempfer and Schneebeli 2007; Clifton et al. 2008).

Generally, the traceability of snowflakes can be charac-

terized by the Stokes number St = sp/sf, where sp is the

particle response time, and sf is a flow time scale, defined

as the ratio of a characteristic length scale l to velocity

fluctuation uf of the flow, i.e., l/uf. For good traceability,

the Stokes number should be substantially smaller than 1.

The drag coefficient depends on the particle Reynolds

number, Rep = qd|uf - up|/l, where q is the fluid den-

sity, d is the mean diameter of the particles, uf and up are

the fluid and the particle velocity, respectively, and l is

the dynamic viscosity of the fluid. Based on the drag

correction factor that Crowe et al. (1998) suggest, the

particle response time for a tracer whose density is much

greater than the fluid density and Rep \ 800 is formulated

as sp = qsd
2/[18 l (1 ? 0.15Rep

0.687)].

During our deployment, we measured the largest

extension as the characteristic size of the snowflakes to

be within the range of 1 mm to 3 mm by sampling the

fresh snowflakes on the ground. In order to estimate the

traceability of snowflakes, we approximate them as

spherical particles, although we acknowledge the fact

that the snowflakes have a more complex morphology,

which requires more sophisticated measurements to be

determined. The assumption of modeling snowflakes as

spheres is employed in other relevant studies on snow-

flake drag force analysis (e.g., Hanesch 1999). From the

measured range of snowflake size, we approximate the

snowflakes as spheres of d = 2 mm diameter. An esti-

mate of the Stokes number for our experiment using the

settling velocity measured by SLPIV is presented in the

results Sect. 3.2, which shows reasonably good trace-

ability of snow particles for the large-scale turbulent

motions of interest.

2.2 Experimental setup

The field deployment to acquire the data presented here

began around midnight on March 5th, 2013, before an

upcoming snow storm at the University of Minnesota Eolos

Wind Energy Research Field Station in Rosemount, MN.

This facility consists of a 2.5 MW Clipper Liberty C96

wind turbine and a 130 m meteorological tower (hereafter

referred to as the met tower). The met tower, located 160 m

south of the turbine (as south is the predominant wind

origin), is designed to characterize the local atmospheric

boundary layer. The met tower includes four Campbell

Scientific CSAT3 three-dimensional sonic anemometers

with 20 Hz sampling rate (located at z = 10, 30, 80, and

129 m) and six cup-and-vane anemometers operating at

1 Hz (located at z = 7, 27, 52, 77, 102, and 126 m).

Temperature and relative humidity sensors are also

mounted directly on the tower adjacent to the cup-and-vane

anemometer booms. Figure 1 illustrates the wind direction

and the location of the wind turbine, met tower, and SLPIV

experimental setup during the deployment. The SLPIV

setup was placed directly adjacent to the met tower where

the local meteorological conditions and wind velocity

could be accurately determined with the tower sensors. The

topography upstream of the measurement plane is a nearly

flat field on the scale of 2 km, with a few very sparse

roughness elements such as scattered 1–2 story buildings

and tree patches. As Manes et al. (2008) discuss, snow

coverage can provide additional modulation of the terrain

roughness, a consideration applicable to the conditions

during our experiment.

The major components in the SLPIV setup (illustrated in

Fig. 2) include a light sheet generation system, a high

spatial resolution camera mounted on a tripod, and a data

acquisition system. The light sheet generation system,

shown in Fig. 2a, consists of a 5 kW xenon arc lamp

searchlight (Sky Rose model from Grace Stage Lighting)

and a curved reflector. The searchlight, powered by Briggs

and Stratton 6 kW portable generator, is highly collimated

with a divergence less than 0.3�. The beam exiting the

searchlight is a disk 300 mm in diameter. Our measure-

ments show that the beam diameter only widens to 600 mm

in the first 100 m of its path, which ensures reasonably

uniform thickness in both the vertical and horizontal span

of our sampling area. The curved reflecting mirror is used

to project the beam vertically while expanding it into a

light sheet. The expansion angle of the light sheet can be

adjusted by controlling the curvature of the reflecting

mirror. In our experiment, we limit the expansion angle of

the light sheet to 12� in order to concentrate illumination

power, thereby extending the vertical span of the SLPIV

measurements (Fig. 2b). The entire light system is affixed

to a trailer providing good mobility for aligning the light
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Fig. 1 a A Google map

showing the location of the

wind turbine, met tower, and

SLPIV experimental setup

during the deployment on

March 5th, 2013. Note that the

photographed orientation of the

turbine in the Google image

does not represent the actual

orientation during the

deployment. b A survey map of

the deployment

Fig. 2 a The setup of the light sheet generation system. b A photographic image and c a schematic of the experimental setup
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sheet in the predominant wind direction to reduce the out-

of-plane error as required for planar PIV measurement.

A schematic of the experimental setup is presented in

Fig. 2c. The light sheet in the illustration is cutoff at 56 m,

which was the maximum height of the SLPIV sampling

area limited by the current illumination power and camera

sensitivity. The imaging device was a 5 K 9 5 K pixel

CMOS camera (4.5 lm/pixel) equipped with a 50 mm

f/1.2 Nikon lens, with the ability to capture up to 30

frames/s at full sensor size. In this setup, the camera was

located 116 m from the light sheet and operated at 15

frames/s with a sensor arrangement of 2 K 9 5 K pixels.

The numerical aperture on the Nikon lens was adjusted to

its upper limit to maximize the light reception of the

camera sensor. To reduce blurring created by continuous

lighting, the camera shutter speed was set to 45 % of

1/frame rate. Further increase in the shutter speed could

result in better imaging of snow particles but was con-

strained by the lack of illumination power in the upper

portion of the viewing field. The optical axis of the camera

was in a plane perpendicular to the light sheet and tilted

13.8� from the horizontal. For imaging in a tilt angle, a

Scheimpflug adjustment device is used to create a slight

angle between the lens plane and camera sensor plane in

order to achieve an in-focus image for the entire sampling

area. The corresponding depth of field (DOF) for this

configuration was calculated to be *400 mm.

To calibrate our measurements, we first aligned the opti-

cal axis perpendicular to the light sheet and level to the

ground about its yaw axis, and then measured the tilt angle of

the camera (13.8�) and its horizontal distance from the light

sheet required to capture the desired field of view. Due to the

tilt of the camera, the distances between the lens and the

horizontal rows in the FOV at different heights are not the

same. For example, the object distance (Lo) for the rows in

the upper region of the FOV is longer than that for the rows

closer to the bottom (Fig. 2c). This variation in the object

distance causes non-uniformity in magnification and con-

sequently non-uniformity in pixel resolution. Based on the

focal length of the imaging lens (50 mm) and the object

distance for the central row in our FOV, the corresponding

image distance from the lens (Li) is calculated using the thin

lens equation (1/f = 1/Lo ? 1/Li). Consequently, the mag-

nification (Mc = Li/Lc * 4.2 9 10-4) and the correspond-

ing pixel resolution (i.e., 10.8 mm/pixel) for the central row

of the FOV were first calculated to provide the initial esti-

mate of the FOV size. This initial estimate of the pixel res-

olution was used to determine the object distance for

different rows of the FOV. Subsequently, this information

was provided for the second iteration of the calibration to

correct the magnifications at different heights using

M(i) = Li(i)/Lo(i), where M(i), Li(i), and Lo(i) are the mag-

nification, the image distance, and the object distance

corresponding to horizontal pixel row number i, respec-

tively, as illustrated in Fig. 2c. The calibration process can be

iterated to obtain more accurate pixel resolution by substi-

tuting the initial estimate of pixel resolution with the updated

pixel resolution calculated from the previous step for object

and image distance calculations. However, our test has

shown little change of pixel resolution after the second

iteration. As a result, the non-uniform pixel resolution at

different elevations caused by the tilt angle of the camera,

ranges from 10.5 mm/pixel at the lowest height to 11.5 mm/

pixel at the highest elevation within the FOV, and the size of

the sampling area was determined to be *22 m 9 55 m

spanning from 1 to 56 m vertically (see Fig. 2c). The light

sheet thickness in the FOV was estimated to be

390 ± 80 mm, close to the *400 mm DOF of our imaging

system. The uncertainty involved in our calibration process

includes contributions from both the uncertainty of the hor-

izontal distance measurement (to the camera from the light

sheet) and that of the camera tilt angle measurement.

According to the specification of our experiment setup and

calibration instruments, the maximum light sheet thickness

in our FOV (i.e., 470 mm) is the dominant source of the

distance measurement uncertainty. The uncertainty of the

angle measurement determined by the specification of our

angular measurement device is 0.2�. Therefore, the total

uncertainty of the calibration process is estimated to be less

than 0.06 mm/pixel, corresponding to a maximum uncer-

tainty in the velocity measurement of approximately

0.034 m/s.

Five different SLPIV runs were conducted between 1:27

am and 1:45 am, each containing 34 s of 2 K 9 5 K

images sampled at 15 Hz (the start and end time for each of

these data sets is included in Table 1). The duration of each

run was limited by the storage capacity of our acquisition

system. The weather and micrometeorological conditions

during this period were obtained from the met tower. The

temperature stayed between -4.4 �C and -5 �C from 7 to

126 m above the ground with little fluctuation in time.

Similarly, the relative humidity remained nearly constant

around 98 %. However, from the data provided by sonic

anemometers, we observed a discrepancy of predominant

wind direction at different elevations, from 253� (clock-

wise from north) at z = 10 m to 278� at z = 129 m over

the period of our measurement. The light sheet was aligned

with the predominant wind direction (253�) measured by

the sonic anemometer at the lowest elevation (Fig. 1).

During the 1:27–1:45 am period, the bulk Richardson

number, estimated as Ri = ghDT/TsUh
2 = -0.07, indicated

that the ABL was weakly unstable; here, the surface tem-

perature Ts was approximated using the temperature mea-

sured by the sensor located at 7 m above the ground,

DT & 0.5 K is the mean temperature difference observed

along the met tower from 7 to 126 m and Uh is the time-
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averaged wind speed at the highest met tower sensor ele-

vation of 129 m.

2.3 Snow PIV image processing

Numerous sources of noise and errors can co-exist for PIV

images, including shutter noise, dark noise, diffraction

noise, and the nonlinear and non-uniform response of the

camera (Huang et al. 1997). However, the main source of

the noise in our experiment was the non-uniform light

intensity over the imaging plane, which was caused by

light intensity reduction along the light sheet height due to

the light absorption by the dense particle field of snow-

flakes. As illustrated by a sample of a recorded snow par-

ticle image in Fig. 3a, the image intensity was drastically

reduced with elevation increase, which resulted in lower

signal-to-noise ratio (SNR) at higher elevations. To quan-

tify the variation in SNR, we define SNR = IP/Io, where IP

and Io are averaged intensities of the snow particles and the

averaged background intensity, respectively, within

32 9 32 pixel windows at different elevations over the

FOV. The SNR value of the original SLPIV images was

found to drop from 3.7 at z = 5 m near the light source to

1.4 at z = 50 m near the upper extent of the FOV. As

Fig. 3 shows, very near the illumination light source (i.e.,

z \*4 m), the particle images contain highly saturated

spots and large particle voids associated with vortical flow

Fig. 3 A sample of a the original snow particle image (the white dot-

dashed line shows the centerline of the illuminated area) and b the

enhanced particle image after subtraction of time-averaged back-

ground and moving local spatial average, and gray-scale equalization.

A magnified view of a 240 9 185 pixel window illustrates the effect

of enhancement on the particle image. c Magnified particle images in

selected 32 9 32 pixel interrogation windows at different elevations

in the enhanced sample image, illustrating the sufficient seeding

density for PIV vector calculation

Table 1 Time durations for five PIV runs synchronized with met

tower sensors

Data set Start time End time

#1 1:27:44 am 1:28:17 am

#2 1:33:18 am 1:33:51 am

#3 1:35:51 am 1:36:24 am

#4 1:37:59 am 1:38:32 am

#5 1:40:29 am 1:41:02 am
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structures generated from the illumination system. There-

fore, to ensure valid vector calculations, the PIV cross-

correlation was only implemented in the range from

z = 4 to 56 m.

To achieve accurate PIV vector calculation, the origi-

nal particle images were enhanced by subtraction of the

time-averaged background and moving local spatial

average, along with gray-scale equalization. The

enhanced version of the PIV image with an enlarged view

of a 240 9 185 pixel window is illustrated in Fig. 3b.

The image enhancement algorithm increased the SNR of

the original SLPIV images by 2.5 times on average.

Figure 3c shows the magnified particle images in ran-

domly selected 32 9 32 pixel windows at different ele-

vations in the enhanced sample image. As it

demonstrates, each window contains 5–7 snow particles,

which indicates that the tracer field resulting from natural

snowfall is sufficiently homogeneous and dense for

implementing PIV vector calculation using a 32 9 32

pixel interrogation window. The size of snowflakes varies

between 6–15 pixels, which are larger than their actual

size. In general, the tracer particles appear larger than

their true diameters in the particle image of scattered light

(Adrian 1991; Adrian and Westerweel 2011). Specifically,

the diameter of a tracer particle in the image, di, is

determined by the particle’s scattering diameter d, the

imaging magnification (M), and the point response func-

tion of the lens. According to Adrian (1991), the diameter

of an imaged particle is formulated as, di = (M2d2 ?

ds
2)1/2, where ds is the diameter increment contributed by

diffraction. The ds is then provided as, ds = 2.44(1 ?

M)f #k, based on the lens f number, f #, and the wave-

length of illumination light source, k. Moreover, the

imaged particles can be larger than this estimate due to

various reasons: (1) the complex shape and multifacet

characteristics of snowflakes results in greater scattering

capability compared with those of spherical particles of

the same mass (Matrosov et al. 2005). This reason causes

similar discrepancy for sand particles as reported by

Zhang et al. (2008). (2) The elongation of the snowflakes

along their traveling trajectories associated with the lim-

ited shutter speed, which could also contribute to the non-

uniformity of the imaged snowflake size at different

elevations due to the variation in wind velocity. The non-

uniform distribution of imaged snowflake size also has a

large contribution from the decreasing illumination at

higher elevations as the light propagates through the

snow-seeded field due to light absorption and scattering

by snowflakes. In addition, the scattering properties of ice

crystals-like snowflakes are highly dependent on their

orientation (Matrosov 1993; Aydin and Singh 2004),

which might also contribute to the variation in particle

diameter within our FOV.

The adaptive multi-pass algorithm from LaVision DaVis

7.0 software was employed to calculate the cross-correla-

tion between consecutive image pairs. We applied this

algorithm using an initial interrogation window of

128 9 128 pixels, which was then stepped down to

32 9 32 pixels with 50 % overlap. This calculation pro-

vided a velocity vector field of 0.17 m/vector on average

over the sampling area (corresponding to 0.34 m spatial

resolution considering 50 % overlap), close to the out-of-

plane resolution of our PIV measurements determined by

the light sheet thickness or DOF of the imaging system

(whichever is smaller). Based on the camera settings and

wind conditions during the deployment, the frame-to-frame

particle displacement was 15–32 pixels, which is less than

25 % of the initial interrogation window size, satisfying the

requirement of the PIV cross correlation algorithm.

According to Keane and Adrian (1993) and Adrian and

Westerweel (2011), the uncertainty of the vector dis-

placement obtained from PIV 2D cross-correlation is

0.1–0.2 pixels for optimum particle size (2–3 pixels).

However, based on the simulation by Raffel et al. (2007)

using synthetic particles, this uncertainty rises to 0.3–0.5

pixels for particle sizes of 10–15 pixels using 32 9 32

interrogation window in PIV cross-correlation calculation.

This displacement uncertainty corresponds to a maximum

velocity uncertainty of 0.086 m/s in our measurement. It is

also noteworthy that the spatial resolution of the current

SLPIV measurements corresponds to *5.2 9 103 lm,

*240 g and *0.016 dh, where lm, g, and dh represent the

viscous length scale, Kolmogorov scale, and the momen-

tum thickness of the ABL during our experiments,

respectively. The viscous length scale is estimated using

the friction velocity obtained from a least square log-fit of

the mean velocity profile measured by SLPIV (presented in

Sect. 3.1). The Kolmogorov scale is calculated to be

*1.4 mm from g = (m3/e)1/4, where m is fluid kinematic

viscosity and the dissipation rate, e is approximated based

on the balance between TKE production (\u0w0[ du/

dz) and dissipation. This TKE balance is valid for the

elevation span of the logarithmic layer in our mean

velocity profile (presented in the Sect. 3.1). Note that the

estimate of Kolmogorov scale here only offers a crude

appreciation of our measurement resolution, which does

not consider the uncertainties involved in the calculation of

turbulence statistics using PIV data and the fact that planar

PIV provides only the in-plane production terms of TKE.

The momentum thickness is estimated from the mean

velocity profile near ground (z = 10 m) up to the highest

elevation of the met tower (z = 129 m) using the sonic

anemometer measurements. As the above discussion

shows, our measurements are intended to capture the large

scale, energetic turbulent motions in the ABL, not to

resolve the full spectrum of turbulence.
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3 Results and discussion

In this section, the SLPIV technique using natural snowfall

is validated by comparison of the time-averaged stream-

wise velocity component, Reynolds stress profiles, and

turbulent energy spectra from the SLPIV measurements to

those obtained from the sonic anemometers within the

FOV. Additionally, the wall-normal velocity of the snow

particles determined by SLPIV is used to evaluate their

flow traceability.

3.1 Mean velocity profile

The previously mentioned variation in the predominant

wind direction with height resulted in differing degrees of

misalignment between the wind direction and the SLPIV

imaging plane within the sample area. The maximum

misalignment within the FOV was found to be 13� at

z = 30 m, which led to an out-of-plane error. This error

was estimated as v 9 Dt/Dz & 0.15, where v is the out-of-

plane velocity component, Dt is the time step between

consecutive PIV images, and Dz is the light sheet thickness

(Keane and Adrian 1993). This maximum error is within

the acceptable range for PIV measurements, v 9 Dt/

Dz \ 0.25, according to Keane and Adrian (1993). Nev-

ertheless, to compensate for the misalignment effect, the

velocity measured by the sonic anemometers was projected

onto the SLPIV imaging plane when compared with the

SLPIV measurements. To illustrate the quality of our

vector calculations, a sample of the instantaneous velocity

field measured by SLPIV is presented in Fig. 4a, b shows a

comparison of the mean velocity obtained from these two

instruments after the projection. The mean velocity profile

from SLPIV was obtained by averaging *2,500 vector

fields spanning 167 s, which is plotted from z = 4 m to

z = 56 m against the velocity from the two sonic ane-

mometers available in the SLPIV sampling area averaged

over the same period. In addition, similar to Hong et al.

(2011) the convergence error for mean velocity was esti-

mated using bootstrap analysis, which is implemented by

randomly selecting subsamples of 2,000 data points to

calculate the statistical distribution of measured mean

velocity. The criterion for uncertainty is taken to be twice

the standard deviation of the measured statistics distribu-

tion, which provides a 95 % level of confidence. As a

result, the spatially averaged convergence error over the

span of our measurement area for the mean velocity is

*0.005 m/s, which is negligible compared to our velocity

measurement uncertainty. Note that SLPIV data used for

calculating mean velocity and turbulent statistics are only

sampled along the centerline of the area covered by the

light sheet as shown in Fig. 3a to minimize the effect of

deteriorated data quality closer to the edge of the light

sheet. The comparison between the two instruments at

corresponding elevations shows less than 3 % difference in

the velocity values (2.2 and 2.8 % at z = 30 m and

z = 10 m, respectively). This discrepancy can be contrib-

uted by the uncertainties involved in the calibration pro-

cess, vector calculation of the PIV measurements, and the

convergence error since the total contribution of these

uncertainties (\0.13 m/s) is comparable with the maximum

difference between sonic and SLPIV measurements

(*0.1 m/s). Needless to say, this discrepancy can be also

affected by the uncertainty associated with sonic ane-

mometers velocity measurement, i.e., 0.08 m/s for each

velocity component (provided by the 2012 Campbell Sci-

entific instruction manual).

In a semi-log coordinate system, the mean velocity

measured by SLPIV in the range of z = 6–30 m conforms

well to a straight line, which corresponds to a log-layer

profile. For fully rough turbulent boundary layer, the mean

velocity in the log-layer (neglecting the wake effect term)

can be represented as U?=(1/j)ln(z/zo), where U? is the

mean streamwise velocity scaled by the friction velocity

u*, the von Karman constant j is chosen to be 0.41, and

z/zo is the non-dimensional wall-normal height using the

aerodynamic roughness length zo (Jiménez 2004).

Accordingly, a least square log-fit of SLPIV data from

z = 6 m to z = 30 m resulted in u* & 0.2 m/s and

zo & 0.01 m, which were used to scale the mean velocity

profiles from both SLPIV and sonic anemometers. The

results are presented in a semi-log plot in Fig. 4c and show

that, below z = 6 m (z/zo = 60), the wind velocity deviates

substantially from the log-layer profile. This deviation may

be due to the presence of the roughness sublayer, the

portion of turbulent boundary layer influenced by surface

roughness, existing 2 to 5 h above the ground, where h is

the actual height of the roughness element (Raupach et al.

1991). However, according to the topography upstream of

our measurement site, it is unlikely that the general

upstream terrain could result in the roughness influence of

zone extending up to *6 m above the ground. Therefore,

we infer that the observed deviation from the logarithmic

profile in the surface region of our sampling area is also

caused by the local roughness induced by the light-gener-

ation system, including the trailer and optical setup

(*1.5 m in height), and a fence around the base of the met

tower, in addition to the nearly homogeneous roughness of

the terrain. Moreover, it is noteworthy that, as indicated by

the sonic measurements, wind direction varied substan-

tially with elevation during our experiment (*25� between

z = 10 m and z = 80 m). This gradient of wind direction

in the atmospheric boundary layer has been described in

other studies using meteorological towers (e.g., Handorf

et al. 1999; Zilitinkevich et al. 2002; Genthon et al. 2010),

and Genthon et al. (2010) claims this phenomenon reflects
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the lower part of an Ekman spiral. However, none of these

prior studies are able to quantify this effect on the loga-

rithmic layer of the mean velocity profile, which could also

contribute to the deviation from the log-layer observed in

the FOV of our PIV measurements.

3.2 Settling velocity and the traceability of snow

particles

The accuracy of PIV measurements depends highly on the

ability of flow tracers to follow the turbulent motions at the

scales of interest. As mentioned in Sect. 2.1, the trace-

ability of snowflakes can be estimated based on their set-

tling velocity Ws. Here, we obtain the settling velocity of

snowflakes by comparing the wall-normal velocity mea-

sured with SLPIV to that of the sonic anemometers during

our deployment. Figure 5 shows the time-averaged wall-

normal velocity within the measurable range of SLPIV

(z = 4–56 m) and the sonic anemometers. The time-aver-

aged wall-normal velocity from SLPIV measurements

varies from -0.8 m/s at z = 56 m to -1.2 m/s at z = 4 m,

with a spatial average value of -1.1 m/s in our sampling

area. White et al. (2002) also mentions an increase in snow

particles’ fall speed as they approach the ground. This

increase in snowflake settling velocity can be attributed to

various factors including: (1) an increase in snowflake

density (Brandes et al. 2007); (2) a change in the shape of

the snowflakes to become aerodynamically flattened or

tapered during their fall (Jiusto and Bosworth 1971); (3)

the sensitivity of the settling velocity of snowflakes to

different turbulence levels as they approach the ground

(Maahn and Kollias 2012). The increase in density can be

caused by a porosity change in the snowflakes or by the

temperature gradient as they travel through the air, while

the change in shape can be a result of a variation in riming

degree or crystal type of the snowflake, or snowflake

aggregation. The aggregation of snowflakes is expected

during our experiment since the temperature was between

-4.4 �C at z = 7 m to -4.6 �C at z = 55 m within the

FOV, which is almost the same as the temperature found by

Fig. 4 a A sample of an x–z plane instantaneous velocity vector

fields from SLPIV measurements superimposed with the contours of

the mean velocity magnitude |V| (note: the velocity vectors are

skipped in 1:3 for clarity). The white dot-dashed line shows the

centerline of the illuminated area. b The linear plot and c the semi-log

plot of the time-averaged streamwise velocity profile measured by

SLPIV and sonic anemometers
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both Hobbs et al. (1974) of -5 �C and Hosler et al. (1957)

of -4 �C as the point where the likelihood of snowflakes

aggregation escalates due to higher particle stickiness.

Comparatively, the wall-normal velocity from sonic mea-

surements stays close to 0 at all the elevations within the

FOV. Hence, we estimate the settling velocity of the snow

particles to be Ws & 1.1 m/s during the experiment. To

compare this value with other studies, a selection of

snowflake settling velocity measurements from prior

experimental investigations is summarized in Table 2. As it

shows, the settling velocity measured by our SLPIV tech-

nique is reasonably close to the snow settling velocities

predicted by the multiple schemes discussed for unrimed

aggregates of thin plates by Mitchell and Heymsfield

(2005). The relative increase of *0.2 and *0.3 m/s in

settling velocity from the unmelted/unrimed dendrites to

melted and rimed dendrites, respectively, can be clearly

observed in measurements by Langleben (1954). In addi-

tion, our measurements are within the range of the inter-

relation of temperature and settling velocity presented by

Brandes et al. (2007).

The particle Reynolds number for snowflakes under a

spherical shape assumption was estimated to be *178,

which is clearly outside of the Stokes flow regime. Using

the drag coefficient corresponding to this Reynolds number

regime (Crowe et al. 1998), we obtained the same settling

velocity using snow particles of diameter 2 mm with

density qs & 52 kg/m3. To achieve an estimate of the

turbulence scales captured in our measurements, we make a

comparison of the snowflakes to a common PIV tracer,

e.g., olive oil droplets (qs = 970 kg/m3, d = 3.1 lm from

Melling 1997). Under our experimental conditions, the

particle response times (sp) are 11 9 10-2 s and

3.24 9 10-5 s for snowflakes and olive oil droplets,

respectively. Therefore, for the same level of traceability,

the smallest resolvable turbulence length scale using

snowflakes is *3,400 times larger than that of the olive oil
Fig. 5 Time-averaged wall-normal velocity within the measurable

range of SLPIV and sonic anemometers

Table 2 Selection of snowflake fall speed measurements from other experimental studies

Size (mm) Settling velocity (m/s) Crystal type T (�C)

Langleben (1954) 0.8–2.4 (MD) 0.7–1.0 Dendrites -2

0.8–2.4 (MD) 1.1–1.5 Columns and plates -4

0.8–2.4 (MD) 0.9–1.2 Melting dendrites 0.5

0.8–2.4 (MD) 1–1.3 Rimed dendrites -4

Jiusto and Bosworth (1971) 1–12 (D) 0.7–1.1 Dendritic aggregate NA

1–12 (D) 0.9–1.6 Dense snowflakes (plate and column aggregates) NA

Hanesch (1999) 1–10 (VE) 1.0–1.1 Needles: DOR = 0.4 (unrimed to lightly rimed) -0.5

1–10 (VE) 1.1–1.6 Partially melted needles: DOR = 0.7 (lightly rimed) 0

1–10 (VE) 1.0–1.4 Dendrites: DOR = 1.0 (lightly rimed) -1

1–10 (VE) 1.4–1.5 Dendrites and needles: DOR = 1.2 (lightly rimed) -1.5

4–8 (VE) 3.1–4.8 Graupel: DOR = 5 (graupel) -2

Mitchell and Heymsfield (2005) 1–10 (MXD) 0.7–0.9 Unrimed aggregates of thin plates -5

1–4 (MXD) 0.3–0.5 Unrimed dendritic crystals -5

Brandes et al. (2007) 1–11 (EVD) 0.8–1.1 Dendrites, plates, stellars, and their aggregates. 0.1

1–8 (EVD) 1.0–1.4 Irregular snow particles and lump graupel -0.5

MD, melted diameter; D, diameter; VE, vertical extension; MXD, maximum diameter; EVD, equivalent volume diameter; DOR, degree of

riming
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droplets. According to Melling (1997), the olive oil droplets

can be employed to resolve turbulent frequencies smaller

than 1 kHz (sf C 1 9 10-3 s), which corresponds to a

turbulence length scale of l = uf 9 sf = 4 9 10-4 m using

the maximum value of the root-mean-squared streamwise

velocity fluctuations in our sampling area (i.e., uf = 0.4 m/

s). Consequently, with the same level of traceability as olive

oil droplets capturing turbulent frequencies equal to 1 kHz,

snowflakes can trace turbulence length scales above 1.36 m.

This length scale, in fact, is fourfold the size of our PIV

interrogation window (0.34 m) which imposes another limit

on the smallest resolvable turbulence length scale for our

measurements. In addition, using a length scale l to be our

SLPIV interrogation window size (smallest resolvable

length scale regardless of the tracer type) results in

St = 0.13. Furthermore, a decrease in the Stokes number in

accordance with an increasing scale of turbulent structures

would suggest a substantial improvement in snow trace-

ability for the large-scale turbulent motions. For instance, to

resolve a turbulent eddy of 1 m with a characteristic tur-

bulent velocity scale of 0.4 m/s yields the Stokes number

St = 0.04, in which case snow particles are deemed

acceptable tracers. Finally, the probability density function

calculated for velocity fluctuations measured by two sonic

anemometers within the FOV shows only 22 % relative

likelihood for u0 to be more than 0.4 m/s, indicating that the

above estimate of the particle traceability is statistically

representative for our SLPIV measurements.

3.3 Turbulent statistics

The vertical profiles of three in-plane Reynolds stress

components and in-plane turbulent kinetic energy (TKE)

measured by SLPIV and the sonic anemometers are pre-

sented in Fig. 6. The in-plane Reynolds stresses include the

streamwise component \u0u0[, wall-normal component

\w0w0[, and Reynolds shear stress \u0w0[. The results

from SLPIV measurements yield similar trends as those

from sonic anemometers. Using the same bootstrap ana-

lysis as explained in Sect. 3.1, the convergence errors

(averaged over the elevation span of FOV) are estimated to

be 0.004 m2/s2 for \u0u0[, 0.0016 m2/s2 for \w0w0[, and

0.0012 m2/s2 for\u0w0[. The\u0u0[obtained from SLPIV

have 12 and 5 % difference compared with the corre-

sponding values from sonic measurements at z = 10 m and

at z = 30 m, respectively. These differences are within the

convergence error of \u0u0[ from SLPIV measurements.

According to Wilson and Smith (2013), the higher uncer-

tainty at z = 10 m as compared to that at z = 30 m may be

related to the higher velocity gradient and smaller particle

displacement near ground.

For \u0w0[ and \w0w0[, the deviation between two

measurements is above 30 %. Compared with that of\u0u0[,

this substantial increase in deviation is primarily related to

the significantly smaller wall-normal velocity fluctuations,

in which case the relative uncertainty of w0 involved in PIV

calculation is much larger than that of u0. Note that in the

elevation span of z = 6 - 30 m, where the mean velocity

profile conforms logarithmic law (as illustrated in Fig. 4c),

the spatially averaged\u0w0[from SLPIV captures *40 %

of the u*2 in which the u* is estimated from the mean velocity

profile. This result compares favorably with the sonic mea-

sured\u0w0[, which contains only *15 % of u*2. Cautions

need to be taken when interpreting the above results. First, as

discussed in the Sect. 3.2, the mean velocity profiles from

both SLPIV and sonic measurements do not conform to a

canonical log-layer profile in the ABL (though there is a

logarithmic region). Therefore, the u*2 derived from the

logarithmic region of the profile may not be an accurate

estimate of the Reynolds shear stress \u0w0[. Second, the

deviation of\u0w0[and\w0w0[between two measurements

should be mainly contributed by the uncertainty of the both

measurements, rather than the attenuation due to the limited

PIV spatial resolution as a number of prior studies state (e.g.,

Lavoie et al. 2007). This is because the lower spatial reso-

lution of SLPIV associated with a larger interrogation vol-

ume (i.e., 0.34 9 0.34 9 *0.4 m3 vs. *3.3 9 10-6 m3 of

the sonics) decreases the magnitude of SPLIV measured

Reynolds stresses, while the \w0w0[ and \u0w0[ from

SLPIV are always higher than those from the sonic

anemometers.

As shown in Fig. 6b, the differences of in-plane TKE

obtained from both measurements stay within the range of

Fig. 6 a In-plane Reynolds stress profiles and b in-plane turbulent

kinetic energy (TKE) profile, in the measurable range of SLPIV

compared with the measurements from sonic anemometers at

z = 10 m and z = 30 m
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our SLPIV convergence errors, corresponding to 2.5 and

14 % at z = 10 m and z = 30 m, respectively. The higher

discrepancy at z = 30 m, as compared to that at the lower

elevation, is caused by the fact that the SLPIV measured

\w0w0[ which involves more uncertainty (compared with

\u0u0[) has a larger contribution in TKE at z = 30 m.

Figure 7 shows the power spectra of the streamwise

velocity component measured by SLPIV and sonic ane-

mometers at z = 10 m and at z = 30 m, respectively.

Evidenced by the classic -5/3 slope, the inertial subrange

appears in the spectra from both measurements, which

further demonstrates the capability of the snow-based

SLPIV for turbulence measurements in the ABL. Although

the spectra from SLPIV and sonics are close in trend, a

clear discrepancy exists. This discrepancy is more likely to

be caused by the statistical convergence of the two mea-

surements as opposed to the spatial and temporal attenua-

tion of our SLPIV measurements (i.e., the attenuation

associated with slightly lower sampling rate and particle

traceability). Limited by the SLPIV acquisition time per-

iod, only 167 s data is used to generate the spectra here. In

addition, a spectral flattening, i.e., the reduction in spectral

slope, occurs at the high frequency range for the SLPIV

power spectra. This flattening is an indication of the

increased measurement noise level at the high frequency

band of SLPIV data (Stanislas et al. 2008).

4 Conclusions

An approach for conducting PIV on a super-large scale

using natural snowfall as flow tracers was presented. We

implemented this approach to resolve flow statistics in the

atmospheric surface layer ranging from 4 to 56 m above

the ground with a spatial resolution of *0.34 m and a

temporal resolution of 15 Hz. The method was validated by

comparing the mean velocity and turbulence statistics with

those obtained from two sonic anemometers instrumented

at z = 10 m and z = 30 m on a met tower, which was

located in close proximity to the sampling area of SLPIV.

A comparison of mean velocity and the streamwise Rey-

nolds stress component obtained from the two techniques

shows less than 3 and 12 % difference, respectively. The

SLPIV measured turbulent energy spectra show an inertial

subrange and similar trends as compared to those from the

sonic measurements.

It should be noted that the current SLPIV implementa-

tion is strongly limited by the illumination power of our

light sheet generation system, the sampling rate and sen-

sitivity of the imaging camera, as well as the capacity of

our data acquisition system. Moreover, it is difficult for the

current setup to accommodate the variable conditions in the

wind field, resulting in substantial uncertainty associated

with the calibration. The envisioned upgrades on the

hardware of our current setup, however, should allow

further improvement on: (1) the extent of the sampling area

of SLPIV; (2) the ability to accommodate high wind speed;

(3) the quality of snow particle images; and (4) the accu-

racy of PIV vector calculation and statistical convergence

of our turbulence measurements, etc.

The SLPIV technique introduced in the current paper

opens an opportunity to measure super-large-scale flow

fields with sufficient spatial and temporal resolution to

quantify mean and fluctuating flows in the ABL. This

capability can help the study of a number of atmospheric

problems including local meteorological phenomena and

the response of civil infrastructure (e.g., bridges, highway

overpasses, high-rise buildings, etc.) to unsteady forces

induced by atmospheric turbulence. In particular, the

implementation of SLPIV around utility-scale wind tur-

bines can provide benchmark-type data for developing

more realistic high-resolution numerical models and sim-

plified wake models for wind energy applications. The real-

scale measurements from the abovementioned problems

Fig. 7 Power spectra of the

streamwise velocity component

measured at a z = 10 m and

b z = 30 m, by SLPIV and the

sonic anemometers
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can be combined with laboratory experiments to address

scaling issues when extending laboratory measurements

to field scale scenarios, and develop strategies to simu-

late full-scale dynamics under controllable laboratory

conditions.
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