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Abstract We present a new design for a stirred tank that

is forced by two parallel planar arrays of randomly actuated

jets. This arrangement creates turbulence at high Reynolds

number with low mean flow. Most importantly, it exhibits a

region of 3D homogeneous isotropic turbulence that is

significantly larger than the integral lengthscale. These

features are essential for enabling laboratory measurements

of turbulent suspensions. We use quantitative imaging to

confirm isotropy at large, small, and intermediate scales by

examining one- and two-point statistics at the tank center.

We then repeat these same measurements to confirm that

the values measured at the tank center are constant over a

large homogeneous region. In the direction normal to the

symmetry plane, our measurements demonstrate that the

homogeneous region extends for at least twice the integral

length scale L = 9.5 cm. In the directions parallel to the

symmetry plane, the region is at least four times the inte-

gral lengthscale, and the extent in this direction is limited

only by the size of the tank. Within the homogeneous

isotropic region, we measure a turbulent kinetic energy of

6.07 9 10-4 m2 s-2, a dissipation rate of 4.65 9

10-5 m2 s-3, and a Taylor-scale Reynolds number of

Rk = 334. The tank’s large homogeneous region, com-

bined with its high Reynolds number and its very low mean

flow, provides the best approximation of homogeneous

isotropic turbulence realized in a laboratory flow to date.

These characteristics make the stirred tank an optimal

facility for studying the fundamental dynamics of turbu-

lence and turbulent suspensions.

1 Introduction

Homogeneous isotropic turbulence (HIT) is an idealized

flow of special interest because it contains all of the basic

physical processes of turbulence without the complications

commonly found in nature such as mean shear, density

stratification, and fluid–solid boundaries (Tsinober 2004).

Thus, HIT is an ideal flow with which to understand some

of the fundamental mechanisms of turbulence that are at

least qualitatively independent of the origin of a specific

turbulent flow such as internal intermittency (Douady et al.

1991); the self-amplification mechanisms of velocity

derivatives (Galanti and Tsinober 2000); inertial range

Eulerian and Lagrangian structure functions (Benzi et al.

2010); and (of particular interest to us) interphase coupling

mechanisms in turbulent suspensions (Poelma and Ooms

2006; Lucci et al. 2010; Balachandar and Eaton 2010;

Toschi and Bodenschatz 2009).

Despite the simplicity of HIT, it is non-trivial to recreate

this condition in a laboratory experiment or in a direct

numerical simulation (DNS). In DNS, turbulence either

decays with time or must be sustained via an artificial

forcing in space or time that introduce biases in the tur-

bulent statistics (Abdelsamie and Lee 2012; Lucci et al.

2010). Turbulent flows in laboratory experiments, on the

other hand, are intrinsically inhomogeneous because it is

impossible in practice to uniformly distribute turbulent

production. At best, laboratory devices can only approxi-

mate HIT. In doing so, there has typically been a trade-off

between Reynolds number and the size of the HIT region.

Herein, we present a new design for a stirred tank that
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achieves an unprecedented combination of size and Rey-

nolds number, and conduct a thorough characterization.

2 Background

The most common way of generating turbulence for lab-

oratory research is with a steady flow passing through a

grid or mesh. These flows exhibit 2D homogeneity and

isotropy in planes parallel to the grid (see for example

Kurian and Fransson 2009; Krogstad and Davidson 2012,

and references therein). Despite the good planar homoge-

neity, grid-generated turbulence is always anisotropic due

to the spatial decay of turbulent kinetic energy (TKE)

downstream of the grid. This can make it difficult to

compare results between different experimental setups. In

fact, the large scatter in decay exponents and empirical

coefficients suggests that there may not be a universal state

for grid turbulence (George 1992; George and Davidson

2004).

Stationary turbulence with 3D homogeneity and isot-

ropy is produced by a new class of laboratory devices that

have flourished in the past decade. These devices stir the

flow from multiple locations rather than with a single grid.

Stirring is conducted by means of oscillating grids (Srdic

et al. 1996; Shy et al. 1997; Villermaux et al. 1995),

loudspeaker cones (Hwang and Eaton 2004; Birouk et al.

2003), rotating elements (Liu et al. 1999; Guala et al.

2008; Voth et al. 2002), or synthetic jets (Variano et al.

2004; Krawczynski et al. 2010; Goepfert et al. 2010). An

essential feature of these systems is that the stirring ele-

ments are arranged symmetrically around some central

region. This achieves large-scale isotropy, which in turn

fosters small-scale isotropy. Of these symmetric forcing

(SF) systems, the most common employ spherically sym-

metric forcing (SSF). Early implementations of SSF used

eight synthetic jets or fans at the corners of a box (see

Hwang and Eaton 2004; Birouk et al. 2003, respectively).

Extensions of this idea have added more forcing elements

and distributed them symmetrically over polygons with

more than eight vertices (Chang et al. 2012; Zimmermann

et al. 2010).

A drawback of SSF systems is that the flow is optimized

only in a limited volume around the point of symmetry.

Cylindrical symmetric forcing (CSF) and planar symmetric

forcing (PSF) systems allow larger regions of optimal flow

conditions because they have a line or plane of symmetry at

the tank center. As a result, the optimal region at the tank

center has at least one direction in which its homogeneity is

limited only by the size of the tank. Because of this, we

conclude that PSF systems unite the best aspects of grid

turbulence and SF systems. That is, 2D homogeneity and

isotropy are present throughout the tank due to the planar

forcing, and 3D homogeneity and isotropy are present in a

subregion of the tank due to the interaction of two sym-

metric forcing planes. Herein, we present a PSF system that

uses two planar arrays of randomly actuated synthetic jets.

In Table 1, we summarize a subset of the stirred tanks

reported in the literature (Srdic et al. 1996; Shy et al. 1997;

Villermaux et al. 1995; Hwang and Eaton 2004; Birouk

et al. 2003; Liu et al. 1999; Guala et al. 2008; Voth et al.

2002; Goepfert et al. 2010; Zimmermann et al. 2010).

Since there are many versions of the SSF cube, we report

only a few representative cases; a more thorough com-

parative summary is given in Chang et al. (2012). We

observe in Table 1 a trend in which the flows with large

Reynolds number have a small region of HIT, and vice

versa. Thus, different stirred tanks will be optimal for

different research needs. For our research on particle

dynamics, we would like a high Reynolds number

(Rk [[ 100) and a region of homogeneous turbulence that

is significantly larger than the integral lengthscale. None of

the devices in Table 1 provide both of these traits simul-

taneously, though those of Zimmermann et al. (2010) and

Srdic et al. (1996) are closest. Herein, we present a new

device that provides high-Reynolds–number turbulence

that is homogeneous and isotropic over a large region.

Table 1 A summary of stirred tank performance focusing on the

Reynolds number and size of the homogeneous region

Symmetry rHIT

L
Rk rHIT

(cm)

L (cm) References

Cylindrical 0.4 290 2.0 4.7 Liu et al. (1999)

Spherical 0.5 480 5.0 9.9 Chang et al. (2012)

Spherical 0.6 220 1.8 2.8 Hwang and Eaton

(2004)

Spherical 0.7 240 2.5 3.6 Goepfert et al. (2010)

Spherical 1.0 195 4.8 4.7 Zimmermann et al.

(2010)

Spherical 1.2 92 2.0 1.7 Birouk et al. (2003)

Planar 4.0 150 8.8 2.2 Srdic et al. (1996)

Planar 5.0 30 1.5 0.3 Shy et al. (1997)

Planar 1.0 340 9.5 9.5 This study

rHIT is the radius of the spherical region over which the flow is

homogeneous and isotropic, or for rectangular regions, the half-width

of the shortest dimension. L is the longitudinal integral lengthscale in

this region. L is computed from autocorrelation functions or from

L � u
03=2�; comparisons of the two methods show excellent agree-

ment (Variano and Cowen 2008; Zimmermann et al. 2010). In the

case of Birouk et al. (2003), we have converted their reported

transverse lengthscale to a longitudinal integral lengthscale using the

factor of 2 predicted for isotropic turbulence. The majority of cita-

tions define the homogeneous region as that over which TKE varies

by less than 10 %, and we follow this convention in this table, though

this leads to slight underestimates of rHIT for three studies (Liu et al.

1999; Chang et al. 2012; Srdic et al. 1996)
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The device we present herein can support a wide variety

of investigations into turbulent dynamics. An illustrative

example is the measurement of macroscopic particles

suspended in turbulent flows. When performing such

measurements (Bellani et al. 2012), we require a flow with

features that are not found in any other existing device

(e.g., Table 1). First, a high Reynolds number is needed to

ensure an inertial subrange. Second, the integral length-

scale must be large enough that the inertial subrange will

cover the size range of our macroscopic particles

(5–30 mm). Having an inertial subrange at such large

scales also helps us make unambiguous measurements of

small-scale turbulent features (see e.g., Talamelli et al.

2009). The dynamics of particles in suspension demand

that we engineer a turbulent flow that is homogeneous and

isotropic over as large a region as possible. This is because

the equation of motion for suspended drops, bubbles, and

particles includes a history term (e.g., Mei 1992). This

means that kinematics measured at one location implicitly

include the integrated effect of the flow experienced over a

particle’s recent trajectory. The flow facility presented here

allows us to be more confident that particle kinematics

measured at the tank center will represent the effects of

only one type of turbulence, because the particles must

travel through a large region of homogeneous isotropic

turbulence before reaching the tank center. Furthermore,

the tank presented herein provides a distinct advantage for

studies of buoyant particles: because the tank symmetry is

not spherical, the homogeneous isotropic region can be

extended indefinitely in the vertical direction, so that the

test particles will not rise or fall through the homogeneous

region too rapidly.

3 Experimental setup

3.1 Description of the facility

The experimental facility is a tank of dimensions

80 9 80 9 360 cm3. The origin of the coordinate system

is at the center of the tank, z is oriented along the axial

(longest) dimension of the tank, and y is vertical. The

instantaneous velocity vector U(x, y, z, t) = (U, V, W) is

defined so that U, V, and W are aligned with the x, y, and

z axes, respectively. The tank is filled with tap water, which

is initially filtered to 5 micron and purified by a flow

through ultraviolet filter when experiments are not being

run.

Stirring is provided by two facing planes of randomly

actuated jet arrays, each of them made of 64 individual

pumps arranged in an 8 9 8 array as shown in Fig. 1. Each

pump is used to create a jet through a cylindrical nozzle

with 2.19 cm inner diameter. The nozzle and the pump

intake are separated by 7 cm and located in the same

volume of fluid; thus, the pump creates a synthetic jet, in

the sense that it injects only momentum, and not mass, into

the tank. To drive the pumps, we follow the stochastic

algorithm developed by Variano and Cowen (2008). The

algorithm is a stochastic pattern used to drive the jets in a

manner that maximizes the turbulent Reynolds number

while also ensuring spatial homogeneity. In this algorithm,

an average of eight jets (12.5 % of the total number of jets)

are activated on each planar array, with each jet remaining

actuated for an average duration, lon, of 3 s, followed by

an average time turned off, loff, of 21 s. The exact duration

of a jet’s on/off period is selected from normal probability

distributions, where the variance value of each distribution

(ron; roff) is such that ron/lon = roff /loff = 1/3. These

values were found, experimentally, to maximize Reynolds

number by maximizing shear production of turbulence. The

stochasticity of the algorithm prevents any tank-scale

residual flow from persisting; having negligible mean flow

serves experiments in two ways. First, it supports homo-

geneity and isotropy by reducing advective transport of

TKE. Second, it allows the spatial and temporal charac-

teristics of turbulence to be measured independently from a

fixed location. Thus, measurements do not need to rely on

Taylor’s frozen turbulence hypothesis, allowing a less

ambiguous analysis of turbulent structures (Dennis and

Nickels 2008; Álamo and Jiménez 2009; Moin 2009).

Turbulence is generated near the jet arrays and decays

with distance from them. By combining two arrays in a

PSF configuration, it is possible to obtain HIT in a large

region in the tank center. The two jet arrays are symmet-

rically located with respect to the vertical center plane of

the tank, at a distance of ±81 cm from the center. This

distance is chosen to maximize the isotropy at the tank

center by matching the decay curves of the 3 different

components of the velocity variance so that they intersect

at the tank center.

3.2 Measurement technique

Velocity measurements are performed using particle image

velocimetry (PIV) in two different configurations (see

Fig. 2). 2D-PIV is used to collect data in the yz plane and

stereoscopic PIV (S-PIV) is used to collect data in the

xy plane. The imaging setups are shown in Fig. 2. Both PIV

configurations use a 1 mm thick laser light sheet (fre-

quency-doubled Nd-YAG), 10 lm tracer particles (silver

coated glass spheres), two 12-bit CCD cameras with an

1,600 9 1,200 array of 7.4 lm pixels (Imager PRO-X),

image-pair acquisition rate of 0.5 Hz, and either 50 or

105-mm lenses (Nikkor). In the 2-D PIV setup, two cam-

eras (both fitted with a 105-mm Nikkor lens) view two

adjacent regions, thus increasing the extent of spatial
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coverage. These regions are 0.1 cm 9 3.5cm 9 4.7 vol-

umes centered in the yz plane at y = 0 and y = 10 cm,

respectively. In the S-PIV experiments, the two cameras,

both fitted with a 105-mm Nikkor lens, view one mea-

surement area from opposite sides of the laser light sheet,

each at an angle of 35� relative to the laser’s forward-

scatter direction. To avoid image distortion by the air–

glass–water interface at the tank walls, two 35� prisms

filled with water are attached to the walls. Each camera

views the tank through one prism, and images overlap in a

14.7 cm 9 8.1 9 cm 9 0.1cm volume centered in the

xy plane at z = 0.

To compute the velocity fields for both PIV configura-

tions, we use the commercial software Davis 7.2 from

LaVision GmbH. The main PIV operating parameters are

reported in Table 2. These parameters can greatly effect

PIV accuracy in measuring turbulent quantities. The main

sources of error in PIV measurements are well understood

(Raffel et al. 2001). Particular care is needed near bound-

aries and in high shear; only the latter is of concern here.

For this reason, we use an algorithm with continuous

window deformation and reduction that has been shown to

perform well in turbulence studies with objective bench-

marks (Stanislas et al. 2008). When spatial resolution is

coarser than the Kolmogorov microscale, velocity fluctu-

ations and TKE may be underestimated. Of those spatial

resolutions reported in Table 2, the coarsest is 2.72 mm.

This is about 7 times the size of the Kolmogorov scale,

which is fine enough to resolve [95 % of the TKE (Saa-

renrinne et al. 2001). We explicitly confirm that we have

resolved the TKE adequately by comparing the velocity

fluctuation magnitudes as measured with two different

resolutions (see Fig. 4).

4 Definitions

Turbulent statistics are computed as follows. Expectation

values, denoted h�i, are estimated from appropriate space,

time, or ensemble averages.

L
x
 = 80 cm

L
y 

=
 8

0 
cm

A

IN

IN

OUT

H.I.T. 
Region

y

38+ cm

38+ cm

19+ cm

80 cm

80 cm

74 cm
7 cm

A

101 cm

Right-pointing Jet Array Left-pointing Jet Array

7 cm

(a)

(b)

Fig. 1 Experimental facility.

a 4 9 4 array of 4-jet clusters

(see closeup), giving an 8 9 8

array of equally spaced jets.

Two pumps arrays facing each

other (as in sketch b) can

produce homogeneous and

isotropic turbulence statistics

Coordinate system x ¼ fx; y; zg ¼ flateral, vertical,

axial}

Velocity field U ¼ fU;V ;Wg.
Fluctuating field uðx; tÞ ¼ Uðx; tÞ � hUðxÞi.
Turbulent kinetic energy (TKE) k2 ¼ 1

2
hu � ui � 1

2
h2v2 þ w2i.

Longitudinal structure function S
ðpÞ
L ðrÞ ¼ hf½uðxþ rÞ � uðxÞ� � r

jrjg
pi.

Transverse structure function S
ðpÞ
T ðrÞ ¼ hf½uðxþ rTÞ � uðxÞ�gpi,
with rT ? u.

Longitudinal autocovariance CLðrÞ ¼ hf½uðxþ rÞ � uðxÞ� � r
jrjg

pi.
Transverse autocovariance CTðrÞ ¼ hf½uðxþ rTÞ � uðxÞ�gpi,

with rT ? u.
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5 Results

5.1 Homogeneity and isotropy of single point statistics

At the tank center, statistics of turbulent fluctuations are

isotropic, as seen in the velocity pdfs in Fig. 3. The pdfs of

the three velocity components (calculated from 1517 S-PIV

snapshots) are very similar, and they are very well

approximated by a Gaussian distribution.

Figure 4 shows the spatial distribution of mean veloci-

ties (with the mean determined over time series at each

location). It also shows the magnitude of velocity fluctua-

tions (rms values computed from the temporal variance at

each location). Data in Fig. 4a come from S-PIV

(c)

x
y

z

(b)

(a)

y

z

2D PIV

Z

S-PIV S-PIV

1mm

2D PIV
S-PIVS-PIV

3535

35 35

y

z

y=10 cm

z
y=0 cm

3.5 cm

4.7 cm 0.1 cm

Camera #1

Camera #2

2D PIV Visualization Region

x

1mm

2D PIV Laser Light SheetS-PIV Laser Light Sheet

0.1 cm

y

Z=0 cm

S-PIV Visualization Region

m
x

14.7 cm

8.1 cm

y

z

Top view

Image volumes

Fig. 2 a Schematic of the imaging setup for 2D-PIV and S-PIV measurements. Pictures of the 2D-PIV and S-PIV setups are shown in b and c,

respectively

Exp Fluids (2014) 55:1646 Page 5 of 12 1646

123



measurements in the xy plane, while Fig. 4b shows 2D-PIV

measurements in the zy plane. This data indicates that, at

the center of our tank, the mean flow is negligible com-

pared to the magnitude of velocity fluctuations. A second

conclusion from this data is that the mean and rms veloc-

ities are homogeneous over the center region of the tank;

determining the full extent of the homogeneous region is

the topic of Sect. 6.

A summary of the data from Fig. 4b is given in Table 3.

This includes a value of rms velocity calculated over both

space and time. The spatio-temporal dataset has 7,300

spatial locations (covering the entire 2D PIV image area)

and N temporal samples. The N samples can be considered

iid (independent and identically distributed) because they

are recorded at 0.5 Hz, while the 7,300 spatial locations are

spaced too closely to be entirely independent from each

other. To evaluate the statistical convergence of the rms

velocity value, we consider only the temporal data, because

it is iid. At one specific location, we calculate the 95 % CI

on rms velocity using the bootstrap. This interval is seen in

Table 3, and it appears to be insensitive to increasing N

above 400, thus indicating statistical convergence. Having

obtained statistical convergence for rms velocity, we

evaluate how the rms velocity varies in space. We do so by

calculating how rms velocity fluctuations (calculated from

N temporal samples) vary across the 7,300 spatial loca-

tions. We quantify this spatial variation with a 95 % con-

fidence interval computed with the bootstrap. The resulting

intervals (seen in Table 3) overlap the temporal CIs and are

similar in size. This indicates that the variation over space

is no larger than the uncertainty over time and can be

considered a quantitative statement of the spatial homo-

geneity observed in Fig. 4.

Figures 3 and 4 and Table 3 allow us to evaluate isot-

ropy at the tank center. In Fig. 3, the pdfs of u and v are

nearly identical and the ratio between their standard

Table 2 Summary of PIV settings

IA

(pixels 9 pixels)

IA

(mm 9 mm)

Weighting

function

Vector

spacing

(mm)

S-

PIV

32 9 32 2.72 9 2.72 Gaussian 1.36

2D-

PIV

32 9 32 0.88 9 0.88 Square 0.44

The size of the final interrogation area (IA) and the weighting func-

tion determine the spatial resolution of the PIV measurements. The

Gaussian weighting function used by Davis is a symmetric 2D

Gaussian window with r = [(IA/2) - 1], whose radius at e-2 of the

peak amplitude is rv = 2.64 mm in the case shown here
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m
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(a) (b)Fig. 3 a Instantaneous velocity

field showing v and

w components in the yz plane

measured by 2D-PIV.

b Probability distribution

functions of the three velocity

components from S-PIV

measurements at the center of

the tank (1517 independent

snapshots). The dashed line

indicates a Gaussian distribution

z ¼ 1

r
ffiffiffiffi

2p
p e�ð

x�l
r Þ

2

, with r = vrms

and l = 0

−40 −20 0 20 40 60 80
−0.01

0
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0.03

x [mm]
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/s
]
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z [mm] 

 [
m

/s
]
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(b)

Fig. 4 a One-point velocity statistics measured with S-PIV on the

xy plane and averaged over y. b One-point velocity statistics

measured with 2D-PIV on the yz plane and averaged over y. In both

plots, hUi ð�Þ; hViðhÞ; hWiðMÞ and urms, vrms, wrms are the corre-

sponding filled markers. Marker sizes are scaled to show the 95 %

CIs. For clarity, only every third sample in space is shown here. Note

different spatial scales on the two plots
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deviations is urms/vrms & 1. The maximum anisotropy and

deviation from a Gaussian behavior is seen in w. This is to

be expected because the statistics of this compnent

describe motions that are normal to the symmetry plane.

From the data in Table 3 the ratio vrms/wrms = 0.95, with a

95 % CI of [0.84 1.09] at any one location, computed via

the bootstrap method (Efron and Tibshirani 1994). If we

compute the CI of the isotropy ratio using the entire spatial

extent of the 2D-PIV measurement at the tank center, it

becomes [0.944 0.956]. Thus, the velocity variance at the

tank center is either within 10 or 5 % of isotropy,

depending on which CI we choose to use. As variance

primarily represents the large-scale motions in turbulence,

we conclude from these measurements that the flow at the

tank center is isotropic at large scales. This large-scale

isotropy will promote isotropy at smaller scales, which is

investigated below using two-point statistics.

5.2 Two-point statistics and turbulent scales

In HIT, the autocovariances CL and CT are isotropic, i.e.,

independent of the direction of r. Normalizing both by their

respective values at r = 0 gives two autocorrelation func-

tions f(r) and g(r). The measurements of these longitudinal

and lateral autocorrelation functions f and g are shown in

Fig. 5a. Using the continuity equation as a constraint, g can

be expressed as a function of f as shown by Eq. 1.

gðrÞ ¼ f ðrÞ þ 1

2

of ðrÞ
or

r: ð1Þ

We can test isotropy by comparing the measured g to the

prediction obtained from Eq. 1. The g(r) predicted from

Eq. (1) is compared to a direct measurement of g(r) in

Fig. 5a and the two agree very well to statistical

uncertainties. This agreement is a further indication of

isotropy between v and w.

From the autocorrelation curve, it is possible to define

the Taylor length scale as kf ¼ ½� 1
2

f 00ð0Þ�1=2
. Equivalently,

kf is the point at which the parabola p, tangent to f(r) near

r = 0, intersects the axis r, so that p(r) = 1 ? r2/kf
2. We

estimate the coefficients of p by fitting a parabola to the

Table 3 Statistical

convergence and spatial

homogeneity demonstrated

using confidence intervals on

velocity fluctuation magnitudes

calculated over time or space

The temporal CI intervals are

computed from Nt samples in

time (see first column), and 1

sample in space assuming a

Gaussian distribution. The CI

over space is the 95 %

percentile variation of 100 9 75

samples in space. The spatio-

temporal CIs are determined

from 100 9 75 9 Nt samples

using the bootstrap method

# Samples Mean 95 % CI

(spatio-temporal)

95 % CI

(over space)

95 % CI

(over time)

400

wrms (910-2 ms-1) 2.02 [ 2.01 2.02 ] [1.83 2.21] [1.81 2.24]

vrms 1.93 [1.92 1.93] [1.81 1.98] [1.78 2.06]

k2 (910-4 m2 s-2) 6.00 [5.91 6.09] [5.37 6.61] [5.31 6.80]

750

wrms

(910-2 ms-1)

2.07 [ 2.00 2.01] [1.85 2.17] [1.89 2.24]

vrms

(910-2 ms-1)

1.91 [1.91 1.92] [1.84 2.01] [1.80 2.02]

k2 (910-4 m2 s-2) 6.02 [5.95 6.08] [5.46 6.62] [5.43 6.64]

1,000

wrms (910-2 ms-1) 2.06 [ 2.08 2.09] [1.95 2.23] [1.97 2.21]

vrms (910-2 ms-1) 1.98 [1.98 1.99] [1.89 2.03] [1.90 2.02]

k2 (910-4 m2 s-2) 6.07 [ 6.03 6.10] [5.69 6.44] [5.67 6.46]

0 0.5 1 1.5 2 2.5 3
0

0.5

1

r [10−2 x m]

f,
 g f

g
model g eq.(1)
1−r2/λ

f
2
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0

0

2

4

6
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r/λ
f

<
ε>

=
(S

L2
/C

2)3/
2 r−

1

S
L,z
2

S
L,y
2

(a)

(b)

Fig. 5 a Longitudinal ð�Þ and transverse (square) autocorrelation

functions (f(r) and g(r), respectively). The size of the symbols is

representative of the 95 % confidence interval (CI). The solid lines

show the isotropic prediction of the transverse autocorrelation

function g(r) from Eq. 1, with its 95 % CI. The dashed line shows

the parabolic fit used to compute the longitudinal Taylor lengthscale

from the longitudinal autocorrelation and it 95 % CI. b Compensated

second-order structure functions used to determine dissipation rate

(dashed line). The error bars represent 95 % CI. The curves are

obtained from 1517 independent 2D-PIV measurements
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second and third point of f(r). The parabolic fit seen in

Fig. 5 gives kf = 15.9 mm, with a 95 % CI of [14.4 16.4]

mm. The uncertainty in this value is dominated by the

small number of data points used in the fit, which is a

consequence of the spatial resolution of our PIV

measurements.

We can use kf to predict the TKE dissipation rate �,

because kf is related to fluid velocity gradients as follows

(see Pope 2000):

ou

ox

� �2
* +

¼ 2u
02

k2
f

¼ 4k2

3k2
f

; ð2Þ

where u0 �
ffiffiffiffiffiffiffi

2
3

k2

q

. For flows in which the strain rate tensor

is isotropic, Eq. 2 can be combined with the definition of �

to give:

� ¼ 15m
ou

ox

� �2
* +

¼ 20m
k2

k2
f

: ð3Þ

Here, m is the kinematic viscosity (in our case, for water at

22.8 �C, the value is 0.948 9 10-6 m2 s-1). For

kf = 15.9 mm measured from the autocorrelation function

and the value of k2 from Table 3, we obtain

� ¼ 4:63� 10�5m2s�3, with a 95 % CI of [4.12 5.14].

The dissipation rate can also be computed in a second

way, which will allow us to draw further conclusions about

isotropy. This calculation uses the following result from

Kolmogorov theory (Kolmogorov 1941):

S
ð2Þ
L ðrÞ ¼ C2�

2=3r2=3; ð4Þ

for r values within the inertial subrange. Although this

expression is derived for the case of locally homogeneous

and isotropic flows, experimental evidence (Saddoughi and

Veeravalli 1994; Sreenivasan 1995) strongly suggests that

this holds in heterogeneous flows (e.g., boundary layer) and

that C2 = 2. In Fig. 5b, we show the compensated structure

function SL
(2). The value of the plateau at r [ kf gives us a

dissipation rate of � ¼ 4:68� 10�5 m2s�3 with a 95 % CI

of [4.45 4.78]. This value of � is in very good agreement

with the value obtained above using the Taylor lengthscale.

We use this dissipation rate to determine the Kolmogorov

lengthscale as g ¼ ðm3=�Þ1=4 ¼ 0:37 mm, and the Kol-

mogorov timescale as sg ¼ ðm=�Þ1=2 ¼ 0:142 s:

We use the two-point statistics to evaluate the isotropy

across a range of intermediate scales. The distance between

the measured and predicted g(r) in Fig. 5a can be seen as a

scale-by-scale measure of isotropy. Furthermore, we can

compute SL
(2) along two orthogonal directions (y and

z) shown in Fig. 5b; the distance between these two curves

can also be seen as a scale-by-scale measure of isotropy.

Both of these measurement methods suggest that the flow is

isotropic at all scales. We note that anisotropy at interme-

diate and large scales, when present, can be a large source of

error in estimating the dissipation rate as done above. Thus,

the intermediate-scale isotropy seen in Fig. 5 and the large-

scale isotropy seen in Fig. 4 support our approaches for

estimating the dissipation rate, and the uncertainty in � is

due to statistical fluctuations and not anisotropy.

Integral lengthscales describe the large scales of turbu-

lence, and thus are useful as a scale with which to evaluate

the size of the homogeneous region created by our stirred-

tank design. This is because the homogeneous region at the

tank center will only be ‘truly’ homogeneous if its dimen-

sions are significantly larger than all turbulent scales. We

define L as the longitudinal integral length scale, obtained

from the integral of the autocorrelation function f(r) from

r = 0 to r ¼ 1. Due to practical limitations, it is rare for

laboratory measurements to cover a large enough region in

space to directly calculate this integral. That is, velocity

fields must be measured over a length of 3–5L before

f(r) reaches its asymptotic limit at zero. In some flows, this

limitation can be overcome by assuming space–time

equivalence, such as Taylor’s frozen turbulence hypothesis.

However, for the flow considered here, spatial and temporal

dynamics cannot be translated in a trivial manner. Thus, to

measure L accurately, we combine two strategies. First, we

use a pair of simultaneous 2D-PIV measurements to extend

the measurement region in space without losing fine-scale

resolution. Second, we fit a model function to the curve

f(r) (see Fig. 6). This model is valid for the inertial subrange

(i.e, where most PIV data are collected) and includes L as

one of the two fitting parameters. This method is preferable

to the strategy of extrapolating f(r) until it reaches zero,

because no universal model exists for f(r [ L) (Davidson

2004). Our model of f(r) is obtained from the Kolmogorov

hypotheses, specifically by inverse Fourier transform of a

power-law model spectrum (see appendix G of Pope 2000).

This predicts that the autocorrelation curve within the

inertial subrange takes the form:

f

�

r

L

�

¼ 2

CðqÞ

�

r

2L
a

�q

Kq

�

r

L
a

�

; ð5Þ

where C is the gamma function, Kq is the modified Bessel

function of the second kind, and a is determined by the

constraint f(0) = 1. Equation 5 has two free parameters:

L and q, which are the integral length scale and an alge-

braic restatement of the velocity power spectrum’s power-

law exponent, respectively. Fitting this model to our data at

the tank center gives L = 9.50 cm (CI 2 [9.45 9.55] cm)

and q = 0.353, which corresponds to a spectral power law

exponent of 1.70 (CI 2 [1.700 1.708]). Although the model

is derived to fit data in the inertial subrange, Fig. 6a shows

that the fit also provides a good approximation of the

autocorrelation curve for large separations (r [ L/2). The
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scaling exponent of the power spectrum can be also

obtained directly by computing the power spectrum from

the inverse Fourier transform of the measured autocovari-

ance. Figure 6b shows that the spectrum closely matches a

j-5/3 slope over about one decade in j, which indicates the

presence of a well-developed inertial range.

As a final note on this section, we discuss the relationship

between the value of L determined from f(r), and the com-

mon approximation l � u
03

� . It is currently an open question

whether the ratio U � L=l is a constant, a function of the

Reynolds number, or even a function of the initial and

boundary conditions (Batchelor 1953; Sreenivasan 1984;

Gamard and George 1999). We are able to add the result of

U ¼ 0:55 based on the data presented above. This agrees

well with the model of Gamard and George (1999), who use

scaling arguments to derive weak dependence of U on the

Reynolds number (which they define as ReG: L/g). They

predict U ¼ 0:64 at ReG = 275, and we measure U ¼ 0:55 at

ReG = 256, with 95 % CI of [0.50 0.60]. Interestingly, this is

very close to the one Reynolds number at which the exper-

imental observations by Mydlarski and Warhaft (1996) in

grid-generated turbulence disagreed with the theory of

Gamard and George. Thus, the support of our measurements

is particularly important in evaluating the model.

6 Spatial variation of turbulent quantities

In the previous section, we demonstrated homogeneity and

isotropy near the center of our stirred tank. In this section,

we investigate turbulent statistics over a larger spatial

region. With this, we will assess the full-size of the

homogeneous and isotropic region in the tank center.

Measurements are done by moving 2D-PIV across four

stations in the z-direction, thereby measuring over a dis-

tance greater than two integral length scales.

We first analyze one-point statistics, namely TKE and

the Reynolds stress tensor. We decompose the Reynolds

stress tensor into an isotropic part 2
3

k2dij, and an anisotropic

part aij � huiuji � 2
3

kdij. The anisotropic part is responsible

for the momentum transfer, and it should be zero in a

homogeneous flow. Given our 2D data, we can compute

three components of the anisotropic stress tensor: a22, a33,

and a23 ¼ hvwi. All three components of the anisotropy

tensor are seen in Fig. 7, normalized by the local value of

TKE. This figure shows that in the region z/L \ 1.5, the

anisotropic part of the stress tensor remains well below

10 % of the TKE. The distribution of TKE and hvwi over

y and z are shown in Fig. 8a, b. Both figures indicate that

TKE varies by less 	10% for 0 \ z/L \ 1 and 0.5 \ y/

L \ 2. Furthermore, we see that hvwi is statistically iden-

tical to zero, and much smaller than TKE. Together, the

one-point statistics shown in Figs. 7 and 8 strongly suggest

that the homogeneous isotropic region extends farther than

one integral lengthscale from the tank center (eventual

conclusions appear in Table 4). Before evaluating this

further, we examine the two-point statistics.

Values of �; kf , and L are computed at four different

locations in z, using the methods described in Sect. 5. The

results are shown in Fig. 9 and Table 5. Figure 9a shows

that the pattern of the dissipation measurements follows the

pattern of the TKE observed in Fig. 8. Figure 9b, c shows

that the turbulent lengthscales stay approximately constant

over a wider region than any of the other one- and two-

point statistics reported here.

Given the above results, we conclude that the homoge-

neous and isotropic region extends at least to z = -1.0L. A

conservative quantitative demarcation of the homogeneous

region can be made at z = -1.0L using the common

\10 % variation criterion. If we use instead a \ 20 %

variation criterion the homogeneous region reaches to

0 0.5 1 1.5 2
0

0.5

1

r/L

f

10
−3

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

κ η

E
22

Data
−5/3 law

(a)

(b)

Fig. 6 a Longitudinal autocorrelation function extending over a

larger region than in Fig. 5a. Symbols indicate the experimental data

with 95 % CI, and the solid line shows data interpolation using Bessel

function fit performed on the data for kf \ r \ L/2. b Longitudinal

power spectrum E22 computed from the measured autocovariance.

The curves are obtained from 1517 independent 2D-PIV

measurements

−2.5−2−1.5−1−0.50

−0.2

−0.1

0

0.1

0.2

z/L

a ij/2
k2

a
22

a
33

a
23

Fig. 7 Spatial variation of two diagonal (a22 and a33) and one off-

diagonal (a23) components of the anisotropy tensor normalized by the

local TKE. The dashed lines show the 10 % variation
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z = -1.5L. At z = -1.5L, most statistical values are

within the 10 % demarcation line, and only the dissipation

rate and the TKE are clearly trending away from the ref-

erence values in a statistically significant manner.

The size of the homogeneous region in y is larger than

that in z; Fig. 8b shows that TKE is constant in y at least to

y = 2L. This behavior is expected from the boundary

conditions imposed by the tank’s symmetric forcing

geometry. That is, we expect the homogeneous region in

x and y to be limited only by the size of the tank. Results on

shear-free turbulence near an interface (Hunt and Graham

1978; Perot and Moin 1995) suggest that the tank wall at

y & 4.3L will begin to influence the flow at y & 2.3L, and

strongly influence it for y [ 3.3L.

Assuming reflective symmetry about the origin and

rotational symmetry between lateral velocity components

u and v, we can use the above results to determine the full-

size of the homogeneous isotropic region in our stirred

tank, which is given in Table 4.

7 Conclusions

Homogeneous isotropic turbulence is of extreme interest

for theoretical and engineering problems on turbulent

dynamics. However, recreating this idealized situation in a

laboratory flow is a formidable challenge due to the local

distribution of turbulent production. We have developed a

laboratory flow with an unprecedented degree of homo-

geneity and isotropy, and with negligible mean flow. The

flow is obtained by combining the concepts of randomly

actuated synthetic jet arrays (Variano and Cowen 2008)

and symmetric forcing in a stirred tank.

PIV measurements in this flow show that there is a

region at the core of the tank in which the flow is homo-

geneous over two integral length scales. Several tests of

isotropy confirm that the flow in the homogeneous region is

isotropic at all scales. The Reynolds number (based on the

Taylor microscale) is between 334 \ Rk \ 351 in the

homogeneous region. This high-value means that we can

−2.5−2−1.5−1−0.50
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−4

z/L

 [
m

2 s−
2 ]

1/2<2v2+w2>
<wv>

0 5 10

x 10
−4

−1

−0.5

0

0.5

1

1.5

2

2.5

y/
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(a) (b)Fig. 8 Distribution of TKE ð�Þ
and Reynolds stress hvwi ð
Þ in

the yz plane. a Data averaged

over y. b Data averaged over

z. The solid lines indicate mean

quantities in the tank center, and

percent changes relative to this

mean value are shown as dashed

(10 % variation) and dashed-

dotted (20 % variation) lines.

The errorbars represent the

95 % CIs computed by

bootstrap method

Table 4 Two quantitative demarcations of the size of the region at

the tank center that contains homogeneous isotropic turbulence

±20 % ±10 %

x -3.3L \ x \ 3.3L -2.3L \ x \ 2.3L

y -3.3L \ y \ 3.3L -2.3L \ y \ 2.3L

z -

1.5L \ z \ 1.5L

-1.0

L \ z \ 1.0L

−2−1.5−1−0.50

0.08

0.1

0.12 (c)

L
(z

) 
[m

]

Z/L

0.012

0.014

0.016

0.018 (b)

λ f(Z
) 

[m
]

4

6

8
x 10

−5

(a)

ε(
Z

) 
[m

2 s−
3 ]

Fig. 9 Spatial distribution of turbulent quantities within 0 B z/

L B 2.5. The dashed lines show the ±10 % variation with respect

to the reference value at the tank center (solid line). The errorbars

show the 95 % CI computed via bootstrap method
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expect a large inertial subrange, thereby affording a

meaningful approximation to turbulence theory. The mean

flow is less than 10% of the turbulent fluctuating velocity

magnitude. This low mean flow makes it convenient to

investigate the dynamics of turbulence because one can

independently measure the Eulerian temporal, Eulerian

spatial, and Lagrangian statistics at a single, non-moving,

and measurement location.

A conservative demarcation (\10 % variation of turbu-

lent quantities) of the homogeneous isotropic region is

2.3L [ x [ -2.3L, 2.3L [ y [ -2.3L, and 1.0L [ z [
-1.0L, where L = 9.5 cm. A more liberal quantitative

assessment (\20 % variation of turbulent quantities) of the

size is 3.3L [ x [ -3.3L, 3.3L [ y [ -3.3L, and

1.5L [ z [ -1.5L. In either case, this region is much larger

than in other laboratory apparatus designed to create

homogeneous isotropic turbulence at the same high Rey-

nolds number. The large size of the homogeneous isotropic

region is especially important for measuring the dynamics

of turbulent particle suspensions. This is because particle

motion depends in part on the history of the flow experi-

enced (Mei 1992). Thus, for particle statistics to accurately

represent the effects of homogenous isotropic turbulence on

particles, they must be measured in a homogeneous region

so that they do not include the signature of other regions of

the flow. At the center of the stirred tank discussed here, any

particle that is measured will have traveled through a large

region of homogeneous turbulence, and thus, its motion will

be almost entirely due to this flow.

The method of turbulence generation presented here can

be extended in a number of possible ways. Tank geometry

can be systematically varied to obtain different turbulent

parameters at the tank center, covering a range of Reynolds

numbers and dissipation rates. The large number of jets

offers a significant amount of freedom in driving flow

patterns, and thus, different driving algorithms can be used

to tune the mean flow and energy-containing scales. If it is

important for a study, the fraction of the total tank volume

that is occupied by HIT can be directly adjusted by

extending the lateral tank boundaries. The method dis-

cussed here can also be incorporated in DNS as an alter-

native forcing mechanism that would likely be better suited

for analyzing the effect of turbulence on suspended parti-

cles, bubbles, or droplets.
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